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This paper presents a study about power profiles of micro-grid with highly intermittent 

sources and their impacts on energy storage system (ESS). The first step of the work 

consists in generating the ESS power profiles thanks to a new optimal sizing algorithm. 

Our approach allows to size the ESS and the renewable energy sources (RES) using a 

power/energy considerations to generate charging and discharging profiles regardless ESS 

specifics parameters. In a second step, we review the potential damages on Valves 

Regulated Lead Acid Batteries (VRLAB). This technology has been chosen because it is 

the most used ESS in case of stationary applications for urban MG with RES integration. 

We propose some criterion to quantify the batteries stresses generated by MG working 

operations. Therefore, we give recommendations to enhance the VRLAB lifetime in both 

micro-grid design and energy management. Our method has been applied to the 

photovoltaic production and lighting network consumption profiles of the LAAS-CNRS 

building integrated photovoltaic. We compare four possible configurations of ESS and 

RES: two determined thanks to Pareto optimisation method and two critical cases 

corresponding to the minimal and the maximal values of ESS size into all the possible 

configuration tested. 
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1. INTRODUCTION

With climate change, the fossil resources depletion and 

environmental considerations for planet preservation the main 

challenge is to found a clean and efficient way to produce and 

distribute the electrical energy. Research interests in micro-

grid (MG) integrated to building field has gained a wide 

international attention during the last few years [1-3]. The 

considered MG are constituted of distributed power generation, 

as renewable energy sources (RES), associated with energy 

storage systems (ESS), and connected or not to the main 

distribution grid. To be competitive these new MG have to be 

efficient and sustainable while they ensure the supply of the 

consumption [4]. The main technical difficulties to design 

these MG is to deal with RES intermittencies, depending on 

climate conditions, while we optimize the sustainability of the 

ESS thanks to energy/power management systems (EMS/PMS) 

[5, 6]. We consider in first approach that improving the 

sustainability of an ESS is to enhance the lifetime to reduce 

the cost in an overall point of view. However, ESS lifetime 

depends on the energy flow during operation and so it depends 

both on the EMS and on the ESS sizing, which are themselves 

related [7, 8]. Thus, the main problematic in MG conception 

becomes how to define the optimal configuration between the 

RES and the ESS sizes (energy, power, topology and 

technology) taking into account the EMS and PMS associated. 

In addition, it seems important to consider the ESS stress 

mechanisms involving potentials degradations and therefore 

prematurely decreasing the ESS lifetime.  

With this context we propose as first approach a 

methodology to RES and ESS sizing in case of self-sufficient 

application without taking into account an EMS to manage the 

main grid access. With a MG simulation including ESS model 

it would be possible to add a more complex EMS. This EMS 

will allow to reduce the ESS and RES sizes by purchasing 

power from the main grid. In the meantime, the optimal results 

of the sizing methodology presented in this paper, allows us to 

analyse the potential energy flow through the ESS 

independently of the ESS model. We can also use this optimal 

solution as the initial configuration for EMS optimization 

research. Thanks to these profiles we can identify the 

operating conditions causing benefits or stress factors on ESS 

and then establish the best ESS management strategy we will 

apply into the EMS. 

We qualify the profile variations in order to compare them 

to the potential damages on valve regulated lead acid batteries 

(VRLAB). Indeed, for stationary applications in building MG, 

the technologies of ESS commonly used are electrochemical 

storage as VRLAB or Li-ions batteries [9, 10]. Although 

VRLAB have a limited C-rate in discharging and Li-ion 

technologies knowing an important increase in the last decade 

[11], lead acid technology maintaining its interest in the ESS 

market for four reasons [10, 12, 13]: 

- its simple mode of installation and safety due to its

maturity, 

- its low need of maintenance (for maintenance free for

VRLAB), 

- its low cost,

- its high level of sustainability, with an excellent rate

of collection and recycling [14-16]. For example, in OCDE 

European Journal of Electrical Engineering 
Vol. 23, No. 6, December, 2021, pp. 455-466 

Journal homepage: http://iieta.org/journals/ejee 

455

https://crossmark.crossref.org/dialog/?doi=10.18280/ejee.230605&domain=pdf


 

countries more than 95% of the battery are recycled, and in the 

United States 99% of all lead acid batteries were recycled 

between 2009 and 2013.  

However, the main drawback of VRLAB technology is their 

short lifetime in case of RES operating conditions in particular 

with high and numerous intermittencies implying frequent 

incomplete cycles at partial state of charge (pSOC). To 

contribute on increasing the VRLAB lifetime two approaches 

exist. The first one consists in studying new materials or 

batteries geometry, and the other one consists on managing the 

power flow through the batteries. With this paper we 

contribute in this last research field.  

In section 2, we give the concept and the algorithm of the 

methodology proposed to build the ESS profiles.  

In section 3, we present the VRLAB behaviours and 

damages, and we give the working conditions that we have to 

privilege or avoid to improve the battery lifetime. 

In section 4, we detail the results on our sizing methodology 

in case of MG dedicated to a lighting network supply, in 

building integrated photovoltaic (BiPV). In this section we 

propose different analysis according to criterion in order to 

qualify the damages on VRLAB. 

Finally in section 5, we conclude about our work and we 

give some perspectives. 
 

 

2. POWER PROFILES AND ESS SIZE 

 

2.1 General sizing methodology 
 

Figure 1 presents the flow char diagram for the proposed 

algorithm. We define PBAL(t), in equation 1, as the difference 

between the production power profile and the consumption 

power profile, respectively PPROD(t) considered positive and 

PLOAD(t) considered negative. PBAL(t) is negative when the 

loads need to be supplied.  

 

𝑃𝐵𝐴𝐿(𝑡) = 𝑃𝑃𝑅𝑂𝐷(𝑡) + 𝑃𝐿𝑂𝐴𝐷(𝑡) (1) 

 

As shown in Figure 1, we use the EBAL(t) profile, calculated 

thanks to PBAL(t), to estimate the bigger decrease, ∆E, on the 

energy profile. Before calculating it, we verify that the EBAL(t) 

profile at a certain time tLIM in the time horizon T, is superior 

or at least equal to the energy at the beginning of the time 

horizon, t0. This condition ensure that production is sufficient 

to charge the ESS at time tLIM. The time horizon tLIM depends 

on the autonomy that the user wants. Next, we can estimate ∆E 

on the EBAL(t) profile. ∆E is the quantity of energy that the ESS 

has to supply to ensure the autonomy, if we consider the ESS 

as ideal, with an efficiency equal to unity and no limit on 

power rate. At the end of the first iteration, we obtain ∆EESS 

equal to ∆E. After this step, the verification block allows to 

calculate the power exchanged with the ESS, noted PESS(t). 

This profile depends on the limitations introduced in the 

algorithm, and it corresponds to the part of the power profile 

PBAL(t) exchanged through the ESS, having the size ∆EESS. 

Thanks to equations systems (2) and (3), we calculate 

respectively PESS(t) and EESS(t). In (2) and (3) the first parts of 

these equations are for charging and the second ones for 

discharging. 

We use an energy/power consideration with constant power 

limitation and energy efficiency. In Eq. (2), CrateMAXc and 

CrateMAXd parameters are the maximum C-rate in charge and 

discharge. ηE is the energy efficiency of the ESS, applied at the 

charge, in the first equation of the system equations (3). We 

fix these values according to datasheet, and then with this 

model it is easy to test different ESS.  

 

 
 

Figure 1. Flow chart diagram of the proposed sizing methodology algorithm 
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{
 
 

 
 

𝑃𝐸𝑆𝑆(𝑡) = 𝑃𝐵𝐴𝐿(𝑡),

𝑖𝑓 𝑃𝐵𝐴𝐿(𝑡) ≤ 𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑐 ∗ Δ𝐸𝐸𝑆𝑆

𝑃𝐸𝑆𝑆(𝑡) = 𝑃𝐵𝐴𝐿(𝑡),

𝑖𝑓 𝑃𝐵𝐴𝐿(𝑡) ≥ − 𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑑 ∗ Δ𝐸𝐸𝑆𝑆

 (2) 

 

{

𝐸𝐸𝑆𝑆(𝑡) = 𝐸𝐸𝑆𝑆(𝑡 − Δ𝑡) + 𝜂𝐸 ∗ 𝑃𝐸𝑆𝑆(𝑡 − Δ𝑡)

𝐸𝐸𝑆𝑆(𝑡) = 𝐸𝐸𝑆𝑆(𝑡 − Δ𝑡) + 𝑃𝐸𝑆𝑆(𝑡 − Δ𝑡)
 (3) 

 

Then, we can calculate the deficit and the excess power, 

noted respectively PDEF(t) and PEX(t), according to Eq. (4).  

 

𝑃𝐸𝑆𝑆(𝑡) = 𝑃𝐵𝐴𝐿(𝑡) − 𝑃𝐸𝑋(𝑡) − P𝐷𝐸𝐹(𝑡) (4) 

 

The configuration is validated when PDEF(t) is equal to zero 

in all the time steps of the horizon considered. Because of the 

power and energy limitations and the ESS efficiency added 

between the assessments of PBAL(t) and PESS(t), it is possible 

that we have to do two iterations to achieve the right value of 

∆EESS to be autonomous. In these cases, we add to the first 

∆EESS value, the estimated ∆E defined thanks to a new balance 

profile equal to the sum of PEX(t) and PDEF(t). This loop in the 

complete algorithm is presented in Figure 1, from the 

validation bloc to the ΔEESS definition bloc. The validated 

configuration corresponds to the value of ∆EESS we have to 

install, associated to a certain quantity of production, in order 

to ensure self-sufficiency.  

At the end of the algorithm, the solution assessment block 

(Figure 1) allows to choose the optimal configuration between 

all the validated configurations and according to different 

criterion defined by the user. The final configuration selected 

can be defined as the optimal configuration for self-sufficient 

and off-grid applications or, in future works, as the initial 

configuration in case of connected MG, as explained in section 

1.  

As show in Figure 1, for each configuration we can express 

the energy flow into the ESS, EESS(t) by integrating PESS(t), and 

then the SoC in terms of energy, SoCE(t), according to Eq. (5).  

 

𝑆𝑜𝐶𝐸(𝑡) =
EESS(𝑡)

∆𝐸𝐸𝑆𝑆
 (5) 

 

In our case, we propose to use the Pareto multi-objective 

optimization method to define the optimal configuration. Thus, 

as explained in Refs. [17, 18], we can define the optimal 

compromise between all the criterion as the point in the Pareto 

front which have the minimal Euclidian distance to the utopia 

configuration. This point represents a configuration which is 

impossible to achieve with the minimum of the two (or more) 

criterion as coordinates.  

 

2.2 Power profiles inputs from the ADREAM BiPV 

database 

 

The optimized energy building integrated photovoltaic 

(BiPV) ADREAM, built in 2012, at LAAS-CNRS, FRANCE, 

owns a 100 kWp of PV platform and more than 6500 sensors 

[19] and is showed in Figure 2. Its instrumentation system 

allows to record each minute the consumption, the production, 

the temperature and the air quality of the building. Nowadays 

a LVDC MG is deployed into the building to supply servers 

and USB loads [20]. One of the objectives of this platform is 

to supply the DC loads of the entire building, such as electrical 

outlets or lighting network. 

 

 
 

Figure 2. ADREAM BiPV with example of working rooms 

and sensors installed 

 

We apply our methodology in order to size the PV platform 

and the ESS needed for supply the lighting network of the 

secondary floor of the building, occupied by office.  

The power profiles inputs are: 

- PPV(t) correspond to the production power profile 

produced by 4 panels (1 kWp) localized in the rooftop 

of the ADREAM building. Thus PPROD(t) corresponds 

to this profile multiplied by a coefficient kPVi, with i the 

number of the configuration. The PV platform becomes 

a platform of kPVi kWp of PV installed. In this way we 

are able to scale the production. 

- PLOAD(t) is the power consumed by the lighting network 

of the building second floor. 

So, in our case, Eq. (1) becomes Eq. (6). 

 

𝑃𝐵𝐴𝐿(𝑡) = 𝑘𝑃𝑉𝑖 ∗ 𝑃𝑃𝑉(𝑡) + 𝑃𝐿𝑂𝐴𝐷(𝑡) (6) 

 

The power profiles used correspond to two years (2016 and 

2017) at one minute time step, ∆t. This compromise between 

time step and number of years studies allows us to consider 

both intermittency due to cloudy days and seasonal changes, 

while we keep a reasonable quantity of data.  

The Figure 3a shows the 2 years data set for an example of 

𝑘𝑃𝑉𝑖  equal to 2.25 kWp. 

 

 
 

Figure 3. Consumption data, production data and balance 

power profiles of the ADREAM BiPV 

 

We can see thanks to Figure 3a the reduced PV production 

during the winter with an increase of the consumption in the 

lighting network. The Figure 3b shows a zoom on height days 

and the 𝑃𝐵𝐴𝐿(𝑡)  profile associated to 𝑃𝑃𝑉(𝑡)  and 𝑃𝐿𝑂𝐴𝐷(𝑡) . 

We can see the production and consumption time shift on one 

day, with over production at the middle of the day and power 

deficit at the beginning and at the end of the day. We also see 

the PV rapid intermittency during the day, due to cloud or 

shadows. 
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3. VRLAB BEHAVIOUR AND DEGRADATIONS 

 

In this section we explain how lead acid batteries works and 

what are the different damages affecting the battery and its 

lifetime. We give the causes of these mechanisms, and if there 

is any solution to avoid them. We focus on damages due to 

operating conditions affecting the battery efficiency and the 

cycle lifetime. The cycle lifetime is different to the calendar 

lifetime, in years, define as the battery lifetime when it is not 

use and impacted by temperature storage, SoC or self-

discharged rate [12]. We do not consider either the potentials 

manufacturing damages. Finally, based on the potentials 

degradations listed, we determine on which power and SoC 

variations it is important to focus in order to qualify the 

VRLAB operating conditions. 

 

3.1 Working principle of lead-acid battery 

 

The general chemical processes occurring in lead acid 

batteries during charging and discharging can be explained as 

follows: 

• In discharging mode, crystals of lead sulfate are 

created respectively by lead dioxide reduction at the positive 

plate and lead oxidation on negative plate [21]. This reaction, 

called sulfation, implies that crystals of lead sulfate gradually 

cover the electrodes surfaces and the battery available capacity 

is progressively reduced until there is no enough active mass 

(AM). During the discharge, water is produced inducing a 

decrease of the acid concentration in the electrolyte. 

• In charge, reverse reactions occur, thus the crystals of 

lead sulfate are reduced in lead at the negative plate and 

oxidized in lead dioxide at the positive plate [22]. During all 

the charge, water is consumed involving the increase of acid 

concentration in the electrolyte. Figure 4 represents the current 

and voltage evolution during battery charge at a constant 

current rate (C-rate) called CC phase. The voltage curve starts 

to grow exponentially when the water electrolysis gassing 

secondary reactions become predominant [23]. At this stage, 

the battery produces a certain quantity of oxygen and hydrogen 

respectively at the positive and the negative plates by water 

decomposition. To ensure a complete charge while we limit 

the water losses, the degassing effect and avoid overcharging, 

it is recommended to follow the CC charge by a constant 

voltage (CV) charging phase (CC-CV charge protocol) [21], 

as represented in Figure 4. This final phase ends when the rate 

of floating current is achieved. At this stage the battery can be 

considered full recharged. It is assumed that for a complete 

charge following a complete discharge, the CV phase starts at 

80% of the battery capacity [24]. However other authors prefer 

to consider that this limit depends on the charge current and 

SoC [25]. Thus, it is more complex to define limit between CC 

and CV phases. We can also notice that during CV phase, the 

battery efficiency change and can be drastically reduced [24]. 

The main advantage of sealed VRLA battery compared to 

classical vented/flooded lead acid batteries is the treatments of 

the water electrolysis by using the oxygen cycle and gasses 

recombination [26]. This technique reduces the rate of oxygen 

and hydrogen production and the water depletion, and reduce 

significantly the need of maintenance. However, this internal 

oxygen cycle is not a perfectly full reaction and the regulated 

valve makes the escape of a small portion of hydrogen 

unavoidable, so there are a few amounts of water losses in 

VRLA batteries. These gasses recombination process is also a 

high source of heat inducing an increase of the battery 

temperature and a potential thermal runaway [27]. 

 

 
 

Figure 4. Typical voltage/current VRLAB characteristics 

during CC-CV charge 

 

3.2 VRLAB stress factors and failure mechanisms 

 

 
 

Figure 5. Potential damages with causes and consequences associated on VRLAB 
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According to the working principles explained previously 

we can bring out five main degradations processes affecting 

the VRLA batteries by increasing the internal resistance, 

involving capacity fade and potentials short circuits. The 

following list explains each degradations mechanisms, their 

causing stress factors and the uses able to minimize it. Figure 

5 summarises the links between the consequences and the 

stress factors for each damage. 

• The corrosion affects the metallic part of the battery 

electrodes/plates, called grids or currents collectors [28]. This 

damage appears mainly during overcharge, floating mode and 

CV charge [29]. Corrosion is due to the parasitic reaction. It is 

an irreversible degradation, but it can be limited if the battery 

always works outside of these charge conditions. 

• Hard or irreversible sulfation [30] is a significant 

worsening of the reversible sulfation reaction produced during 

discharge. If the crystals of lead sulfate are not destroyed with 

complete recharge, they gradually cover the AM surface and 

damage the behaviour of the battery by reducing the 

exchanging surface and thus reducing the initial capacity [31, 

32]. They become more and more persistent if the complete 

recharge process is rarely achieved [33]. It is important to 

apply a regular complete charge to delete all the lead surface. 

• AM shedding, loosening or sludging correspond to an 

AM degradation, with loss of conductivity and loss of 

adherence to the grid [32]. It results of an excessive changing 

in the AM morphology mainly caused by frequent incomplete 

cycle at partial SoC (pSoC), low C-rate at the beginning of the 

charging, or battery overcharging [34]. 

• Electrolyte stratification is a non-homogenous 

repartition of the electrolyte according to the vertical 

distribution inside the battery. This is due to the different 

density of the species, operating temperature and the natural 

gravity [35]. As explained previously, during the charging, 

water is consumed and the density of the electrolyte changes 

in a non-homogeneous way and gets denser near to the plates. 

The stratification process cannot be avoided but it is highly 

depending on the C-rate and can be enhanced by doing 

incomplete cycles, mainly at low pSoC [21, 35]. However, it 

can be reversible if a complete charge with CV phase is done 

thanks to the water electrolysis and the degassing which help 

to homogenise the electrolyte [36]. 

• Water losses are due to a high external or internal 

temperature working conditions and can cause damages to the 

battery and a potential thermal runaway [26]. An incomplete 

oxygen cycle with bad gasses recombination can be at the 

origin of an increase of internal temperature [27]. It can also 

be caused by electrolyte stratification and irreversible sulfation 

which block the gases flow [29]. 

 

To synthesis the VRLAB damages analysis, we can see that 

all the consequences can affect others causes and all the 

damages are highly dependent and can increase other 

degradations. For this reason, it is very difficult to clearly do a 

hierarchy between damages. However, we propose to identify 

the main phenomenon impacting the battery cycle lifetime 

(prematurely reduce the battery capacity) and highlight some 

good practices. For example, it can be noted that operating at 

pSoC with incomplete cycles increases the degradation of the 

AM, the sulfation and the stratification. Nevertheless, this 

phenomenon can be reduced by regular and complete CC-CV 

charges. Indeed, doing a full charge with CV allows to recover 

some capacity and avoid hard sulfation and stratification. A 

patent made in 1998 by Alzieu et al. [37, 38] applies this 

technique to improve the battery lifetime on hybrid pack of 

flooded lead acid batteries, charged with RES and dedicated to 

ancillary services into the main distribution grid. If we 

consider floating state and long periods at full charge it can be 

noticed that the working conditions increase the corrosion 

effect and water losses. The deep discharge and the use at high 

C-rate affect the battery capacity and increase the internal 

resistor.  

We can resume our study by giving a set of indicators 

helping us to identify the stress factors impacting the ESS 

lifetime based on the PESS(t) and the SoCE(t) profiles: 

- The number and repartition of incomplete cycles 

around pSoC with the level of the cycle amplitude. 

- The duration between two full charges. 

- The duration at full charge (SoC 100%).  

- The duration at deep discharge.  

- The C-rate in charging and discharging mode.  

 

 

4. RESULTS AND DISCUSSIONS 

 

In this section we present the optimisation results following 

the methodology presented in section 2. We fix the time 

𝑡𝐿𝐼𝑀 on one year over the time horizon T equal to two years. 

We run the algorithm in the worst case scenario by fixing the 

initial condition on Δ𝐸𝐸𝑆𝑆 equal to the first minimum of the 

𝐸𝐵𝐴𝐿(𝑡) curve into the time horizon. In this way we assume 

that the ESS is at least one time empty during the 2 years. The 

variables used as criterion for the Pareto optimisation are 𝑘𝑃𝑉𝑖  
and Δ𝐸𝐸𝑆𝑆𝑖 , for each i configuration. We choose to use directly 

these two variables, knowing that all criterion as cost or 

sustainability depends on these values. 𝑘𝑃𝑉𝑖  variable vary 

from 1kWp to 35kWp, with a step from 0.25 kWp, that 

correspond to one panel. So, we have 137 configurations, 

indexed by i, validated and ensuring the lightning network 

self-sufficient operations. We limit the C-rate in charging and 

discharging respectively at 0.25C and 3C, and the ESS energy 

efficiency, ηE, is fix at 0.85 according to the values given in 

[13, 39, 40].  

 

4.1 Pareto optimization sizing results 

 

Thanks to the Pareto method we optimize both the PV size 

according to 𝑘𝑃𝑉𝑖  and the ESS size with ∆𝐸𝐸𝑆𝑆𝑖 . As explained 

in section 2, the Pareto optimisation allows to find the optimal 

configuration based on the minimum Euclidian distance to the 

utopia point. However, this optimal configuration can be 

different according to the normalization we made on 𝑘𝑃𝑉𝑖  and 

∆𝐸𝐸𝑆𝑆𝑖  criterion. In Figure 6, we show each configuration 

sizing and the Pareto optimal configuration obtained for two 

different types of normalization. More precisely, the Figure 6a 

corresponds to the Pareto curve with the real values of 𝑘𝑃𝑉𝑖  
and ∆𝐸𝐸𝑆𝑆𝑖 , but the Figure 6b shows the results when 𝑘𝑃𝑉𝑖  and 

∆𝐸𝐸𝑆𝑆𝑖  are normalized, respectively between 0 to 1 and 0 to 3. 

Typically, it corresponds to a ratio of 3 between the kWp of 

PV and the kWh of ESS. 

We define this ratio as a weight between 𝑘𝑃𝑉𝑖  and Δ𝐸𝐸𝑆𝑆𝑖  
and it is equal to the limit value of the Δ𝐸𝐸𝑆𝑆𝑖  normalization. 

The choice of the weight apply on the ESS size criteria returns 

to the users. It can be chosen according to the ESS cost for 

example and the ratio between the cost of a kWp of PV and a 

kWh of VRLAB. In our study, if we use directly the 𝑘𝑃𝑉𝑖  and 

the ∆𝐸𝐸𝑆𝑆𝑖  values, the optimal configuration obtained is the 

configuration with i equal to 30, and 8.25 kWp of PV plants 
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and 16.62 kWh of batteries. The Figure 7 shows the results of 

the optimal configuration obtained with different 

normalization on ∆𝐸𝐸𝑆𝑆𝑖  and 𝑘𝑃𝑉𝑖 . For each Pareto analysis we 

normalize 𝑘𝑃𝑉𝑖  from 0 to 1, and ∆𝐸𝐸𝑆𝑆𝑖  from 0 to the ∆𝐸𝐸𝑆𝑆 

weight. To verify the sensibility between the optimal 

configuration result and the weight factor, we do a variation of 

this weight between 1 to 15, as represented in the Figure 7 

abscises axe. 

The optimal configuration Pareto results converge to 10 

kWp of PV panels and 14 kWh of ESS. The optimal 

configuration without weight and normalization (black circle) 

corresponds to a ratio around 9.5 between the kWp of PV 

installed and the kWh of ESS. This sensibility study shows the 

impact of the weight factors on the optimisation results. We 

can see that the quantity of PV increases when ∆𝐸𝐸𝑆𝑆 

decreases and when the weight factor increases, because the 

results of the Pareto optimisation give a configuration with 

oversize PV sources in order to minimize the ESS capacity 

which weighs more. With this method we can adjust the 

optimal configuration according to the Δ𝐸𝐸𝑆𝑆  weight factor 

(normalization limit). 

We choose to focus our study on the comparison of ESS 

power and 𝑆𝑜𝐶𝐸(𝑡) variation on four possible configurations, 

validated in case of self-sufficient operation, and summarized 

in Table 1. 

 

 
 

Figure 6. Pareto optimization and configurations results without and with normalization on kPVi and ∆EESSi 

 

 
 

Figure 7. Sensibility of the optimal configuration results (kPV; ∆EESS) for different normalization on ∆EESS 

 

Table 1. Configurations saved to comparative study 

 
configuration number i kPVi [kWp] ΔEESSi [kWh] configuration description 

1 1 1 332,87 minimum 𝑘𝑃𝑉𝑖  and maximum ΔEESSi ensuring autonomy 

2 30 8.25 16.62 optimal configuration ensuring autonomy, without normalization 

3 21 6 19.19 optimal configuration ensuring autonomy with normalization between 0 to 3 for ΔEESSi 

4 137 35 9.94 maximum 𝑘𝑃𝑉𝑖  and minimum Δ𝐸𝐸𝑆𝑆𝑖 ensuring autonomy 
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Figure 8. 2 years of power balance, ESS power and SoCE(t) profiles for the optimal configuration n° 2 

 

 
 

Figure 9. 8 days of power balance, ESS power and SoCE(t) profiles for the optimal configuration n° 2 

 

 
 

Figure 10. 2 years of power balance, ESS power and SoCE(t) profiles for the optimal configuration n° 3 

 

Figures 8 and 10 show the power exchanged with the ESS 

and the balance power profile (subplot b) for the two optimal 

configurations (2 and 3). The Figure 9 shows a zoom on 8 days 

of the profiles variations for the configuration 2. On these 

Figures the SoCE(t) profile is presented (cyan curve). 

The difference between Figures 8 and 10 is the values of the 

ESS size normalization used for the Pareto optimisation. In 

Figure 8, the profiles represented correspond to the optimal 

configuration 2. In this case we can see that the quantity of PV 

is bigger than the ones in the optimal configuration 3, 

presented in Figure 10. This is because of the ratio between the 

PV kWp and the ESS kWh is around 9.5 in configuration 2 

compared to 3 in configuration 3. So, regarding these two 

Figures, the optimal configuration 2 corresponds to a PV 
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platform oversized. We see in Figures 8b and 9 that during 

charging, the 𝑃𝐸𝐸𝑆(𝑡)  profile is more often limitated at 

𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑐  than in configuration 3. As in consequence the 

𝑃𝐸𝑋(𝑡)  values are important, moreover during the summer 

periods. 

We can notice that these limitations depend on the ESS 

models we used and their limitations. In our case we model the 

power limitations by a constant power rate in charging and 

discharging modes, CrateMAXc and CrateMAXc. In reality, due to 

the voltage evolution during CC charging and discharging, and 

current decrease during CV charging, the power limits vary 

during these operating modes. 

Thanks to the previous configurations cited in table 1 and 

the resulting ESS power and SoC profiles, we are able to 

identify and evaluate the stress factors implied by the working 

conditions on ESS, and more specifically on VRLAB.  

 

4.2 Profiles analysis according to the VRLAB stress factors 

 

4.2.1 C-rate impacts 

In this subsection we present our analyses of the distribution 

of the C-rate, during 2 years. Thanks to Figure 11, we can 

show that the C-rate in charging and discharging mode, 

respectively C𝑟𝑎𝑡𝑒𝑐 and 𝐶𝑟𝑎𝑡𝑒𝑑, depend on the configuration. 

In charging mode (Figure 11a) we can see that the C-rate take 

bigger values more often when the ∆𝐸𝐸𝑆𝑆  decreases. For the 

two optimal configurations, 2 and 3 (blue and green bars), the 

distribution is almost the same. For the configuration 1 (purple 

curve), the C-rate in charge is always smaller than 0.01C. 

Unlike, in the configuration 4, the C-rate in charging mode is 

more often between 0.24C and 0.25C, thus close to the 

maximum C-rate in charge. 

In discharging mode (Figure 11b) and for all the 

configurations, the C-rate is still inferior to the maximum C-

rate limit, 𝐶𝑟𝑎𝑡𝑒𝑑𝑀𝐴𝑋 . Because of the strategy dedicated to 

improve autonomy we calculate the size of the ESS according 

to the more important decrease on the 𝐸𝐸𝑆𝑆(𝑡) profile, so the 

ESS size is defined regarding an energy constraint and not a 

power constraint. 

We can conclude that the C-rate in discharging mode is not 

significant if we keep the ∆𝐸𝐸𝑆𝑆 size as we define it thanks to 

the sizing methodology proposed. The C-rate in charge for the 

two optimal configurations (2 and 3) are distributed in all the 

C-rate range but mostly at low C-rate under 0.05C. It is an 

advantage to limit the VRLAB degradations, although it is 

specified that too low C-rate at the beginning of the charge can 

favour the AM shedding. In case of configuration 1 and 4, the 

C-rate distribution in charge can become an issue by using the 

VRLAB only with low or high C-rate. 

 

 

 
 

Figure 11. Distribution of the C-rate repartition for the 4 

different configurations in charging and discharging mode, 

for 2 years data set 

 

 
 

Figure 12. Cumulative time at SOCE equal to 100% or less 

than 30% during two years, for all the configuration 

 

4.2.2 SoC variations 

In this subsection we present the main results on the SoC 

fluctuations during 2 years. We are particularly interested in 

the time at full charge and at low SoC. We can see in Figure 

12 the total time relatively to the two years data set that the 

ESS stay at SoCE equal to 100% (green points) or less than 

30% (red points). In the right axis of the Figure 12 we report 

the ESS size for all the calculated and validated 

configurations. We see in this Figure that the duration when 

SoCE is lower than 30% decreases when ∆𝐸𝐸𝑆𝑆𝑖  decreases and 

𝑘𝑃𝑉𝑖  increases. Contrary the duration when SOCE is equal to 

100% increases when the ∆𝐸𝐸𝑆𝑆𝑖  decrease and the 𝑘𝑃𝑉𝑖  
increase. 

The first consequences seen in this Figure is that for self-

sufficient operations, the damages implied by low SoC (depth 

discharges) are not significant because of their rarity (lower 

than 5% for configuration with more than 5 kWp for the 𝑘𝑃𝑉𝑖  
value). 

If we complete this observation with the 𝑆𝑂𝐶𝐸(𝑡) profile 

showed in Figure 8 or 10, we observe that these rates of 

discharge probably occur mainly during the winter. 

Concerning the charge, we see that the ESS is at SOCE equal 

to 100% more than 25% of the time in case of configurations 

with 𝑘𝑃𝑉𝑖  is superior at 5 kWp. Full 𝑆𝑜𝐶𝐸 mainly occur during 

summer. According to this observation and the mechanisms 

listed in section 3 it seems important to clearly define what a 

100% 𝑆𝑜𝐶𝐸(𝑡) really means. With the charge model used to 

validate the ESS size, we do some assumption about the power 

limitations. Indeed, it is difficult to affirm that when the 

𝑆𝑂𝐶𝐸(𝑡) profile reach to 100% the battery is fully charge and 
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has done a complete CC-CV charge knowing that the power is 

limited during CV phase. Moreover, we do not know during 

how time the VRLAB stay at 𝑆𝑜𝐶𝐸  100% between two 

discharges. If we assume that the full charge is reached when 

𝑆𝑜𝐶𝐸(𝑡) is equal to 100%, that means that the battery operates 

often in floating operation mode during the two years, and it 

can favorise corrosion and water losses. To avoid this situation 

a solution could be to limit the VRLAB SoC at 80% but this 

limitation implies ESS oversizing and at the same time we do 

not use the benefit of complete recharge which regenerate the 

capacity loss due to sulfation and stratification, mainly cause 

by incomplete cycles at pSoC. 

Figures 13 gives us more details about the ESS charge. 

Figure 13a represents the distribution of the consecutive time 

at 𝑆𝑂𝐶𝐸(𝑡)  equal to 100%, during 2 years and for the 4 

configurations. The Figure 13b shows the Watthours 

throughput exchanged, according to the total ESS size ∆𝐸𝐸𝑆𝑆, 

between two time at 𝑆𝑂𝐶𝐸(𝑡) equal to 100%. 

 

 

 
 

Figure 13. Distribution of the number of consecutives hours 

the ESS stays at SoC 100% for the 4 different configurations 

 

For all the configurations the maximum probability 

corresponds to a time at full SoC less than 0.1h. So if the 

VRLAB is full when 𝑆𝑜𝐶𝐸(𝑡) is achieved the value of 100%, 

the battery does not stay a long time in floating operation and 

consequently the impact of corrosion and water losses can be 

avoided. However, it is important to control the end of the CV 

charge to ensure that the batteries are not overcharged during 

this period. In the meanwhile, if the charge process is not fully 

achieved when the 𝑆𝑜𝐶𝐸(𝑡) profile reach 100%, this duration 

do not ensure that the battery charge is complete before a new 

discharge. 

Watthours throughput between two full charges appear to 

be less than 1% of the total ESS size, as show in Figure 13b. 

Therefore, it is difficult to conclude on the level of impact on 

sulfation and stratification. It would be interesting to evaluate 

the better compromise between the energy exchanged between 

two full charges and the number of full charges needed to 

avoid hard sulfation and stratification. This study will allow us 

to fix a Watthours limit ensuring the reversible sulfation 

phenomenon with complete CC-CV charge while we 

minimize the time in CV phase, when VRLAB efficiency 

decreases and corrosion and water losses ageing mechanisms 

occur. 

The Figure 14 shows the average pSoC during the two years 

calculated thanks to the 𝑆𝑜𝐶𝐸(𝑡) profile, for the 4 different 

configurations.  
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Figure 14. pSoC vs amplitude cycle histogram for each cycle 

of the 𝑆𝑂𝐶𝐸(𝑡) profile for 4 different configurations 

 

We see that for the configuration 1 the cycles amplitudes on 

the two years are less than 10%. ESS works around the all 

ranges of pSoC but only doing incomplete cycles. Using the 

VRLAB in such conditions can cause high risk of hard 

sulfation and stratification. 

The incomplete cycles distribution for the three other 

configurations (1, 2 and 3) is concentrated above pSoC equal 

to 50%, which is coherent with the results presented in Figure 

12. This figure allows us to conclude that working at 

incomplete cycle around pSoC is typical of our type of 

application. In our case the SOC is unlimited so most of the 

pSoC are around 80% to 100% (more than 60% of the time 

between 90% to 100% of battery SoC). If we will limit the SoC 

at 80% the results will be a pSoC repartion mostly between 

60%-80% range. In the two cases we damage the VRLAB, on 

one hand with corrosion and on the other hand with risking 

hard sulfation. Morever, by using the VRLAB between 80% 

to 100%, and considering that 100% represented the full 

charge, we mostly sollicite the battery when the effciency is 

low. 

These figures confirm the utility of full recharge with CC-

CV phases in order to recover capacity because of the 

stratification and sulfation mechanisms. But also confirm that 

we need a more accurate charge model for power limitations 

and to define the limit between CC and CV phases, according 

to the VRLAB SoC.  

 

 

5. CONCLUSIONS AND PERSPECTIVES 

 

This paper proposes an algorithm to size the ESS and the 

RES for self-sufficient operation in BiPV MG. This algorithm 

allows to study the typical power variations without taking into 

account a specific ESS model. We made a comparison of the 

battery’s stresses implying by these power variations for four 

configurations ensuring the autonomy. We can see that in the 

cases of optimal sizing, the ESS SoC mainly stays over 60%. 

However, in the range 60%-100% of SoC the batteries do 

many incomplete cycles (with amplitude cycle less than 20% 

of the ESS size). The C-rate during discharging and charging 

and the frequency of deep-discharges do not have significant 

negatives impacts on ESS. 

According to these observations and the potential 

degradations of VRLAB listed in section 3, we can conclude 

that stratification, AM shedding and sulfation mechanisms 

have to be highly considered. The risk of premature corrosion 

and water losses resulting of frequent operations at SoC equal 

to 100% must be taken into account. Moreover, as the VRLAB 

efficiency decrease in CV phase, as well as the potential power 

admitted by the battery, we preconize to limit the working 

operations during CV charging phase. Nevertheless, CV 

charging operations have positives impacts by avoiding hard 

sulfation and stratification, if we ensure that full charge is 

completely achieved.  

The future challenge is to develop an accurate model of the 

charging to represent the power and the transition between CC 

and CV phases.  

This will allow better knowledge of the SoC knowing the 

real power accepted by the battery during the CV phase. 

Such a model will be very useful to manage the VRLAB 

charge in order to minimize the corrosion and avoid 

overcharges while we ensure the benefit of a complete charge. 

Moreover, this model will improve our sizing algorithm by 

considering power limitations. We could implement in the 

charge model two different efficiencies during CC and CV 

phases. However, we have to take in mind that the power 

limitations model should be simple in terms of parameters 

identification and execution.  

To manage the duration at full charge and optimize the 

VRLAB uses, a solution will be to split the ESS into several 

smaller and distributed ESS in a hybrid ESS. These smaller 

ESS could mainly work at pSoC around 50% to avoid 

corrosion and water losses, and switch between the different 

elements of the hybrid ESS to ensure CV phases. The sizing 

and the management of such hybrid ESS could be done thanks 

to a CC-CV charge model.  

Another perspective is to search the optimal compromise 

between full charge benefits and corrosion phenomena. To do 

this it will be necessary to know the specific value of 

Watthours a VRLAB can delivered between two full charges. 

This compromise has to be analyzed with an electrochemical 

point of view. 
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NOMENCLATURE 

 

Abbreviations 

 

AM Active Materials/Mass (in lead-acid battery) 

BiPV Building integrated PhotoVoltaic 

CC Constant Current 

C-rate Current rate 

CV Constant Voltage 

DC Direct Current 

EMS Energy Management System 

ESS Energy Storage System 

LVDC Low Voltage Direct Current 

MG Micro Grid 

PMS Power Management System 

pSoC partial State of Charge 

RES Renewable Energy Sources 

SoC State of Charge 

VRLAB Valve Regulated Lead Acid Battery 

 

Variables 

 

Cratec  C-rate during ESS charging mode, C 

Crated  C-rate during ESS discharging mode, C 

EBAL(t)  energy balance, kWh 

EESS(t)  energy flow throught the ESS, kWh 

kPVi value of PV plants installed in configuration 𝑖, kWp  

PBAL(t)  power balance, kW 

PDEF(t)  deficit power, kW 

PESS(t)  ESS power, kW 

PEX(t)  PV power in excess, kW 

PLOAD(t)  load power, kW 

PPROD(t)  production power, kW 

SoCE(t)  ESS state of charge in terms of energy 

DoDE(t)  ESS depth of discharge in terms of energy 

∆E  energy decrease calculated on 𝐸(𝑡) profile, kWh 

∆EESSi  energy needed in storage for configuration 𝑖, kWh  

 

Parameters 

 

CrateMAXc  ESS maximum current rate in charging mode 

CrateMAXd  ESS maximum current rate in discharging mode 

tLIM  
limit of time to verify the condition on energy 

profile, h 

t0  initial time 

T time horizon 

Δt  time step, h 

ηE ESS energy efficiency 

 

Indices 

 

 

t time 

i configurations indices 
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