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The elaboration and development of monitoring (diagnostic and prognostic) tools for 

industrial systems has been one of the main concerns of the researchers for many years, so 

that many researches and studies have been developed and proposed, especially 

concerning discrete event systems (DES), which occupy an important class of industrial 

systems. However, the use of modeling tools to ensure these operations become a complex 

and exhausting task, while the complexity of industrial systems has been increasing 

incessantly. Therefore, the development of more and more sophisticated techniques is 

required. In this context, the use of artificial neural networks (NN) seems interesting, 

because thanks to their automatics and intelligent algorithms, the NN could handle 

perfectly DES diagnosis and prognosis problems. For this purpose, in the following papers, 

we propose an intelligent approach based on feed-forward neural network, which will deal 

with fault diagnosis and prognosis in DES, so that the events generated by the DES, will 

be presented and analyzed by the neural network in real-time, in order to perform an online 

diagnosis and prognosis. 
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1. INTRODUCTION

The industrial world never ceases to develop, which creates 

an important competitiveness in the market and pushes the 

industries to optimal exploitation of their means, not only 

equipment but also human resources [1]. In this context, the 

efficiency of the maintenance function of the industrial 

systems has become one of the big challenges so that it is no 

longer considered an expensive expense item. Contrarily, it is 

now identified as a major and a profits-making function [2], so 

that the fact of keeping the equipment in their optimal state 

during the production, has become a fundamental point of the 

product and the company’s success. 

Every system is supposed to comfort different types of 

defects, which can lead to a radical change in the normal 

behavior of the process and sometimes to a degradation of its 

performance, in such a way that it can no longer fulfil and 

accomplish its function. In this sense, diagnosis or fault 

detection and prognosis or fault prevention, which is 

considered a very important phase of maintenance, so that the 

more efficient the diagnosis and prognosis, the more effective 

the operations and maintenance interventions are, is necessary 

to prevent the propagation of breakdowns and limit their 

consequences that can affect the availability, reliability, and 

safety of equipment, by taking many actions either preventives 

or correctives one [3]. This problem has attracted the attention 

of the scientific community for several years, so that much 

research has been developed, mainly concerning discrete event 

systems (DES), which occupy several fields of application in 

different industries. About DES, the approaches based on 

models are usually used to ensure the diagnosis and prognosis 

operation, in particular finite automata [4, 5], Petrie net [6, 7], 

and their extensions [8-10]. The use of such tools is generally 

confronted by various stumbling blocks and difficulties, 

namely the model development and the difficulty of 

implementation, in addition that the systems are generally 

subject to a permanent reconfiguration and adaptation to their 

environment [11]. Therefore, the use of artificial intelligence 

techniques presents an obvious interest for the industries, 

especially since the word is explicitly heading toward the so-

called maintenance 4.0 instead of a classic one. The aim of this 

research is the exploitation of artificial neural networks, which 

can deal with high learning capacity and great flexibility to 

progress in a dynamic context [11], to ensure the DES 

diagnosis and prognosis, based on the statistical model of the 

desired system. Moreover, in the literature, neural networks 

are generally reserved to the continuous system and the use of 

such tools for the benefit of DES is very limited [12, 13]. 

The rest of these papers is organized as follows: In section 

2, a general context and basic definitions and notions 

concerning DES and its fault diagnosis and prognosis are 

presented, we also highlight the way to ensure these functions 

using feed-forward neural networks. In section 3, an approach 

to ensure DES fault’s diagnosis and prognosis using feed-

forward neural networks and its theoretical framework in 

addition to sufficient and necessary conditions for 

diagnosability and prognosability are presented, and based on 

the results obtained in section 3, a learning database to train 

the neural networks in order to achieve the desired operations 

is constructed. Eventually, and in order to determine and prove 

the relevance of the approach proposed, a case study on a real 

discrete event system is presented.
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2. GENERAL CONTEXT

2.1 Definitions 

A discrete event system (DES) is a system, which the 

transformation or the evolution of states is launched by the 

occurrence of point events, typically the arrival of signal or the 

completion of a task [14, 15]. The word discrete does not mean 

discrete-time or discrete state, but it refers to the dynamic is 

composed of events, which can be the beginning and the end 

of continuous evolution. So, a DES can be considered as a 

generator of events ∑ [4], so that each event leads to specific 

state. ∑ is named by “Alphabet” and it is considered as a set 

of events that can be generated by the DES, either they are 

observed or not i.e., ∑ can be divided to two main categories 

[16]: 

●Observable events noted by ∑𝑜  such as ∑𝑜 =
{𝑒1, 𝑒2, . . . , 𝑒𝑁} so that their occurrence can be observed and

recorded. 

●Unobservable events noted by ∑𝑢𝑜, which may be failure

events ∑𝑓 or regular events ∑𝑟 that can deviate the DES from

a normal functioning to a faulty one. Such as ∑𝑢𝑜 = ∑𝑓 ∪ ∑𝑟,

where ∑𝑟 = {𝑟1, 𝑟2, . . . , 𝑟𝑚}  is the set of regular events and

∑𝑓 = {𝑓1, 𝑓2, . . . , 𝑓𝛼 , . . . , 𝑓𝑝} is the set of unobservable events,

which can be a fault such as the set of failure ∑𝑓  is

corresponded to the different failures that the DES may come 

across to them. Therefore, for the alphabet ∑ we can write that: 

∑ = ∑𝑜 ∪ ∑𝑓 ∪ ∑𝑟 = ∑𝑜 ∪ ∑𝑢𝑜.

Generally, a DES operates in cycles called functioning 

cycle and each one deal with different tasks to achieve a 

predetermined state. Each functioning cycle is noted by “σ” 

and it is composed by a sequence of events, which can be 

observable or unobservable forming a finite timed word (we 

note the set of all the timed words that can be generated by a 

DES by  𝑇𝑊∗ ) [16] so that each event is indexed by its

occurrence time e.g. 𝜎 = 𝑒1
𝑡1𝑒2

𝑡2 . . . 𝑒𝑖
𝑡𝑖 . . . 𝑒𝑘

𝑡𝑘  is a finite timed

word such as 𝑒𝑖 is an event belonging to ∑ and 𝑡𝑖 is its time of

occurrence [17], so that 𝑡𝑖 ∊ ℝ+. They are several approaches

to represent time in a finite timed word, the most common is 

the one presented in [18, 19]. In this representation, instead of 

indexing the events with their times of occurrence, the authors 

suggest coupling the events with time between their proper 

occurrence and the occurrence of the previous event. In this 

case, given a 𝜎 = 𝑒1
𝑡′1𝑒2

𝑡′2 . . . 𝑒𝑖
𝑡′𝑖 . . . 𝑒𝑘

𝑡′𝑘, 𝑡′𝑖 = 𝑡𝑖 − 𝑡𝑖−1.

2.2 DES diagnosis and prognosis 

Diagnosis or fault location is the process of determining if 

a fault has occurred in the system or not, as well as locating its 

location, i.e., the diagnosis aim to detect a deviation from the 

normal and nominal behavior of the system as early as possible 

and to determine the causes and the consequences [20, 21]. 

The diagnosis is composed of three main phases [20, 22]: 

● 1𝑠𝑡𝑝ℎ𝑎𝑠𝑒 ∶ Consists in detecting the occurrence of an

anomaly i.e., to decide either the system works in normal and 

nominal conditions or a fault has occurred. 

●2𝑛𝑑𝑝ℎ𝑎𝑠𝑒 ∶ Consists in locating this anomaly and looking

for the causes i.e., if a fault has occurred (Detected at the first 

phase), fault location aims at localizing the component(s) and 

the element(s) of the system causing the fault. 

●3𝑟𝑑𝑝ℎ𝑎𝑠𝑒 ∶ Consists in analyzing the consequences of the

anomaly on the overall system i.e., to analyze all possible 

effects of the anomaly on all sides (its criticality, importance, 

etc.). 

In DES context, the diagnosis consists of detecting the 

occurrence of a faulty event 𝑓𝛼 ∊ ∑𝑓, and specified its location

over the observable events generated by the DES. 

Prognosis or fault prediction is the operation that predicts 

the behavior and the state of a system in the future, i.e., 

anticipating the appearance of anomalies over time intervals 

extending from the instance a prediction is made to the 

instance of the appearance of an anomaly leading the system 

to deviate from its normal behavior to a faulty one [21]. 

Concerning DES prognosis, it consists of the prediction of the 

occurrence of a faulty event 𝑓𝛼 ∊ ∑𝑓  and determining the

remaining time before that this event may appear in order to 

take the necessary actions to ensure the proper functioning of 

the system. 

2.3 Fault diagnosis and prognosis using neural networks 

Neural Network (NN) is a tool of artificial intelligence 

widely used to solve a variety of problems so that their 

progress extends to several industries and applications [23]. 

Because, thanks to their learning capacity, they are used to 

solve the most complex problems in several fields. This 

capacity is the result of an intelligent process called learning 

or training. The main role of this process is: Based on a set of 

data presented to the neural network, it establishes a relation 

between the set of inputs and the set of outputs in order to take 

advantage and generalizes the obtained knowledge during 

training to new sets of data [24]. A neural network is generally 

formed by nodes organized in layers, which can be divided 

into three types: input, hidden, and output layer. So that each 

node can be connected to the node of the successor layer, in 

the case of feed-forward neural networks, or can be linked to 

any other nodes even to itself, in the case of recurrent neural 

networks [25].  

The purpose of this research is to use feed-forward neural 

networks in order to determine the probable current state of the 

DES (Diagnosis) by detecting either a faulty event 𝑓𝛼 ∊ ∑𝑓 is

generated or not, as well as identify the probable future state 

of the DES (Prognosis) by detecting either a faulty event 𝑓𝛼 ∊
∑𝑓 can be generated in the future functioning of the DES or

not. Therefore, the main approach to analyze and exploit the 

event generated by the DES using feed-forward neural 

networks, which can deal in the same time with the diagnosis 

and the prognosis, is to use Temporal window or Spatio-

temporal representation [16] so that, this technique can be used 

for any feed-forward neural network architecture or type. The 

idea behind this approach is: Instead of presenting to the neural 

network each event generated by the DES as it occurs. It has 

to wait until a number of event “q”, which depend necessarily 

on the problem treated, has occurred i.e., to delay the events a 

certain time before presenting them to the NN and each 

temporal delay represent a dimension of the temporal window, 

so that for each temporal window presented to the NNs, the 

NNs provide the probability that a faulty event has appeared 

in the temporal window on the case of diagnosis and the 

probability that a faulty event may appear after the occurrence 

of the temporal window in addition to the remaining time 

before a fault in the case of prognosis. They are several 

research, which use this technique, we can find those presented 

in the references [26, 27] where the authors used a spatial time 

representation for speech processing, also other research 

presented in the references [16, 28]. The following Figure 1 

shows how the diagnosis and prognosis can be done using 
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temporal window: 

Figure 1. Diagnosis and prognosis using feed-forward neural 

networks 

In practice, the use of this method shows several limits: 

Firstly, to ensure the functions of diagnosis and prognosis it is 

necessary to define the size of the temporal window, which 

will determine the number of neural networks inputs that 

directly modifies the NN architecture and structure as well as 

its performance and response time, which can be very 

important [29]. More, if the size of the temporal window is 

large, the diagnosis and prognosis cannot be operational at the 

beginning of the DES functioning, because we have to wait 

until the occurrence of “q” events to form a temporal window 

and start the diagnosis and prognosis. Furthermore, by using 

temporal windows, it is not possible to determine the exact 

location of the occurrence of an unobservable, i.e., to exactly 

determine between which observable events an unobservable 

event has occurred, which does not allow accomplishing the 

second phase of the diagnosis, which consists on exactly 

locating the location of the abnormality. Moreover, if two 

temporal windows are more or less similar, the NNs may not 

distinguish between them and treat them in the same way [30]. 

Therefore, in these papers, in order to solve the problems 

above and mitigate these limits, we propose a new approach, 

its aim is instead of diagnosing and prognosing temporal 

windows, we will use temporal pairs i.e., two successive 

observable events. In such a way to use it to compute the 

probability that an unobservable event has occurred between 

two successive observable events (diagnosis) and also 

compute the probability that an unobservable event can be 

generated during the next DES functioning states (prognosis). 

By using this approach, we will have the ability to distinguish 

exactly the location where an unobservable has occurred. 

Moreover, we will not worry about the complexity of the 

neural network architecture, which can deal with the best 

results, because by using just two events as NNs inputs, the 

size of the input vectors is much more minimized, comparing 

it with the temporal windows, which usually contain a large 

number of events, which results to a more efficient training of 

the NNs. In addition, we will have the possibility to launch the 

diagnosis and prognosis from the first two events generated by 

the system. Concerning the problem of the similarity, which 

can be also between the temporal pairs, the solution proposed 

will be presented and analyzed in details in the next sections. 

The most important phase in the neural network building is 

the training phase, where a set of data containing the inputs 

and their corresponding outputs is presented to the NN in order 

to generalize the knowledge taken from these data to new on. 

Therefore, to ensure DES diagnosis and prognosis the first step 

is to build a statistical model of the DES, which is considered 

as a database containing the description of all the possible 

behaviors (normal and abnormal) of the desired system in form 

of historical data for each possible functioning cycle 𝜎𝑗 ∊
 𝑇𝑊∗ , in both normal and faulty states. Such as 𝜎𝑗  is the

𝑗𝑡ℎ functioning cycle according to the DES can operate.

Definition 1 (A temporal pair from a timed word): We 

consider a timed word 𝜎𝑗′
𝑗

∊  𝑇𝑊𝑗∗(such as 𝑇𝑊𝑗∗ the set of all

the historical data, which concern the functioning cycle 𝑗) so 

that 𝜎𝑗′
𝑗

= 𝑒1
𝑡1𝑒2

𝑡2 . . . 𝑒𝑖
𝑡𝑖 . . . 𝑒𝑘

𝑡𝑘 recorded from the 𝑗′𝑡ℎ cycle of a

DES according to the 𝑗𝑡ℎ functioning cycle and ‘k’ is the

number of observable events. A temporal pair is a couple of 

observable events i.e., two successive events generated by the 

DES, more formally: 𝑇𝑃𝑗′.𝑖
𝑗

= 𝑒𝑖−1
𝑡𝑖−1𝑒𝑖

𝑡𝑖 , so that 𝑇𝑝
𝑗′ .𝑖

𝑗
 is the 

𝑖𝑡ℎ temporal pair derived from a  𝜎𝑗′
𝑗

, and contain two 

successive observable events. 

Given 𝑇𝑝 a temporal pair, we consider the following 

notation: 

●𝑃𝑜(𝑇𝑝): 𝑇𝑝 → ∑𝑜 : the projection, which eliminate time

and unobservable events from a temporal pair in the case that 

they exist.  

● 𝑃𝑢(𝑇𝑝) : 𝑇𝑝 → ∑𝑓 : the projection that keep just

unobservable events from a temporal pair and remove 

observable events and time. 

● 𝑇(𝑇𝑝) : 𝑇𝑝 → ℝ+ : the projection, which gives the

occurrence time of each event in 𝑇𝑝. 

●𝑆
𝑗′
𝑗
: The set of all temporal pairs derived from a 𝜎𝑗′

𝑗
. 

●𝑆
𝑗′𝑓𝛼

𝑗
(𝑇𝑝): the set of all temporal pairs derived from a 𝜎𝑗′

𝑗

and has the same projection as 𝑇𝑝 as well as contain a faulty 

event 𝑓𝛼 ∊ ∑𝑓 more formally:

𝑆𝑗′𝑓𝛼

𝑗
(𝑇𝑝) = {𝑇𝑃𝑗′.𝑖

𝑗
∈ 𝑆

𝑗′
𝑗

/𝑃𝑜(𝑇𝑃𝑗′.𝑖
𝑗

) = 𝑇𝑝 

𝑃𝑢(𝑇𝑝𝑗′.𝑖
𝑗

) = 𝑓𝛼}

●𝑆
𝑗′
𝑗

(𝑇𝑝): the set of all temporal pair derived from a 𝜎𝑗′
𝑗
, 

which has the same projection as 𝑇𝑝 more formally:  

𝑆𝑗′
𝑗
(𝑇𝑝) = {𝑇𝑃𝑗′.𝑖

𝑗
∈ 𝑆

𝑗′
𝑗

/𝑃𝑜(𝑇𝑃𝑗′.𝑖
𝑗

) = 𝑇𝑝} 

Example 1: We consider a DES defined by their sets ∑ =
{𝑎, 𝑏, 𝑐, 𝑑, 𝑓1, 𝑓2, 𝑓3, 𝑟1, 𝑟2} partitioned into the following sets of

events ∑𝑜 = {𝑎, 𝑏, 𝑐, 𝑑}, ∑ =𝑓 {𝑓1, 𝑓2, 𝑓3} and ∑𝑟𝑒𝑔 = {𝑟1, 𝑟2},

such as the events 𝑓1, 𝑓2, 𝑓3  correspond to a faults, which

should be diagnosed and prognoses. We consider 𝜎1
1 a timed

word generated by the DES during the first cycle according to 

the first functioning cycle, so that: 

𝜎1
1

= 𝑏1𝑎1,5𝑓1
2,3𝑐4𝑏5𝑓2

5,6𝑎7𝑟1
7,3𝑑9,1𝑓1

9,3𝑐11𝑏12𝑎12,4𝑓3
12,9𝑐13,1𝑏14

So that 𝑎, 𝑏, 𝑐 and 𝑑  are the DES observable events, 

𝑓1, 𝑓2, 𝑓3 correspond to the faulty events, and 𝑟1, 𝑟2 are the DES

regular events, in addition, that each event is endowed by its 

occurrence time. 

Then: 

𝑆1
1 =

{

𝑇𝑝1.1
1 = 𝑏1𝑎1,5, 𝑇𝑝1.2

1 = 𝑎1,5𝑓1
2,3𝑐4, 𝑇𝑝1.3

1 = 𝑐4𝑏5, 𝑇𝑝1.4
1 = 𝑏5

𝑓2
5,6𝑎7, 𝑇𝑝1.5

1 = 𝑎7𝑟1
7,3𝑑9,1, 𝑇𝑝1.6

1 = 𝑑9,1𝑓1
9,3𝑐11, 𝑇𝑝1.7

1 = 𝑐11𝑏12

𝑇𝑝1.8
1 = 𝑏12𝑎12,4, 𝑇𝑝1.9

1 = 𝑎12,4𝑓3
12,9𝑐13,1, 𝑇𝑝1.10

1 = 𝑐13,1𝑏14

} 

Concerning 𝑆𝑗′
𝑗
(𝑇𝑝)  and 𝑆𝑗′𝑓𝛼

𝑗
(𝑇𝑝)  we take 𝑇𝑝 = 𝑏𝑎  as 

example, so we obtain: 𝑆1
1(𝑏𝑎) = {𝑇𝑝1.1

1 , 𝑇𝑝1.4
1 , 𝑇𝑝1.8

1 }  and

𝑆1𝑓2

1 (𝑏𝑎) = {𝑇𝑝1.4
1 }.
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But we can clearly observe that a temporal pair 𝑇𝑝  can 

occur several times in different phases when a timed word is 

generated by the DES (The disadvantages already discussed in 

the previous section), therefore, each one of them must be 

diagnosed and prognoses separately, in such a way, we can 

accurately define the various behaviors of the DES. For this 

reason, we propose to split each timed word into sub timed 

words or rows (r), so that each sub timed word represents a 

functioning phase with respect to a 𝜎𝑗′
𝑗
 and this partition will

be done in such a way that a sub timed word must not contain 

temporal pairs with the same projection 𝑃𝑜.

Remarque 2: The index  (𝑟)  will be also another neural 

network input, which will be incremented automatically, in 

addition to the functioning cycle index (𝑗)  and the current 

temporal pair in order to give the neural network the ability to 

distinguish in which phase and functioning cycle the DES is 

working, and which allow to the neural network in the same 

time to exhibit a dynamic behavior. 

For this purpose, we will define a new set 𝑆
𝑗′.𝑟

𝑗
 , which will 

be the set of all the temporal pairs derived from a cycle 𝜎𝑗′
𝑗

∊

𝑇𝑊𝑗∗ and belong to the same sub-timed word “r”.

Example 2: Let us consider again 𝜎1
1  from the previous

example, the sub timed words derived from it will be as follow: 

𝑆1.1
1 = {𝑇𝑝1.1

1 = 𝑏1𝑎1,5, 𝑇𝑝1.2
1 = 𝑎1,5𝑓1

2,3𝑐4, 𝑇𝑝1.3
1 = 𝑐4𝑏5},

𝑆1.2
1 = {𝑇𝑝1.4

1 = 𝑏5𝑓2
5,6𝑎7, 𝑇𝑝1.5

1 = 𝑎7𝑟1
7,3𝑑9,1, 𝑇𝑝1.6

1 =

𝑑9,1𝑓1
9,3𝑐11, 𝑇𝑝1.7

1 = 𝑐11𝑏12},

𝑆1.3
1 = {𝑇𝑝1.8

1 = 𝑏12𝑎12,4, 𝑇𝑝1.9
1 = 𝑎12,4𝑓3

12,9𝑐13,1, 𝑇𝑝1.10
1

= 𝑐13,1𝑏14}.

3. FAULT DIAGNOSIS AND PROGNOSIS

3.1 Diagnosability 

In the literature, they are several definitions of 

diagnosability, the most common is the one proposed by 

Sampath et al. [4], which they define diagnosability of a DES 

as the ability to detect with a finite delay the occurrences of 

certain distinguished unobservable events, namely the failure 

events. In the case of temporal pairs, we define the 

diagnosability, as the capacity to detect the occurrence of a 

faulty event 𝑓𝛼 ∊ ∑𝑓  between two successive observable

events and we say a temporal pair is diagnosable if we can 

detect with certainty its occurrence. So, to ensure this 

operation, we define an index, similar to the one defined in [8], 

called the diagnosability index noted by 𝑃𝑟
𝑗
(𝑓𝛼/𝑇𝑝), which is

a statistical index that allows computing the probability that a 

faulty event 𝑓𝛼 ∊  ∑𝑓  occurs between two successive

observable events generated by the DES, based on the 

historical data and the statistical model collected for the 

functioning cycle 𝜎𝑗 in the row “𝑟” of the desired DES, so that:

𝑃𝑟
𝑗
(𝑓𝛼/𝑇𝑝) =

∑ 𝑐𝑎𝑟𝑑(𝑆𝑗′𝑓𝛼

𝑗
(𝑇𝑝) ∩ 𝑆𝑗′.𝑟

𝑗
)𝑗′

∑ 𝑐𝑎𝑟𝑑(𝑆𝑗′
𝑗
(𝑇𝑝) ∩ 𝑆𝑗′.𝑟

𝑗
)𝑗′

where: 𝑆𝑗′𝑓𝛼

𝑗
(𝑇𝑝) ∩ 𝑆𝑗′.𝑟

𝑗
 is the set of all temporal pairs similar 

to 𝑇𝑝 and belong to the sub-timed word “r” and contain the 

faulty event 𝑓𝛼 . And 𝑆𝑗′
𝑗
(𝑇𝑝) ∩ 𝑆𝑗′.𝑟

𝑗
 is the set of all temporal

pairs similar to 𝑇𝑝, which belong to the sub timed word “r”. 

So that 0 ≤ 𝑃𝑟
𝑗
(𝑓𝛼/𝑇𝑝) ≤ 1. And we say 𝑇𝑝 is diagnosable

with respect to faulty event 𝑓𝛼  if 𝑃𝑟
𝑗
(𝑓𝛼/𝑇𝑝) = 1  or 𝑃𝑟

𝑗
(𝑓𝛼/

𝑇𝑝) = 0. 

Proof: 

●In the case of 𝑃𝑟
𝑗
(𝑓𝛼/𝑇𝑝) = 1:

𝑃𝑟
𝑗(𝑓𝛼/𝑇𝑝) = 1 ⇔ ∑ 𝑐𝑎𝑟𝑑(𝑆𝑗′𝑓𝛼

𝑗 (𝑇𝑝) ∩ 𝑆𝑗′.𝑟
𝑗

)𝑗′ =

∑ 𝑐𝑎𝑟𝑑(𝑆𝑗′
𝑗(𝑇𝑝) ∩ 𝑆𝑗′.𝑟

𝑗
)𝑗′ ⇔ ∀𝜎𝑗′

𝑗
∈ 𝑇𝑊𝑗∗, ∀𝑇𝑝𝑗′.𝑖

𝑗
∈

𝑆𝑗′.𝑟
𝑗

: 𝑃𝑜(𝑇𝑝𝑗′.𝑖
𝑗

) = 𝑇𝑝 ⇒ 𝑃𝑢(𝑇𝑝𝑗′.𝑖
𝑗

) = 𝑓𝛼

In this case we can say that 𝑇𝑝 is diagnosable with respect 

to 𝑓𝛼 and the occurrence of 𝑓𝛼 is certain.

●In the case of 𝑃𝑟
𝑗
(𝑓𝛼/𝑇𝑝) = 0:

𝑃𝑟
𝑗
(𝑓𝛼/𝑇𝑝) = 0 ⇔ ∑ 𝑐𝑎𝑟𝑑(𝑆𝑗′𝑓𝛼

𝑗
(𝑇𝑝) ∩ 𝑆𝑗′.𝑟

𝑗
)𝑗′ = 0 ⇔

⋃ 𝑆𝑗′𝑓𝛼

𝑗
(𝑇𝑝) ∩ 𝑆𝑗′.𝑟

𝑗
= 𝜑 ⇔ ∀𝜎𝑗′

𝑗
∈ 𝑇𝑊𝑗′

𝑗′

𝑗∗
, ∀𝑇𝑝𝑗′.𝑖

𝑗
∈

𝑆𝑗′.𝑟
𝑗

: 𝑃𝑜(𝑇𝑝𝑗′.𝑖
𝑗

) = 𝑇𝑝 ⇒ 𝑃𝑢(𝑇𝑝𝑗′.𝑖
𝑗

) ≠ 𝑓𝛼

As a result, 𝑇𝑝 is diagnosable with respect to 𝑓𝛼 and it does

certainly not contain the faulty event 𝑓𝛼 , however, it can

contain another faulty event. In this context, we can say that a 

temporal pair 𝑇𝑝 is diagnosable with respect to all the faulty 

events if and only if: 

∑ 𝑃𝑟
𝑗
(𝑓𝛼/𝑇𝑝) = 0 ⇔ ∀𝛼 𝑓𝛼 ∈ ∑𝑓: 𝑃𝑟

𝑗
(𝑓𝛼/𝑇𝑝) = 0

i.e., no event 𝑓𝛼 ∊ ∑𝑓 has been occurred and the DES is in

his normal behavior. In addition, if all the temporal pair are 

diagnosable the functioning cycle 𝜎𝑗 is said diagnosable, and

the DES is diagnosable if  ∀𝜎𝑗 ∊ 𝑇𝑊∗ : 𝜎𝑗 is diagnosable.

Otherwise, the occurrence of a faulty event 𝑓𝛼 is uncertain and

the likelihood that a DES deviate to an abnormal mode α is 

expectant. 

Example 3: Let us consider 𝜎1
1 (the same as the previous

example), 𝜎2
1 and 𝜎3

1 three timed words collected during the

functioning cycle 𝜎1, so that:

𝜎2
1 = 𝑏1𝑓2

1,3𝑎4,2𝑐4,8𝑏5𝑎5,5𝑑6,1𝑓1
6,2𝑐6,9𝑏7,9𝑎8,3𝑏10

𝜎3
1 = 𝑏1𝑎1,5𝑐2,1𝑏2,3𝑓1

2,5𝑎2,8𝑑3𝑐4𝑟2
4,1𝑏5𝑎5,4𝑏7

Let 𝑇𝑝 = 𝑏𝑎 the first temporal pair generated by the DES 

following the functioning cycle 𝜎1 , by forming the different

sets required for each timed word we obtain: 𝑃1
1(𝑓1/𝑏𝑎) = 0%;

𝑃1
1(𝑓2/𝑏𝑎) = 33,33% ; 𝑃1

1(𝑓3/𝑏𝑎) = 0% ; ∑ 𝑃𝑟
𝑗
(𝑓𝛼/𝑇𝑝) ≠𝛼

0. Therefore, the temporal pair "𝑏𝑎" is not diagnosticable with

certainty and the probability that the DES deviate to the faulty

state 𝑓2 is 33,33%.

This definition is similar to the one presented in [16], 

however, the authors [16] have used temporal windows instead 

of temporal pairs, in addition, they don’t distinguish between 

the similar temporal windows and they diagnose them with 

same way even if they belong to different phases of the 

functioning cycle, however, in our approach and thanks to the 

definition proposed we mitigate in the same time the 

disadvantages presented in the last section, and thanks to the 

parameters ‘r’ and ‘j’ added we solved the problem of 

similarity between the temporal pairs, which allowed us to 

diagnose each one independently to the others and that will be 

proved in the case study, which will be presented in the last 
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section. 

3.2 Prognosability 

In the literature, the prognosability is not widely defined as 

diagnosability, but it has been studied for a long time, even 

before it [21]. In addition, it can be studied under different 

names, namely trajectory prediction or predictability [21]. In 

the DES field, the prognosability is the ability to be prognoses 

i.e., the possibility to predict if a faulty event 𝑓𝛼 ∊ ∑𝑓  will

occur in the next functioning state of the DES. In this regard,

we define another index (as we have already made for

diagnosability), which is a statistical parameter called the

prognosability noted by  𝑃𝑔𝑟
𝑗
(𝑓𝛼/𝑇𝑝) , which computes the

probability that a faulty event 𝑓𝛼 ∊ ∑𝑓 will occur in the near

future of the DES functioning. The occurrence probability of

a faulty event 𝑓𝛼  ∊  ∑𝑓 in the next temporal pairs given a

temporal pair 𝑇𝑝 is equivalent to the occurrence probability of

this fault in the first temporal pair suffix of 𝑇𝑝 and contains

the faulty event 𝑓𝛼.

This definition is similar to the one proposed for the 

diagnosability, which computes the occurrence probability of 

each faulty event with respect to each temporal pair 𝑇𝑝 

generated by the DES. So, this notion can be used to compute 

the value of the prognosability, in such a way that the 

prognosability of a faulty event 𝑓𝛼 ∊ ∑𝑓 given temporal pair

𝑇𝑝 will be equal to the value of the diagnosability with respect 

to the first temporal pair suffix of 𝑇𝑝 and contain the fault 𝑓𝛼.

Therefore, we will define a new set called 𝑆𝑢𝑓𝑟
𝑗
(𝑇𝑝/𝑓𝛼)

regrouping all the first temporal pair suffix of 𝑇𝑝 belonging to 

a sub timed word “r” for all the training sets collected for a 

functioning cycle 𝜎𝑗. So, we define 𝑆𝑢𝑓𝑟
𝑗
(𝑇𝑝/𝑓𝛼) as follow:

𝑆𝑢𝑓𝑟
𝑗
(𝑇𝑝/𝑓𝛼) = {𝑛𝑒𝑥𝑡(𝑇𝑝′)/𝑃𝑢(𝑇𝑝′) = 𝑓𝛼 and 𝑇(𝑇𝑝′)

≻ 𝑇(𝑇𝑝)} 

Therefore, from the dataset collected for a functioning 

cycle 𝜎𝑗, we compute the prognosability as follow:

𝑃𝑔𝑟
𝑗
(𝑓𝛼/𝑇𝑝) = 𝑀𝑎𝑥(𝑃𝑟′

𝑗
(𝑆𝑢𝑓𝑟

𝑗
(𝑓𝛼/𝑇𝑝)))

where, 𝑃𝑟′
𝑗
(𝑆𝑢𝑓𝑟

𝑗
(𝑓𝛼/𝑇𝑝)) is the diagnosability values of the

first temporal pairs suffix collected for a 𝑇𝑝 belonging to a sub 

timed word, so that  𝑟′ ≥ 𝑟 . In addition, the function

𝑃𝑔𝑟
𝑗
(𝑓𝛼/𝑇𝑝) takes the maximum of these values, in order to

provide a margin of probability that a fault 𝑓𝛼  will occur

during the next states. 

Let us consider 𝑓𝛼 a faulty event; a temporal pair 𝑇𝑝 is
prognosable with respect to 𝑓𝛼 if:

𝑐𝑎𝑟𝑑 (𝑆𝑢𝑓𝑟
𝑗(𝑇𝑝/𝑓𝛼))

= 𝑐𝑎𝑟𝑑(𝑇𝑊𝑗′
𝑗∗

) or 𝑐𝑎𝑟𝑑 (𝑆𝑢𝑓𝑟
𝑗(𝑇𝑝/𝑓𝛼))

= 0 

Proof: 

●For the first case:

𝑐𝑎𝑟𝑑(𝑆𝑢𝑓𝑟
𝑗
(𝑇𝑝/𝑓𝛼)) = 𝑐𝑎𝑟𝑑(𝑇𝑊𝑗′

𝑗∗
) ⇔ ∀𝜎𝑗′

𝑗
∈

𝑇𝑊𝑗′
𝑗∗

, ∀𝑇𝑝𝑗′.𝑖
𝑗

∈ 𝑆𝑗′.𝑟′
𝑗

, ∃𝑇𝑝′ ∈ 𝑆𝑗′.𝑟′
𝑗

: 𝑆𝑢𝑓𝑟
𝑗
(𝑇𝑝/𝑓𝛼) =

𝑇𝑝′ such as r' ≥ r. 

i.e., there is a temporal pair 𝑇𝑝′  suffix of  𝑇𝑝 , which

certainly contain the faulty event 𝑓𝛼 that’s mean that there is a

very high probability that 𝑓𝛼 occur in the next functioning state,

therefore it is necessary to be vigilant because the system can 

deviate to a faulty mode during the next operating states in any 

moment.  

●For the second case:

𝑐𝑎𝑟𝑑(𝑆𝑢𝑓𝑟
𝑗
(𝑇𝑝/𝑓𝛼)) = 0 ⇔ ∀𝜎𝑗′

𝑗
∈ 𝑇𝑊𝑗∗, ∀𝑇𝑝𝑗′.𝑖

𝑗
∈

𝑆𝑗′.𝑟′
𝑗

, ∄𝑇𝑝′ ∈ 𝑆𝑗′.𝑟′
𝑗

: 𝑆𝑢𝑓𝑟
𝑗
(𝑇𝑝/𝑓𝛼) = 𝜙 such as r' ≥ r.

i.e., there is no temporal pair 𝑇𝑝′  suffix of the temporal

pair 𝑇𝑝, which contains the faulty event 𝑓𝛼 , however, it can

contain another one. 

If ⋃ 𝑆𝑢𝑓𝑟
𝑗
(𝑇𝑝/𝑓𝛼) = 𝜙𝛼 , i.e. ∀𝜎𝑗′

𝑗
∈ 𝑇𝑊𝑗∗, ∀𝑇𝑝𝑗′.𝑖

𝑗
∈ 𝑆𝑗′.𝑟

𝑗
, 

∀𝑓𝛼 ∈ ∑𝑓, ∄𝑇𝑝′ ∈ 𝑆𝑗′.𝑟′
𝑗

: 𝑆𝑢𝑓𝑟
𝑗
(𝑇𝑝/𝑓𝛼) = 𝜙  i.e., there is no 

temporal pair 𝑇𝑝′  suffix of the temporal pair  𝑇𝑝 , which

contains any faulty event 𝑓𝛼 and the DES will be in its normal

behavior. Moreover, if all the temporal pair are prognosable 

the functioning cycle  𝜎𝑗 is said prognosable, and the DES is

prognosable if ∀𝜎𝑗 ∊  𝑇𝑊∗: 𝜎𝑗 is prognosable.

Example 4: Let us consider again 𝜎1
1, 𝜎2

1 and 𝜎3
1 the three

timed word from the example 2 and let 𝑇𝑝 = 𝑏𝑎  the first 

temporal pair generated by the DES following the functioning 

cycle 𝜎1, and let take the faulty event 𝑓1 as example:

𝑆𝑢𝑓1
1(𝑏1𝑎1,5/𝑓1) = {𝑇𝑝1.6

1 = 𝑑9,1𝑓1
9,3𝑐11, 𝑇𝑝2.6

1

= 𝑑6,1𝑐6,9, 𝑇𝑝3.4
1 = 𝑏2,3𝑓1

2,5𝑎2,8}

By computing the prognosability of each temporal pair, we 

get: 𝑃𝑔1
1(𝑓1/𝑏𝑎) = 66,66%, i.e. there is a probability that can

even go until 66,66% that the faulty event 𝑓1 occur in the next

states. 

3.3 Time remaining before a fault 

By computing the time remaining before a fault, the DES 

users will be able to know how much time remains to a faulty 

event 𝑓𝛼 will probably occur in the next functioning state of

the DES. Therefore and thanks to the presentation with timed 

word, which identify each event by its occurrence date, we can 

easily extract the occurrence time of each event by using the 

projection 𝑇(𝑇𝑝). In order to accomplish this function, we are 

going to define a new index 𝑡𝑟
𝑗
(𝑓𝛼/𝑇𝑝), which will provide the

interval of time, where a faulty event 𝑓𝛼 can probably occur in

the coming functioning steps so that: 

𝑡𝑟
𝑗
(𝑓𝛼/𝑇𝑝) =

{

−1 if 𝑃𝑔𝑟
𝑗
(𝑓𝛼/𝑇𝑝) = 0

[𝑚𝑖𝑛{ 𝑇𝑓𝛼
(𝑆𝑢𝑓𝑟

𝑗
(𝑇𝑝/𝑓𝛼))} − 𝑇(𝑇𝑝);

𝑚𝑎𝑥{ 𝑇𝑓𝛼
(𝑆𝑢𝑓𝑟

𝑗
(𝑇𝑝/𝑓𝛼))} − 𝑇(𝑇𝑝)];  if 𝑃𝑔𝑟

𝑗
(𝑓𝛼/𝑇𝑝) ≻ 0

} 

where: 𝑇(𝑇𝑝) is the occurrence date of the current event 

(second event of 𝑇𝑝) generated by the DES and 𝑇𝑓𝛼
(𝑆𝑢𝑓𝑟

𝑗
(𝑇𝑝/

𝑓𝛼)) is the set of all the probable values that represent the

estimated remaining time of the occurrence of the faulty event 

𝑓𝛼 , within the temporal pairs, which compose𝑆𝑢𝑓𝑟
𝑗
(𝑇𝑝/𝑓𝛼).

And the function 𝑡𝑟
𝑗
(𝑓𝛼/𝑇𝑝)  takes the maximum and the

minimum of this set (In the case if the occurrence of this event 

is probable i.e. 𝑃𝑔𝑟
𝑗
(𝑓𝛼/𝑇𝑝) ≻ 0).
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Remarque 3: If 𝑚𝑖𝑛{ 𝑇𝑓𝛼
(𝑆𝑢𝑓𝑟

𝑗
(𝑇𝑝/𝑓𝛼))} − 𝑇(𝑇𝑝) ≺ 0 , 

we put 𝑚𝑖𝑛{ 𝑇𝑓𝛼
(𝑆𝑢𝑓𝑟

𝑗
(𝑇𝑝/𝑓𝛼))} − 𝑇(𝑇𝑝) = 0.  

Example 5: Let as consider again the same timed words 

used to compute the diagnosability and prognosability in 

example 3 and 4 and let 𝑇𝑝 = 𝑏𝑎  the first temporal pair 

generated by the DES following the functioning cycle 𝜎1 we 

suppose 𝑇(𝑏𝑎) = 1,5 , and let take the faulty event 𝑓1  as 

example: We obtain: 𝑇𝑓1
(𝑆𝑢𝑓1

1(𝑏𝑎/𝑓1)) = {9,3; 6,2; 2,5}. 

Therefore, 𝑡1
1(𝑓1/𝑏𝑎) = [2,5 − 1,5; 9,3 − 1.5] = [1; 7,8] 

i.e. the faulty event 𝑓1 can probably occur after 1 up to 7,8 unit 

of time. 

 

 

4. NEURAL NETWORK BUILDING 

 

The aim of this section is to present the building blocks of 

the neural network models in order to achieve the operations 

presented above, and that includes the neural network 

architecture chosen and the construction of the database to 

train the desired neural network. To the best of our knowledge, 

three neural networks should be developed, each one ensures 

one of the operations presented: diagnosis, prognosis, and the 

computation of the remaining time before a fault. 

 

4.1 Neural networks architectures 

 

A comparative study between several neural networks 

architectures was developed [3]. The outcome of this study 

shows that the radial basic function (RBF) neural network 

provides some advantages, which another architecture cannot 

deal with especially with regard to precision. The RBFNN [31, 

32] is a feed-forward neural network with a single hidden layer 

in addition to an input and output layers; each one of them is 

fully connected to the next one. The hidden layer is formed by 

nodes (RBF nodes) and for each node, a Gaussian activation 

function is associated. Two important parameters are 

associated µ (center or prototype) and Ω the influence radius, 

which enables the NN an ability to overlap localized regions. 

The Figure 2 illustrates the architecture of the RBFNN. So, the 

RBFNN will be used to compute the several parameters 

presented above. 

 

 
 

Figure 2. The architecture of the RBFNN 

4.2 Neural networks training 

 

As we have already said, the NN learning phase is the most 

important phase of neural network building, which consists of 

setting up a relation between the inputs and their 

corresponding outputs. In our case, the dataset will be built by 

a set of the sequence of events generated by the DES for the 

different functioning cycles, which must be organized in timed 

word then temporal pairs, of the different behaviors of the 

desired DES: Normal and faulty.  

The Inputs (events) is considered as a categorical data, 

however, much deep learning algorithms cannot operate on 

categorical data directly, so that they require all input variables 

to be numeric i.e. the events presented to the NN should be 

converted to numerical form, for this purpose we suggest to 

use the one-hot encoding so that each event will be encoded to 

turn it into vectors of 0s and 1s, so that, it changes the event to 

1 × 𝑁(𝑁 = 𝑐𝑎𝑟𝑑(∑𝑜)) dimensional vector that would be all 

0s except for the event index, which would be 1, for more 

informations about one-hot encoding show [33]. 

 

4.3 Diagnosis data set 

 

By using the neural network to deal with the diagnosis 

operation, the model developed to provide an approximation 

of the diagnosability value for each temporal pair generated by 

the DES in real-time, for this purpose, each training example 

used to train the RBFNN dedicated to diagnosis should be as 

follow: 

𝑇𝐸𝑟
𝑗

= [
𝑃𝑜(𝑇𝑝)

𝑗
𝑟

     𝑃𝑟
𝑗
(𝑇𝑝)] 

 

Such as 𝑃𝑜(𝑇𝑝) ∈ {0; 1}1×2𝑁 is the row matrix formed by using 

one-hot encoding composed of observable event of 𝑇𝑝 and 

(𝑟, 𝑗) ∊ (ℝ+)²  is the row matrix, which represent the sub 

timed word and the functioning cycle where belong 𝑇𝑝, and 

this two rows matrix represent the input vector. Moreover, 

𝑃𝑟
𝑗
(𝑇𝑝) = [⋯ ⋯ 𝑃𝑟

𝑗
(𝑓𝛼/𝑇𝑝) ⋯ ⋯ ] ∈ [0,1]1×𝑝 , which contain 

the occurrence probabilities or diagnosability values of all the 

faulty event belonging to  ∑𝑓 , represent the output vector. So, 

the NN with (2𝑁 + 2) input and 𝑝 output represent the 

diagnostician.  

Remarque 4: In practice, the DES functioning cycle is 

settled either by the DES users or the occurrence of a 

predetermined event allows knowing in which functioning 

cycle the DES is working. 

 

4.4 Prognosis data set 

 

By using the neural network to ensure the prognosis 

operation, the model developed to provide an approximation 

of the prognosability value for each temporal pair generated 

by the DES in real-time, for this purpose, each training 

example used to train the RBFNN dedicated to prognosis 

should be as follow: 

 

𝑇𝐸𝑟
𝑗

= [
𝑃𝑜(𝑇𝑝)

𝑗
𝑟

     𝑃𝑔𝑟
𝑗
(𝑇𝑝)] 

 

where, 𝑃𝑜(𝑇𝑝), 𝑗, and 𝑟 are the same as we have already 

defined in diagnosis data base and 𝑃𝑔𝑟
𝑗
(𝑇𝑝) = [⋯ ⋯ 𝑃𝑔𝑟

𝑗
(𝑓𝛼/

𝑇𝑝) ⋯ ⋯ ] ∈ [0,1]1×𝑝 , which contain the prognosability 

values of all the faulty event belonging to ∑𝑓 , represent the 

output vector. Therefore, the NN with (2𝑁 + 2) input and 

𝑝 output represent the prognosticator. 

 

4.5 Remaining time before a fault data set 

 

As we have already made for the diagnostician and the 

prognosticator, we will do the same thing to the model 

dedicated to compute the remaining time before the 

occurrence of a faulty event 𝑓𝛼. Such as the input matrix will 
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be the same as the diagnostician and the prognosticator 

nevertheless 𝑡𝑟
𝑗
(𝑇𝑝) = [⋯ ⋯ 𝑡𝑟

𝑗
(𝑓𝛼/𝑇𝑝) ⋯ ⋯ ] ∈ (ℜ+)1×(2𝑝) , 

which contain the remaining time before the occurrence of a 

faulty event 𝑓𝛼 is the output vector. Therefore, the NN with 
(2𝑁 + 2) input and (2𝑝) output will represent the calculator of 

the remaining time before a fault. 

 

 

5. CASE STUDY 

 

In this section and in order to illustrate the relevance of the 

developed approach, we are going to present a case study, 

where we try to implement in practice the theoretical 

framework presented in the previous sections, through an 

example adopted from [16]. 

 

5.1 DES presentation 

 

Let us consider an operation DES adopted from [16], this 

system is about a suspended trolley model available at the 

industrial technology laboratory, faculty of science and 

technologies, university sidi Mohammed Ben Abdullah, FES, 

MOROCCO. The main function of this system is to transfer 

each of the five types of products (A, B, C, D, and E) to their 

own stocks (𝑆𝐴, 𝑆𝐵, 𝑆𝐶, 𝑆𝐷 and 𝑆𝐸). This system disposes on a 

bar code reader, which distinguishes between the different 

products. We assume that  

 

∑𝑜 = {𝑒𝑜, 𝑒𝐴, 𝑒𝐵 , 𝑒𝐶 , 𝑒𝐷 , 𝑒𝐸 , 𝑒𝑃𝐴, 𝑒𝑃𝐵𝑒𝑃𝐶 , 𝑒𝑃𝐷 , 𝑒𝑃𝐸 ,  
𝑒𝑆𝐴, 𝑒𝑆𝐵, 𝑒𝑆𝐶 , 𝑒𝑆𝐷 , 𝑒𝑆𝐸 , 𝑒𝐶𝐴, 𝑒𝐶𝐵, 𝑒𝐶𝐶 , 𝑒𝐶𝐷 , 𝑒𝐶𝐸 , 𝑒𝐻} 

 

∑𝑓 = {𝐹0, 𝐹1, 𝐹2, 𝐹3}  and ∑𝑟 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5}  are 

respectively the sets of observable, fault, and regular events. 

The following Table 1 provide all the events and their 

designation. 

This DES is presented by a database containing all the 

possible behavior of the DES in each functioning cycle. This 

database is split into temporal pairs and all the parameters 

𝑃𝑟
𝑗(𝑓𝛼|𝑇𝑝),  𝑃𝑔r

𝑗
(𝑆𝑢𝑓𝑟

𝑗(𝑇𝑝|𝑓𝛼))  and 𝑡𝑟
𝑗(𝑓𝛼|𝑇𝑝) are computed in 

order to adapt it to our approach. After those steps of data 

preprocessing, we obtain a data set of almost 300 data points 

and the resulted data set was divided by the ratio 4,5:1 in such 

a way that almost 80% is used as training data and 20% as 

testing data. 

 

Table 1. Events generated by the suspended trolley 

 
Event Type/set Event Designation 

Observable Events/∑𝒐 

𝑒𝑃𝑜
 The trolley Is in the loading position 

𝑒𝐴,𝑒𝐵 , 𝑒𝐶 , 𝑒𝐷, 𝑒𝐸 Loading the trolley with the Product ‘A’ / ‘B’ / ‘C’ / ‘D’/ ‘E’ 

𝑒𝑃𝐴
, 𝑒𝑃𝐵

, 𝑒𝑃𝐶
, 𝑒𝑃𝐷

, 𝑒𝑃𝐸
 The trolley reaches the position ‘A’ / ‘B’ / ‘C’ / ‘D’/ ‘E’ 

𝑒𝑆𝐴
, 𝑒𝑆𝐵

, 𝑒𝑆𝑐
, 𝑒𝑆𝐷

, 𝑒𝑆𝐸
 The Product reaches the Stock ‘A’ / ‘B’ / ‘C’ / ‘D’/ ‘E’ 

𝑒𝐶𝐴
, 𝑒𝐶𝐵

, 𝑒𝐶𝐶
, 𝑒𝐶𝐷

, 𝑒𝐶𝐸
 The trolley arm reaches the bottom position in the Position ‘A’ / ‘B’ / ‘C’ / ‘D’/ ‘E’. 

𝑒𝐻 The trolley arm reaches the High position 

Faulty Events/∑𝒇 

𝐹0 Sensor failure 

𝐹1 Trolly stopped in the wrong place 

𝐹2 Product deposit in the wrong stock 

𝐹3 Wrong action 

Regular Events/ ∑𝒓 

𝑟1 End of the operation between the positions ‘O’ and ‘A’ 

𝑟2 End of the operation between the positions ‘A’ and ‘B’ 

𝑟3 End of the operation between the positions ‘B’ and ‘C’ 

𝑟4 End of the operation between the positions ‘C’ and ‘D’ 

𝑟5 End of the operation between the positions ‘D’ and ‘E’ 

 

5.2 RBFNNs models analyses 

 

In order to perform the operations of Diagnosis and 

Prognosis of the DES presented in the previous section, 

Matlab 2019b implementation of RBF code was employed 

through a built-in function ‘’newrb’’. The algorithm of this 

function starts at the beginning of the training from an empty 

hidden layer, after that the input data are injected into the 

RBFNN and for each input vector (The temporal pair turned 

into a vector used the one-hot encoding, ‘r’ and ‘j’), the 

RBFNN tries to correctly distinguish the example of the input 

to their associated targets (The values of diagnosability, 

prognosability and the remaining time before a fault). Of course, 

in the beginning, the RBFNNs outputs is so far from what they 

should be. So the loss function (The MSE presented in the 

formula (16)) takes the predictions obtained by the network (�̂̂�) 

and the true target (𝑌) and computes a distance score, and 

measure how well the network has done on this example, then 

it adds one by one neuron with settled spread of radial basis 

function to the hidden layer until the predetermined mean 

squared error (MSE) or the maximum number of neurons are 

reached [34]. In this context, three radial basis function neural 

networks have been trained on a data set of almost 240 

temporal pairs for different functioning cycles and ranges. The 

networks parameters provided by the process of the 

optimization are summarized in Table 2: so that IL, HL, and 

OL represent respectively the number of neurons in input, 

hidden, and output layer, AF: the activation or transfer 

function of the neurons of the output and hidden layer, MNN: 

Maximum number of neurons in the hidden layer, SP: Spread 

width of the neurons (Different values was tested in order to 

find out the one, which provides the best performances), Goal: 

MSE target value (Different values was tested in order to 

uncover the one that mitigates in the same time models over-

fitting and under-fitting). 

For a detailed evaluation of the performances and the 

goodness of RBFNNs developed, the model’s MSE plots were 

used. To the best of our knowledge, the value of the MSE at 

each epoch is calculated according to the following formula: 
 

𝑀𝑆𝐸 =
1

𝑋
× ∑ (𝑌𝑖′ − �̑�𝑖′)

2𝑋
𝑖′=1   

 

So that ‘X’ in the number of the training samples of the data 

set, Yi′: the expected value of the output of the sample i′ and 
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Ŷi′: the real output of the RBFNN according to the sample i′. 
 

Table 2. RBFNNs parameters 
 

 Diagnosis Prognosis Remaining 

Time 

IL 48 48 48 

HL 96 74 101 

OL 4 4 8 

AF Gaussian 

RBF/Linear 

Gaussian 

RBF/Linear 

Gaussian 

RBF/Linear 

MNN 100 100 120 

SP 0.01 0.01 0.1 

Goal 5x10−6 6x10−6 1x10−7 
 

 
 

Figure 3. Training performance of the Diagnosis RBFNN 
 

 
 

Figure 4. Training performance of the prognosis RBFNN 
 

 
 

Figure 5. Training performance of the Remaining time 

RBFNN 

Figures 3-5 represent the performances plots of the 

RBFNNs used respectively for diagnosis, prognosis, and the 

remaining time before a fault, these figures show how the MSE 

is minimized during the optimization of the RBFNNs without 

any indications and signs of the models under-fitting or over-

fitting. We can clearly observe that the best values of MSE 

occur in the last 96 epochs of the learning cycle, with an 

associated MSE of approximately  3x10−6  for the RBFNN 

devoted to the diagnosis, 74 epochs, with MSE of 3.55x10−6, 

for the RBFNN dedicated to prognosis and 101 epochs, with 

MSE of 7,3 x10−7 for the RBFNN associated to the remaining 

time before a fault, it is obvious that the values of MSEs are 

very close to the target MSE values, which indicate that the 

training targets are perfectly estimated. After the training 

operation, the RBFNNs are tested to a data composed of 

almost 70 temporal pairs. In order to measure the 

performances of the RBFNNs on the tested data, we are going 

to use the linear regression (R-value) plots, which measure the 

correlation between the targets and the RBFNNs outputs, so 

that the more the R-value is close to 1 the more the created 

model predictive abilities are excellent. The results of the 

testing process are represented respectively in Figures 6-8. 

According to this figure, we can clearly observe that the 

values of regression are very close to 1(more than 0.999), i.e., 

practically all the data points (Circles) fall on the line of 45°, 

which indicate that the RBFNNs dispose on a great predictive 

ability, and can deal perfectly with the desired operations. 

After the building of the appropriate RBFNNs, we launch the 

trolly in order to transfer the product ‘A’, ‘B’, and ‘C’ and we 

create on purpose a faulty event in order to visualize in practice 

the response of the prognoses, the computer of the remaining 

time before a fault and the diagnostician. The results obtained 

are shown respectively in the Figures 9-17. 
 

 
 

Figure 6. Testing performance of the Diagnosis RBFNN 
 

 
Figure 7. Testing performance of the prognosis RBFNN 

860



 

 
 

Figure 8. Testing performance of the remaining time 

RBFNN 

 

 
 

Figure 9. Prognosability of 𝐹0 

 

 
 

Figure 10. Prognosability of 𝐹1 

 

 
 

Figure 11. Prognosability of 𝐹2 

 

 
 

Figure 12. Prognosability of 𝐹3 

 

According to these results, it is clear that the diagnosticians 

have accurately detected the occurrence of the faulty events 

𝐹0 (In the temporal pairs 𝑒𝐵  𝑒𝑃𝐴  and 𝑒𝐶  𝑒𝑃𝐵 ),  𝐹1 

(In the temporal pairs 𝑒𝑃𝐴𝑒𝐶𝐴, 𝑒𝑆𝐴𝑒𝐻 , 𝑒𝑃𝐵𝑒𝐶𝐵 and 𝑒𝑆𝐵𝑒𝐻 ) 

and 𝐹2 (In the temporal pairs 𝑒𝐶𝐴𝑒𝑆𝐴, 𝑒𝐶𝐵𝑒𝑆𝐵), by generating 

an occurrence probability of 100%, and which are already 

predicted by the prognosticator in the previous temporal pairs 

i.e. even before their occurance. The same thing for the faulty 

event 𝐹3, just in this case the probabilities are very law, which 

indicate that the occurrence of this fauty event is inexpectant. 

Moreover, thanks to the RBFNN dedicated to the calculation 

of the remaining time, it gave us an estimation of the interval 

of time when the faulty events can show up.  

 

 
 

Figure 13. Remaining time before a fault result 

 

 
 

Figure 14. Dignosability of 𝐹0 

 

 
 

Figure 15. Diagnosability of 𝐹1 

 

 
 

Figure 16. Diagnosability of 𝐹2 

 

 
 

Figure 17. Diagnosability of 𝐹3 

 

 

6. CONCLUSIONS 

 

The discrete event system fault’s diagnosis and prognosis is 

a topic intensive and open of research so that it has been the 

subject of several researches and studies for many years. In 

these papers, we presented the theoretical framework to build 

an intelligent diagnostician and prognosticator based on feed-
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forward neural network, which allows the analysis of the large 

data extracted from the DES’s statistical model to deal with 

online diagnosis and prognosis. For this purpose, we proposed 

three feed-forward neural networks, which guarantee the 

computation of three main indexes: Diagnosability, 

Prognosability, and the Remaining time before a fault in such 

a way that determine the probably current and future state of 

the discrete event system as well as the interval of time, where 

a faulty event can probably occur in the coming functioning 

steps. As extension of this research, we are going to cover the 

second method, which is the DES diagnosis and prognosis 

using recurrent neural networks as well as the application of 

the approaches developed to a concrete industrial system to 

extract the results empirically. 
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