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 In recent years, machine learning algorithms related to images have been widely utilized 

by Convolution Neural Networks (CNN), and it has a high accuracy for recognition of an 

image. As CNN contains large number of computations, hardware accelerator like Field 

Programmable Gate Array is employed. Quite 90 % of operations during a CNN involves 

convolution. The objective of this work is to scale back the computation time to increase 

the peak, width and the pixel intensity levels in the input image. The execution time of a 

image processing program is mostly spent on loops. Loop optimization is a process of 

accelerating speed and reducing the overheads related to loops. It plays a crucial role in 

improving performance and making effective use of multiprocessing capabilities. Loop 

unrolling is one of the loop optimization techniques. In our work CNN with four levels of 

loop unrolling is used. Due to this delay is reduced compared with conventional Xilinix. 

With the assistance of strides and padding the 40 % of computation time has been reduced 

and is verified in MATLAB.  
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1. INTRODUCTION 

 

CNN contains a huge number of computations, so it is 

required to accelerate these CNN computations by a hardware 

accelerator, like Field Programmable Gate Array (FPGA), 

Graphics Processing Unit (GPU), and Application Specific 

Integrated Circuit (ASIC) designs. Although, these CNN 

accelerator faces a difficult problem because it has the huge 

computation time and consumption of power is occurred by 

the memory for information access. 

In CNN, it has almost exclusively been associated with 

computer vision applications because their architecture is 

specifically fitted to performing complex visual analyses. 

Instead, the standard two-dimensional array in CNN 

architecture has the three-dimensional arrangement of neurons 

[1]. 

The convolutional layer is that the first layer of CNN. In the 

CNN layer, it has the neurons in each neuron it only processes 

the information from a small part of the visual field. Rectified 

Layer Unit (ReLU) is the second layer of CNN which is 

followed by the convolutional layer. In ReLU layer enables the 

CNN to handle complicated information. The third layer is that 

the fully connected layer, where the entire inputs are to be 

connected to the upcoming layer shown in Figure 1. CNN is 

mainly used in machine vision and self-driving vehicles for 

object recognition applications. 

 

1.1 Convolution layer Rectified layer unit 

 

The convolution operation in the CNN extracts the features 

from the input. In the convolutional layer, it has two levels of 

features such as low-level and high-level. In CNN layers 

extract the edges, lines and corners are named as low-level 

layers feature. Higher levels of features are extracted using 

higher levels of layers [2]. The input has the size of N × N × 

D and the kernel has the size of K × K × D. The output is 

produced with the help of convolution of input with the kernel. 

Each kernel is moved from left to right based on the strides 

from the top left corner to the bottom right corner. 

 

 
 

Figure 1. Layers in CNN 

 

1.2 Pooling and subsampling layer 

 

 
 

Figure 2. Representation of pooling 

 

To reduce the resolution of the feature maps in the CNN, an 

additional layer is used. Because it makes the features robust 

against noise and distortion of the image. Maximum and 

average pooling, two levels were used. In maximum pooling, 
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the maximum number of values has been taken from the 

matrix [3, 4]. In average pooling, the average value has been 

taken from the input feature image. Here input size is 4x4 and 

the subsampling is 2x2 so the input size is divided into four 

2x2 matrixes and there is no overlapping matrix shown in 

Figure 2. 

 

1.3 Rectified layer unit 

 

In ReLU it has the size of the input and output layers are the 

same because it implements the function y = max (x, 0). It uses 

nonlinear properties so the performance was increased for the 

overall network without affecting the other convolutional 

layers. The advantage of ReLU is the network trains many 

times faster than another network [5]. In ReLU it has the 

activation function in a linear manner either a positive value 

or zero there is no negative value. If there is any negative value 

is present that value will become zero is shown in Figure 3. 

 

 
 

Figure 3. Representation of ReLU functionality 

 

1.4 Fully connected layers 

 

The fully connected layer is the final layer of the CNN. The 

most important component for recognizing and classifying the 

image for computer vision application is done by a fully 

connected layer. The process of CNN starts with convolution 

and pooling layer and partitioning the image into features. 

Finally, the result is given to the fully connected layer for the 

final classification decision. The entire inputs are connected to 

upcoming layers of the CNN [6]. 

 

 

2. EXISTING METHOD 

 

2.1 Loop rolling 

 

In the loop optimizing technique, loop rolling was used to 

perform the convolution operation. Loop optimizing technique 

is most important to perform operations in the neural network. 

Under the loop optimizing technique loop rolling and loop 

unrolling are used. In the loop rolling method, it gives the 

larger design space so it affects the processing engine 

architecture with the help of memory and data reuse. In 

convolution networks, it has four levels of loops [7] So, 

different levels of nested convolution loops lead to different 

types of parallelization of computations. For example, three 

levels nested can result in three parallel computing. The 

limitation of loop rolling is it has a high computation time to 

perform any operations in different levels of loops. Loop 

unrolling is used to reduce the computation time.  

 

2.2 Stride 

 

Stride could be an element of CNNs or Neural Networks 

tuned for the compression of pictures and video information. 

Stride represents the number of pixels skipping in the 

convolution operation. more the strip size, less the 

computational complexity but lesser the accuracy. The Stride 

size can be selected optimally without compromising the 

accuracy and computational complexity. on other hand, it 

determines the feature size (which determine the accuracy and 

computational complexity) which will be generated in the 

convolution operation i.e. 

 

Feature size=((image size-kernel size)/ Stride)+1 

 

Stride could be a parameter of the neural network filter that 

modifies the number of movements over the image or video 

[8]. As an example, if a neural network stride is ready to one, 

the filter can move one constituent unit, at a time. The Scale 

affects the encoded output volume, therefore stride is 

commonly set to an entire whole number, instead of a fraction 

or decimal. 

To calculate the output matrix the Eq. (1) is used. Where N 

is the input matrix dimension and F is the feature map 

dimension or another input matrix dimension, P is the padding 

if padding is added in the given input matrix it becomes 1 

otherwise it will be 0 and S is the stride: 

 

𝑂 =  
𝑁 − 𝐹 + 2𝑃

𝑆
 +  1 (1) 

 

Stride (S) is that the range of pixels that move over the 

column and row pixels in input. Once the value S is one then 

it tends to shifts the one pixel in a column or row. Once the 𝑆 

is two then it tends to shift the two pixels. Figure 4 shows the 

calculation of the output matrix. In this figure, N is 4 and F is 

2 and there is no padding is applied so P is 0, and stride S is 1. 

From Eq. (1) the output matrix 𝑂 will be 3. The calculation of 

output value in the first cell is (1 × 1)  + (0 × 0)  +  (1 ×
0)  + (1 × 1)  =  1 + 0 + 0 + 1 = 2.  

 

 
 

Figure 4. Output matrix cell 1 using S = 1 

 

Figure 5 shows the output calculation in second cell using 

stride. The calculation of output value in the second cell is 

(0 × 1)  + (1 × 0)  + (1 × 0)  + (1 × 1)  =  0 + 0 + 0 +
1 = 1 . After applying the stride is 1 in the column, the 

dimensions become 3. 

 

 
 

Figure 5. Output matrix cell 2 using S = 1 
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The calculation of output value in the first cell in second 

row is (1 × 1)  + (1 × 0)  +  (0 × 0)  +  (1 × 1)  =  1 + 0 +
0 + 1 = 2. The limitation is correct level at the output cannot 

be achieved. From the example 3x3 output matrix is used 

instead of 4x4 because in the input matrix 4x4 some loss of 

information is occurred. The purpose of convolution operation 

is to carry out edge enhancement. When a 3x3 matrix is used 

as a kernel, then the loss of information is very limited 

compared to the use of a 4x4 kernel for edge enhancement. 

 

 

3. CNN ACCELERATION SYSTEM 

 

3.1 Accelerator  

 

It involves the outsized quantity of knowledge and weights. 

The memory is poor for saving information because it required 

Gigabytes of memory is needed to store the data. Three levels 

of storage hierarchy: 1) memory; 2) buffers; 3) registers which 

are illustrated in Figure 6. The design method is to take the 

informed memory and it is transferred to the buffer. The output 

of buffers is given to array blocks to perform convolution [9, 

10]. Once the process is completed the result is transferred to 

buffers and it will be transferred to memory which is used to 

input as upcoming layers. 

 

 
 

Figure 6. CNN accelerator hierarchy 

 

3.2 Levels of convolution loops 

 

 
 

Figure 7. Four levels of convolution loops 

 

In CNN algorithms convolution is the important operation 

that performs multiply and accumulates for input along with 

kernel weights. The pseudocodes for the four-level of 

convolutions as shown in Figure 7. There are three loop 

optimizing techniques were used to perform convolution in an 

efficient manner [11]. Loop unrolling, loop tilling, and loop 

interchange. In the hardware accelerator FPGA 

implementation, the three-loop optimizing techniques will not 

increase the computational overhead because, those 

mechanisms are converted into a logic block of the circuit 

which will respond immediately once powered up. Loop 

unrolling is one of the loop optimization techniques used to 

optimize the program execution speed and perform parallel 

computation. It reduces the loop overhead and increases the 

program efficiency. Loop tilling is to divide the entire input 

data into a small level of multiple levels of blocks so it can be 

easily stored in buffers. Loop interchange which finds an order 

of computations of four levels of loops. In the loop, the 

interchange has the intratile loop which is used to find the 

order of data movements from buffers to registers. In the 

intertile loop find the order of computation from external 

memory to buffers [12]. There are four levels of loop unrolling 

involved in CNN. 

Loop 1 unrolling the convolution is performed for pixels 

and weights are totally from the different location but within 

the same input matrix and another input, matrix computed 

every time. The adder tree is required to add the previous 

partial sum outputs shown in Figure 8. Loop 2 unrolling the 

convolution is performed for pixels and weights are from the 

equal location but different same input matrix and another 

input matrix computed in every time shown in Figure 9 [13, 

14]. In loop unrolling 3 the pixels are from the different 

location in the corresponding input matrix is multiplies with 

the unit weight. Here no adder tree is required to reuse the 

pixels and for parallel computations shown in Figure 10. In 

loop unrolling 4 the identical pixel is multiplied with the pixels 

in the same location but different features shown in Figure 11 

[15, 16]. 

 

 
 

Figure 8. Loop 1 for unrolling  

 

S  

 

Figure 9. Loop 2 for unrolling 

 

 
 

Figure 10. Loop 3 for unrolling 
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Figure 11. Loop 4 for unrolling 

3.3 Strides and padding 

Stride (S) is that the range of pixels that move over the 

column and row pixels in input. Once the S value is one then 

it tends to shifts the one pixel in a column or row. Once the S 

is two then it tends to shift the two pixels. Padding may be a 

term relevant to CNN because it refers to the number of pixels 

added to a picture once it’s being processed by the kernel of a 

CNN. The zero value is to be added in the row and column of 

the input image if the padding is zero. In normal convolution.  

Figure 12. Output matrix after applying padding 

The overlap occurs in the middle of stages and the corner of 

the input image is used less to perform the convolution along 

with the kernel. To reduce the overlap and make efficient use 

of edges padding, stride 2 were used. Figure 12 shows the 

output matrix after applying zero padding. Here the normal 

input matrix dimension is 4x4 after applying the padding the 

dimension has changed to 6*6 matrix. From the figure zero's 

are added in row and column to get the accurate dimensions. 

The brown box is the normal input matrix and the red color 

box is the after adding padding. 

3.3.1 Calculation for stride is 1 and 2 without padding (S = 1, 

S = 2 and P = 0) 

Figure 13 shows the output matrix calculation using S = 1 

and P = 0, N = 4, F = 2. The calculation of output value in the 

first cell is (1 × 1)  + (1 × 0)  +  (0 × 0)  +  (1 × 1)  =  1 +
0 + 0 + 1 = 2. The calculation of output value in the second 

cell is (1 × 1)  + (1 × 0) +  (1 × 0) +  (1 × 1)  =  1 + 0 +
0 + 1 = 2. Here the stride is 1 the column of the input matrix 

is shifted by one. The red color 2x2 matrix is taken first and 

multiplies with another 2x2 feature matrix and the output is 

displayed in the first cell of the output matrix (red color box). 

The green color box indicates the after shifting one column 

and then multiplied with another matrix and the result will be 

displayed in the output matrix (green color box). The 

limitation is e cannot get the correct level at the output. From 

the example, a 3x3 output matrix is obtained instead of getting 

4x4 because the input matrix is 4x4 so some loss of 

information has occurred. Figure 14 shows the output matrix 

calculation using S = 2 and P = 0, N = 4, F = 2. Here stride is 

2 the column of the input matrix is shifted by two. The red 

color 2x2 matrix is taken first and multiply with another 2x2 

feature matrix and the output is displayed in the first cell of the 

output matrix (red color box). The light green color box 

indicates the after shifting one column and then multiplied 

with another matrix and the result will be displayed in the 

output matrix (light green color box).  

Figure 13. Output matrix S = 1 and P = 0 

Figure 14. Output matrix S = 2 and P = 0 

Figure 15 shows the output matrix calculation using S = 1 

and P = 1, N = 4, F = 2 so output is 4. The calculation of output 

value in the first cell is (0*1) + (0*0) + (0*0) + (0*1) + (1*1) 

+ (0*1) + (0*0) + (1*1) + (1*1) = 0 + 0 + 0 + 0 + 1 + 0 + 0 +0

+ 1 + 1 = 3. Here stride is 1 the column of input matrix is

shifted by one. The red colour 3*3 matrix is taken first and

multiply with another 3*3 feature matrix and the output is

displayed in first cell of the output matrix (red colour box).

The green colour box indicates the after shifting one column

and then multiplied with another matrix and result will

displayed in output matrix (green colour box). Here the input

matrix is 4*4 and it becomes 6*6 after applying padding, so

4*4 output matrix is obtained.

Figure 15. Output matrix S = 1 and P = 1 

514



 

When stride is 2, the column of the input matrix is shifted 

by one. The red color 3*3 matrix is taken first and multiplies 

with another 3*3 feature matrix and the output is displayed in 

the first cell of the output matrix (red color box). The green 

color box indicates the after shifting one column and then 

multiplied with another matrix and the result will be displayed 

in the output matrix (green color box). Here the input matrix 

is 4*4 and it becomes 6*6 after applying padding, so a 3*3 

output matrix is obtained as shown in Figure 16. 

 

 
 

Figure 16. Output matrix S = 2 and P = 1 

 

 

4. RESULTS AND DISCUSSION 

 

Loop 1 unrolling convolution is performed for pixels and 

weights are totally from the different location but within the 

same input matrix and another input and the matrix is 

computed every time. There are four adders and four 

multipliers are needed to perform MAC operation. In loop 2 

unrolling the convolution is performed for pixels and weights 

are from the equal location but different same input matrix and 

another input matrix computed in every time. There are four 

adders and four multipliers are needed to perform MAC 

operation. In loop unrolling 3 the pixels are from the different 

location in the corresponding input matrix is multiplied with 

the unit weight. Here no adder tree is required to reuse the 

pixels and for parallel computations. In loop unrolling 4 the 

identical pixel is multiplied with the pixels in the same 

location but different features. 

For stride 1 and without padding, the input matrix is 4x4 and 

the feature matrix is 2x2 so the output matrix becomes 3x3. 

Here parallel multiplication is performed with the help of loop 

unrolling. From the output matrix, a 3x3 matrix is obtained 

instead of getting 4x4. For stride is 2 the output matrix 

becomes 2x2. For stride 1 and with padding, the input matrix 

is 4*4 and the feature matrix is 2*2. After zero padding is 

added in the input matrix it becomes 6*6 matrix so the output 

matrix becomes 4*4. Here parallel multiplication is performed 

with same input matrix and another input and the matrix with 

the help of loop unrolling. From the output matrix, a 4*4 

matrix is obtained from the input 4*4 matrix. If stride is 2 

means the output matrix will be 3*3. 

Edge enhancement mechanism is taken for testing and 

giving visual illustration for the proposed method of loop 

unrolled convolution operation using MATLAB Tool. Figure 

17 (a) is the input image is converted into a greyscale image 

and then by using the edge detection algorithm edges are 

detected and then pixels are extracted from the given edge 

detection image. Figure 17 (b) to (f) provides the outcome 

various image operations on input image. By using the stride 

as 2 and padding the blocks are detected. The output image 

with the size of 256 x 256 is shown in Figure 17 (g) and the 

input image shown in Figure 17 (h) is of size 256 x 256. The 

output image has a higher pixel intensity level with respect to 

the input image, due to edge enhancement operation carried 

out on input image. 

 

  
(a) Input image (b) Gray scale image 

  

(c) After edge detection 
(d)Edge enhanced Gray 

image 

  
(e) Difference image (f) Padded difference image 

  
(g) Output image (h) input image 

 

Figure 17. (a - f) Input image under various image 

processing operations and (h and g) for input and output 

comparison 

 

4.1 Comparison of time and performance using MATLAB 
 

The computation time loop rolling and loop unrolling is 

discussed. For the given application, loop rolling takes 239.51 

seconds to operate. In loop unrolling it takes 81.86 seconds. 

Thus, loop unrolling takes less time compared with the loop 

rolling method. This in turn reduced the power by 40 % with 

the help of the loop unrolling method. There are several ways 

to measure power reduction due to the loop unrolling method. 

The Xilinx power estimator tool is used to extract the power 

consumption in Convolution operation without unrolling and 

with unrolling. These results are compared the 40% reduction 

is computed. 

Table 1 shows the input and output data analysis in terms of 

standard deviation and pixel intensity. From the input and 

515



 

output, the height and width get increased so deviation has 

changed in output data deviation. There is no change in pixel 

image data. In the entropy, output images have a high entropy 

level that means pixel intensity values are high and it has a low 

standard deviation. 

 

Table 1. Performance analysis of unrolling 

 

Parameter Input Image Output Image 

Deviation 0.3760 0.3778 

Max. Pixel Image Data 0.6265 0.6265 

Entropy 7.785 7.7329 

Standard Deviation 0.2789 0.2632 

 

4.2 Comparison of delay using XILINX  

 

Stride 1 has the 18.025 ns delay for computing the 

convolution operation using stride is 1 and with zero padding 

for input image size 256x256. For stride is 2 with zero padding 

has the 18.008 ns delay for computing the convolution 

operation using stride is 2 and with zero padding. From the 

comparison of delay stride is 2 has the lowest delay compared 

with stride is 1. Delay has been reduced from 18.025 ns to 

18.008 ns. 

 

 

5. CONCLUSION  

 

In the loop optimization process, loop unrolling is used to 

optimize the program execution speed. It also increases the 

program efficiency. The execution time of a scientific program 

is mostly spent on loops to scale back the loop overhead and 

computation time loop unrolling was used. There are four 

levels of loop unrolling technique and it reduces the loop 

overhead in the loop optimizing technique. In loop unrolling it 

can be executed in a parallel manner. By employing loop 

unrolling, delay is reduced from 18.025 ns to 18.008 ns. The 

computation time is reduced by 40 % compared with loop 

rolling. Output image has a low standard deviation and high 

pixel intensity for the image. This work can be extended to 

analyze performance of loop unrolling techniques in FPGA 

based on delay and time required for training a CNN using 

different stride values and padding.  
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