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ABSTRACT 
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 The critical depth and normal depth computation are essential for hydraulic engineers 

to understanding the characteristics of varied flow in open channels. These depths are 

fundamental to analyze the flow for irrigation, drainage, and sewer pipes. Several 

explicit solutions to calculate critical and normal depths in different shape open 

channels were discovered over time. Regardless of the complexity of using these 

explicit solutions, these formulas have a significant error percentage compared to the 

exact solution. Therefore, this research explicitly calculates the normal and critical 

depth in circular channels and finds simple, fast, and accurate equations. First, the 

dimensional analysis was used to propose an analytical equation for measuring the 

circular channels' critical and normal depths. Then, regression analysis has been carried 

for 2160 sets of discharge versus critical and normal depths data in a circular open 

channel. The results show that this study's proposed equation for measuring the circular 

channels' critical and normal depths overcomes the error percentage in previous studies. 

Furthermore, the proposed equation offers efficiency and precision compared with other 

previous solutions. 
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1. INTRODUCTION 

 

The depth of flow associated with a uniform flow is called 

the normal depth. On the other hand, the flow depth 

corresponding to the minimum specific energy for a given 

discharge in a waterway is called a critical depth. The critical 

depth and normal depth computation are crucial for hydraulic 

engineers to analyze varied flow in open channels for 

irrigation, drainage, and sewer pipes [1, 2]. These depths are 

essential to understanding the flow characteristics. The normal 

depth in open channels can be defined as the depth of flow that 

occurs when the flow is steady and uniform. While critical 

depth is established when the specific energy is at a minimum 

value for a certain discharge. When the normal depth is higher 

than the critical depth, then the flow is classified as a 

subcritical flow, but the flow becomes supercritical flow when 

the normal depth is less than the critical depth.  

There is only one normal depth for a given situation of 

channel geometry and discharge. The normal depth is typically 

calculated using Manning's Equation, which requires an 

iterative solution to compute this depth in circular channels. 

Simultaneously, many methods were utilized for computing 

the critical depth, for instance, the Algebraic method, 

Graphical method, Design chart, Numerical method, Bi-

section method, Newton Raphson method, and Semi empirical 

approach [3]. 

Due to governing equations' implicit nature, a direct 

solution for normal and critical depths is not feasible [4, 5]. 

Thus, the researchers proposed developing a computer 

program to avoid repetitive computations. Trial procedures 

and graphical methods are currently used to determine the 

critical depth [6-8]. An explicit solution for critical depth and 

normal depths in circular and different shape channels was 

established based on regression equations that improved the 

equations' accuracy and increased their complexity [9]. 

Recently, three explicit solutions for critical depth in circular, 

arched, and egg-shaped sections are driven [10]. Other 

researchers focused in their studies on finding an explicit 

solution for calculating the critical depth and normal depths of 

non-circular section open channels, such as trapezoidal, 

parabolic, ovoidal, and horseshoe shapes [11, 12]. These 

formula forms are simple, and the physical concept was 

obvious. However, these formulas have a significant 

percentage of error compared to the exact solution. On the 

same level, other formulas presented accurate results, but they 

require much effort and time to calculate the critical depth [7, 

13, 14]. 

An investigation of the literature confirmed that a direct 

solution for normal and critical depths has a significant 

development in recent times. However, none of the reviewed 

studies addressed this work's core motivations. Therefore, this 

research is presented herein to explicitly calculate the normal 

and critical depth in circular channels to address this gap and 

find simple, fast, and accurate equations. 

 

 

2. FLOW FORMULA FOR CIRCULAR CHANNEL 

 

Considering Figure 1 for a partially filled circular channel 

section, the discharge Q carried by this channel using 

Manning's Equation is: 

 

Mathematical Modelling of Engineering Problems 
Vol. 8, No. 6, December, 2021, pp. 923-927 

 

Journal homepage: http://iieta.org/journals/mmep 
 

923

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.080611&domain=pdf


 

𝑄 =
1

𝑛
𝐴𝑅

2

3𝑆
1

2  (1) 

 

𝐴 =
𝐷2

8
(𝛾 − 𝑠𝑖𝑛2 𝛾)  (2) 

 

𝑃 =
𝛾

2
. 𝐷  (3) 

 

 
 

Figure 1. Partially flow in a circular open channel  
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where, D is channel diameter, γ is water surface angle in 

radians (which depends on the flow depth yn), n is Manning's 

roughness coefficient, S is the bed slope of channel, and 

=yn/D. 

Eq. (7) is an implicit equation, as the depth of flow can be 

found by the trial-and-error method.  

The critical flow condition in a circular open channel is 

described by the following relationship [2]. 
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where, α is the energy correction factor and g is the 

acceleration due to gravity.  

Substituting for A and T from Eqns. (2) and (5), for critical 

condition, into Eq. (8) yields the following dimensionless form: 
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For calculating the critical depth in the circular channel, Eq. 

(10) must be solved. Eq. (10) is also implicit and can be solved 

by the trial-and-error method. Many researchers have 

suggested several explicit solutions for solving this problem. 

In this paper, specific and explicit equations were derived 

for finding the critical and normal depths of the circular 

channels by statistical analysis depending on the dimensional 

analysis theory and curve fitting method, respectively. The 

methodology starts by computing the channel's discharge for 

many different geometries. Six different diameters of the 

circular channel D were used (0.5, 1, 1.5, 2, 2.5, and 3m). For 

each diameter, five different values of Manning's n (0.01, 

0.015, 0.02, 0.025 and 0.03), four longitudinal bed slopes of 

the channel S (0.01, 0.001, 0.0001 and 0.00005), and eighteen 

normal depths yn were used. For each case, the discharge Q 

was calculated using Manning's Equation (Eq. (7)), and then 

the parameter ε and critical depth yc was calculated by trial-

and-error method. The number of generated data of discharge 

versus critical and normal depth reached 2160 cases.  

 

 

3. DIMENSIONAL ANALYSIS 

 

Dimensional analysis is a widely reliable tool for 

recognizing physical quantity relationships' knowledge 

structure in a detailed and consistent manner. It all begins 

because descriptive quantities in quantitative natural science 

have dimensions and can be divided into fundamental and 

derived quantities accordingly [15-19]. In this article, 

dimensional analysis was used to propose an analytical 

equation for measuring the circular channels' critical and 

normal depths. 

 

3.1 Critical depth 

 

Eq. (10) shows that the critical depth yc in the circular 

channel depended on the following variables: 

Q=Discharge of flow (L3T-1). 

D=Diameter of conduit (L). 

g=Acceleration due to gravity (LT-2). 

Therefore: 

 

𝑦𝑐 = 𝑓(𝑄, 𝐷, 𝑔)  (11) 

 

By applying the Π theorem, the following dimensionless 

parameters produce: 
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𝜂𝑐𝑐 = 𝜑1(𝜀𝑐)  (13) 

 

3.2 Normal depth 

 

As shown in Eq. (7), the possible variables affecting the 

normal depth of flow yn through the circular channel are: 

 

Q=Discharge of flow (L3T-1). 

D=Diameter of conduit (L). 

n=Manning's roughness coefficient (L-1/3T). 

S=Conduit longitudinal slope. 
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Therefore: 

 

𝑦𝑛 = 𝑓(𝑄, 𝐷, 𝑛, 𝑆)  (14) 

 

The following dimensionless terms can be derived from the 

above Equation using the Π theorem: 
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4. STATISTICAL ANALYSIS RESULTS 

 

A statistical analysis and curve fitting were conducted as 

part of this study. Non-linear regression of the generated data 

was conducted using the IBM software SPSS Statistics to 

define an empirical model equation in line with the functional 

equation obtained by dimensional analysis. 

 

4.1 Critical depth 

 

The critical depth of flow across a circular channel was 

proposed using statistical analysis. The dimensionless 

parameters (ηcc, εc) of Eq. (10), which resulted from generated 

actual data, were first ordered in descending order, and then 

about two-thirds of them were included in the SPSS program.  

The proposed Equation for critical depth is: 

 

𝜂𝑐𝑐 = 1.0115𝜀𝑐
0.254  (17) 

 

Figure 2 shows the comparison between the remaining one-

third generated critical depth data to the calculated critical 

depth from the above-proposed Equation. The coefficient of 

determination R2 of this relationship is equal to 1. 

The maximum prospective error of Eq. (17) does not exceed 

0.253% in the practical range (0.003≤cc≤0.87). 

 

 
 

Figure 2. Relation between the actual and predicted critical 

depth of a circular open channel 

 

Also, an empirical formula was developed, Eq. (18), to 

compute the critical depth in a circular open channel that 

depends on the conduit's geometrical data. 

 

𝜂𝑐𝑐 = 0.8𝜂𝑛𝑐
0.999𝜌𝑛𝑐

0.257 (18) 

 

where, 
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Figure 3 shows the relation between the measured critical 

depth and that predicted from Eq. (18). The coefficient of 

determination R2 of this relationship is equal to 1. 

 

 
 

Figure 3. Relation between the actual and predicted critical 

depth of a circular open channel 

Figure 4 shows the dimensionless critical depth from the 

proposed equation and the actual critical depth through a 

circular channel. It can be seen a remarkable match between 

the expected and actual results. 

 

 
 

Figure 4. Comparison between proposed and actual 

dimensionless critical depth 

 

Table 1 listed the proposed and existing explicit equations 

for determining the critical depth in circular cross-section 

channels. Obviously, this paper's proposed equation offers 

efficiency and precision compared with other previous 

solutions. 
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Table 1. Proposed explicit solutions of critical depth through circular channels 

 
References Equation Application Rang Max. Relative Error % 

Straub [7] 𝜂𝑐𝑐 = 1.01𝐷−0.01𝜀𝑐
0.25 0.1 ≤ 𝜂𝑐𝑐 ≤ 0.85 5.8 

Swamee and Rathie [3] 𝜂𝑐𝑐 = (1 + 0.77𝜀𝑐
−3)−0.085 0.02 ≤ 𝜂𝑐𝑐 ≤ 1 1.46 

Vatankha and Bijankhan [13] 𝜂𝑐𝑐 =
0.9584𝜀𝑐

0.25

(1 + 0.106𝜀𝑐
0.26 − 0.0132𝜀𝑐

1.863)−10.022
 0 ≤ 𝜂𝑐𝑐 ≤ 0.92 0.25 

Vatankha and Easa [9] 𝜂𝑐𝑐 = (13.6𝜀𝑐
−2.1135 − 13𝜀𝑐

−2.1 + 1)−0.1156 0.01 ≤ 𝜂𝑐𝑐 ≤ 1 0.27 

Shang et al. [10] 

Proposed Eq. 

𝜂𝑐𝑐 = (1 + 3.83𝜀𝑐
−2.1454 − 3.2𝜀𝑐

−2.1)−0.115 

𝜂𝑐𝑐 = 1.0115𝜀𝑐
0.254 

0.003 ≤ 𝜂𝑐𝑐 ≤ 0.87 0.25 

 

Table 2. Proposed explicit solutions of normal depth through circular channels  

 
References Equation Application Rang Max. Relative Error % 

Vatankha and Easa [9] 𝜂𝑛𝑐 = 1.025𝛽𝑐
(−0.55𝛽𝑐

1.1−14.55𝛽𝑐
4.136+0.4645)

  0.005 ≤ 𝜂𝑛𝑐 ≤ 0.82 0.35 

Proposed Eq. 𝜂𝑛𝑐 = 1.1506𝛽0.4851 0.003 ≤ 𝜂𝑐𝑐 ≤ 0.25 0 

 𝜂𝑛𝑐 = 15.088𝛽𝑐
3 − 8.3569𝛽𝑐

2 + 3.3748𝛽𝑐 + 0.1202  0.25 < 𝜂𝑛𝑐 ≤ 0.82 0 

 

4.2 Normal depth 

 

As mentioned above, the curve fitting method was utilized 

to establish an explicit equation for computing a normal depth 

of flow through circular conduits. Two equations are offered 

herein for calculating the normal depth in the circular channels 

depending on the value of the dimensionless normal depth c. 

The first equation is applied within limits of c ranging from 

0.003 0 to 0.25 or dimensionless discharge βc less than 0.043. 

The second equation applies to values of c more than 0.25 to 

0.82 or βc equal or more than 0.043. These two equations are: 

 

𝜂𝑛𝑐 = 1.1539𝛽𝑐
0.4854 (20) 

 

where, 0.003≤c≤0.25 or βc<0.043. 

 

𝜂𝑛𝑐 = 14.995𝛽𝑐
3 − 3.3199𝛽𝑐

2 + 3.3722𝛽𝑐 (21) 

 

where, 0.25<βc≤0.82 or βc≥0.043. 

The above two equations demonstrate the simplicity and 

fast at which they can find the normal depth. Their error ratio 

is approximately equal to zero when the results are compared 

to the actual depths. Table 2 shows the maximum relative error 

of the established equations compared to previous studies [9]. 

 

 
 

Figure 5. Comparison between proposed and actual 

dimensionless normal depth through a circular channel 

(0.003≤ηnc≤0.25) 

 

 

Figure 6. Comparison between proposed and actual 

dimensionless normal depth through a circular channel 

(0.25<𝜂𝑛𝑐≤0.82) 

 

Furthermore, the results from Eqns. (20) and (21) in 

comparison to actual data are illustrated in Figure 5 and Figure 

6, respectively. 

 

 

5. CONCLUSIONS 

 

An extensive dataset for discharge versus critical and 

normal depths was generated in this study. Then, specific and 

explicit equations were derived for finding the critical and 

normal depths of the circular channels by statistical analysis 

depending on the dimensional analysis theory and curve fitting 

method, respectively. Clearly, the proposed equation offers the 

simplest, practical, and accurate results compared with other 

earlier solutions. 

While the proposed equation's assessment for measuring the 

critical and normal depth in circular channels was examined in 

this work, further investigation needs to be carried with sets of 

experimental datasets to provide must needed insight for the 

validity of this proposed equation. 
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