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Sleep staging aims to gather biological signals during sleep, and categorize them by sleep 

stages: waking (W), non-REM-1 (N1), non-REM-2 (N2), non-REM-3 (N3), and REM (R). 

These stages are distributed irregularly, and their number varies with sleep quality. These 

features adversely affect the performance of automatic sleep staging systems. This paper 

adopts Siamese neural networks (SNNs) to solve the problem. During the network design, 

seven distance measurement methods, namely, Euclidean, Manhattan, Jaccard, Cosine, 

Canberra, Bray-Curtis, and Kullback Leibler divergence (KLD), were compared, revealing 

that Bray-Curtis (83.52%) and Cosine (84.94%) methods boast the best classification 

performance. The results of our approach are promising compared to traditional methods. 
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1. INTRODUCTION

Sleep is as important to human life as essential elements like 

water and food [1]. Sleep slows down and relaxes our 

biological processes, making us feel physically stronger when 

we wake up [2]. However, these functions could be disrupted 

by missing or excessive sleep time. The disruption of sleep 

hours causes various disorders to the body [3]. To prevent the 

disorders, the physiological data of the patients are recorded in 

sleep labs, and used to make correct diagnosis, and select 

appropriate treatment methods. The recording is usually 

performed with a device called polysomnography (PSG), 

which allows for detailed monitoring of the stages and 

physiological parameters of sleep, as well as the functions and 

interactions of various organ systems during sleep and 

wakefulness [4]. 

Sleep staging aims to gather biological signals during sleep, 

and categorize them by sleep stages. Two basic standards are 

preferred for sleep staging, namely, American Academy of 

Sleep Medicine (AASM) standard [5], and Rechtschaffen and 

Kales (R&K) standard [6]. The AASM standard is 

recommended to process electroencephalogram (EEG), 

electrooculogram (EOG), and electromyogram (EMG) 

recordings. These biological signals are categorized by sleep 

stages: waking (W), non-REM-1 (N1), non-REM-2 (N2), non-

REM-3 (N3), and REM (R), with REM being short for rapid 

eye movements. Each stage can be separated into 30s-long 

epochs. The sleep/wake intervals are split once the sleep stags 

have been identified [7, 8]. 

The physiological data recorded by PSG are evaluated by 

medical specialists. The evaluation mainly aims to determine 

whether the patient is asleep, and the specific stage of his/her 

sleep during the night [7]. But the evaluation process is long, 

laborious, and prone to human errors, calling for automatic 

sleep staging systems are needed. As a result, automatic sleep 

staging has been studied extensively each year, using data 

from multiple channels (e.g., EEG, EOG, and EMG) or a 

single channel [9-13]. Single-channel signals enable light, 

wearable, and portable devices that does not affect sleep 

quality, because they require fewer electrodes and connections 

than multi-channel signals [10]. EEG signals are commonly 

favored in the literature for two reasons: First, EEG signals are 

not deterministic, i.e., the frequency and level content are not 

consistent for a long time; Second, EEG signals do not have 

specific forms like electrocardiogram (ECG) signals. EEG 

signals are commonly investigated by statistical and 

parametric analysis methods, such as cross-correlation, time-

frequency analysis, and auto-correlation [14]. 

During automatic sleep staging, the time, frequency, and 

time-frequency domains are utilized to extract features from 

each epoch of the signals to be employed. The extracted time 

features, frequency features, and nonlinear features [15] are 

utilized to train classifiers that predict the stage of sleep [13]. 

This popular approach is recommended for networks with 

traditional machine learning classifiers. For instance, some 

scholars [12, 16-18] extracted features through continuous 

wavelet transform and Hilbert–Huang transform (HHT), and 

introduced contemporary mathematical methods to networks 

with classic machine learning classifiers, namely, support 

vector machine (SVM), random forest (RF), or k-nearest 

neighbors (k-NN). 

Since the above approach is time-consuming and tedious, 

deep learning algorithms like convolutional neural networks 

(CNNs) have lately been adopted to automatically extract 

features from input signals. However, neither traditional 

classifiers with manually extracted features [12, 16-20] nor 

classifiers with features automatically mined by deep learning 

[13, 21-23] cannot effectively work on unbalanced datasets. 

This is because conventional classifier networks require a 

large amount of balanced data from each class [24]. The 

problem could be solved by Siamese neural networks (SNNs), 

which do well on unbalanced data. In the 1990s, Bromley et al. 

[25] were the first to adopt the SNNs for signature verification.

In 2005, Chopra et al. formalized Siamese architecture by
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applying CNN to face verification based on raw images [26]. 

More recently, SNNs have been successfully implemented in 

various fields, such as image analysis [27], speech processing 

[28], biology [29], optics and physics [30], and medicine and 

health [31]. 

This paper employs the SNNs because of its excellence on 

unbalanced data. During network design, seven distance 

measurement methods were selected to compute the similarity 

score, including Euclidean, Manhattan, Jaccard, Cosine, 

Canberra, Bray-Curtis, and Kullback-Leibler divergence 

(KLD). Data augmentation was introduced to increase the data 

size for comparison. In this way, a new competitive method 

was derived for automatic sleep staging based on deep learning 

and SNNs. To the best of our knowledge, it is the first time to 

develop such a method in the field of sleep staging. Besides, 

the proposed method was proved suitable for deep learning-

based automatic sleep staging systems, providing a 

competitive new approach for automatic sleep staging. 

The remainder of this paper is organized as follows: Section 

2 explains the dataset, network, and analysis methods; 

Sections 3-5 compare and evaluate the performance of the 

proposed approach. 

 

 

2. METHODOLOGY 

 

2.1 Dataset and data preparation 

 

The PhysioNet Sleep EDF database [32] is widely adopted 

in the research of automatic sleep staging [33]. The dataset 

contains 61 nocturnal polysomnography records of 42 people, 

which are sampled at the rate of 100Hz. The records include 

EEG, EOG, and EMG signals, as well as event markers. The 

dataset was established on two studies: sleep cassette (SC) and 

sleep telemetry (ST). The former investigates the effect of age 

on healthy people, and the latter investigates the effect of 

temazepam on sleep. 

The recordings were evaluated by sleep staging experts in 

30s epochs, according to the R&K standard [34]. During the 

staging phase, the following labels were used: W, N1, N2, N3, 

N4, REM, Movement, and Unknown. Each EEG recording 

was acquired by Fpz-Cz and Pz-Oz electrodes. The recordings 

from Fpz-Cz electrodes were utilized, because they were 

crisper than those from Pz-Oz electrodes in the Sleep-EDF 

database [12, 35]. Firstly, the Movement and Unknown data 

were eliminated from the dataset. Next, the N3 stage was 

merged with the N4 stage by the AASM standard, reducing the 

total number of stages from 6 to 5 (W, N1, N2, N3 / N4, REM). 

 

2.2 Overlap technique 

 

The overlap method is adopted more widely and more 

successfully than the other strategies [36-39], owing to the 

following advantages: the method is simple to use and 

reproduce; the current training set can be expanded several 

times, reducing the size of each training sample; the resulting 

trained network will have a better translational invariance. For 

these reasons, this paper chooses the overlap method [38]. 

Firstly, each epoch belonging to the same class was combined, 

producing a long signal. Next, the long signal was processed 

by overlapping rectangular windows of a certain duration [39]. 

This procedure is depicted in Figure 1. 

 

 

 
 

Figure 1. Data augmentation by overlap technique 

 

2.3 SNNs 

 

Traditional deep networks need hundreds of labeled data in 

each class to realize classification. Take a dataset with three 

labels, i.e., cars, planes, and birds, for example. If only trained 

by images in the three classes, the neural network cannot work 

effectively on a new class, e.g., trucks. Then, lots of truck 

images must be added to the dataset to retain the network. 

However, the addition and retaining are often time-consuming 

and costly [40]. Thus, SNNs have been developed to solve the 

classification of unbalanced data. 

Every SNN consists of two identical neural networks, each 

of which can learn the hidden representation of an input vector 

[25]. The two networks are identical in that they share the same 

setup, including parameters and weights. The data belonging 

to the same class or two different classes are imported to the 

two networks. Then, the SNN produces two vectors that 

represent the two input data in lower dimensions. The distance 

between the two vectors is calculated by a distance 

measurement method. The greater the distance, the less 

similarity between the two input data. For this reason, a purely 

empirical threshold is determined for comparison. The 

distance between the two eigenvectors varies with the distance 

measurement methods, for each method has a unique equation. 

Therefore, the optimal threshold, that is, the threshold leading 

to the highest accuracy on the training set, depends on the 

specific method for distance measurement [41]. 

To implement all the above processes, the SNN needs to be 

trained through pairwise learning. Therefore, the cross-

entropy loss function must be replaced with the comparative 

loss function [42]: 

 

𝐿(𝑦, 𝑑) =
1

2
(𝑦 × d + (1 − 𝑦) × max{𝑚 − 𝑑, 0} ) (1) 

 

where, d is the distance between the two input eigenvectors; y 

is the binary output; m is the margin. If the input eigenvectors 

are dissimilar, they cannot contribute to the loss function, 

unless their distance is within the margin.  

The SNN can work on different distance measurement 

methods. Nevertheless, not every method ensures the good 

performance of the network. Thus, it is very important to know 

which method does better in a specific scenario, and choose 

the most suitable method for distance measurement. For 

example, the performance of the Euclidean distance method 

decreases with the growing data size, while the cosine distance 

method increases with the size of the dataset. In addition, the 

threshold should be adjusted according to the selected method. 

For this purpose, the SNN must be pre-trained, and the most 

suitable distance measurement method and threshold must be 

selected. The architecture of the SNN is illustrated in Figure 2. 
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Figure 2. Architecture of SNN 

 

This paper calls the Adam optimizer to iteratively update 

the network weights based on the training data. This 

optimization technique was selected to replace the traditional 

SNN training algorithm of stochastic gradient descent. As 

shown in Figure 3, the Adam optimizer uses two identical 

CNNs, which are responsible for acquiring the eigenvectors. 

Moreover, the comparative loss function was adopted to 

evaluate the ability of the SNN to differentiate between the 

two data. 

The CNNs, a specific form of linear operation, are a basic 

neural network that employs convolution instead of matrix 

multiplication in at least one layer [43]. Each CNN consists of 

blocks that are added one after the other to learn complex 

features, and each block extracts the features from the data on 

the previous blocks. During the operation, the convolution 

layer (Layer C) learns simple features, and uses nonlinear 

activation functions to learn increasingly complex features. 

Then, the pooling layer (Layer P) brings the key information 

in the data to the foreground. Figure 3 shows the structure of a 

CNN in the SNN.  

 

 
 

Figure 3. Structure of a CNN in our SNN 

 

To realize a fair comparison with the SNN, the softmax 

function was added to the last layer of each CNN in the SNN, 

so as to perform the traditional classification. 

 

 
Figure 4. Flow of the proposed system 

 

Figure 4 shows the flow of the proposed system, which 

compares the CNN model with the SNN model created with 

each distance measurement method on augmented and non-

augmented data. Firstly, seven different distance measurement 

methods were used separately in the SNN, using the sleep 

staging dataset, and the method with the best performance was 

determined. Then, the best-performing SNN model was 

compared with the CNN model on the same dataset. 

 

2.4 Distance measures 

 

2.4.1 Euclidean distance 

In artificial intelligence, Euclidean distance is the most 

widely metric of the distance between two points [44]. Figure 

5 depicts the calculation of Euclidean distance. Euclidean 

distance can be calculated by the Pythagorean theorem: 

 

𝐷(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (2) 

 

where, x and y are the Cartesian coordinates of each point. 

 

 
 

Figure 5. Euclidean distance between 2 points 

 

2.4.2 Manhattan distance 

As shown in Figure 6, Manhattan distance might perform 

worse than Euclidean distance, for the failure to give the 

shortest distance. But some scholars found this measure 

outperforming Euclidean distance [45]. Manhattan distance 

can be calculated without any diagonal movement: 

 

𝐷(𝑥, 𝑦) = √∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (3) 

 

 
 

Figure 6. Manhattan distance between 2 points 

 

2.4.3 Jaccard distance 

The Jaccard distance statistically evaluates the similarity 

between two clusters. As shown in Figure 7, the intersection 

of the two sets can be identified by dividing with the total 

number of elements. If the two sets are the same, the 

intersection is 1; if the two sets have no common feature, the 

intersection is 0. 

To calculate the Jaccard distance, it is necessary to subtract 

the Jaccard index from 1, for the distance is inversely 

proportional to similarity. The Jaccard distance between two 

points can be calculated by: 

1425



 

𝐷(𝐴, 𝐵) = 1 −
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (4) 

 

 
 

Figure 7. Jaccard distance between 2 samples 

 

2.4.4 Cosine distance 

The cosine angle between two vectors in a multidimensional 

space is a yardstick of the similarity between these vectors. If 

the two vectors have the same orientation, the cosine similarity 

is 1; if the two vectors have diametrically opposite orientations, 

the cosine similarity is -1. Note that cosine similarity only 

considers the direction of the vectors, without accounting their 

magnitude [46]. As shown in Figure 8, the cosine distance can 

be calculated by subtracting 1 from cosine similarity: 

 

𝐷(𝑥, 𝑦) = 1 − cos(𝜃) = 1 − 
∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1

√∑ 𝑥𝑖
2𝑛

𝑖=1 √∑ 𝑦𝑖
2𝑛

𝑖=1

 (5) 

 

 
 

Figure 8. Cosine similarity between 2 samples 

 

2.4.5 Canberra distance 

The Canberra distance numerically measures the separation 

between two points in a vector space. If the coordinates of both 

samples are close to zero, the Canberra distance will be 

sensitive to tiny changes [47]. Mathematically, this distance 

measure can be defined as: 

 

𝐷(𝑥, 𝑦) = ∑
|𝑥𝑖 − 𝑦𝑖|

|𝑥𝑖| + |𝑦𝑖|

𝑛

𝑖=1

 (6) 

 

2.4.6 Bray-Curtis distance 

Bray-Curtis distance is not technically a metric, as it does 

not provide the triangle inequality property. But it is a common 

way to measure the difference between samples. If the 

coordinates of both samples are close to zero, this measure is 

meaningless. Mathematically, this distance measure can be 

defined as: 

 

𝐷(𝑥, 𝑦) =
∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖=1

∑ (𝑥𝑖 + 𝑦𝑖)𝑛
𝑖=1

 (7) 

 

2.4.7 KLD 

The KLD formulates the distance between two probability 

distributions. Like Bray-Curtis distance, the LKD is not a 

metric, because it does not satisfy the triangle inequality 

property. By the KLD, the ratios of the two distributions to 

each other at each point are taken, and made equal to the sum 

of the logarithms of the ratios. If the two distributions are the 

same, the distance is 0; otherwise, the distance is a positive 

real number. 

 

𝐷(𝑝 ∣∣ 𝑞) = ∑ 𝑝(𝑥𝑖) × (log 𝑝 (𝑥𝑖) − log 𝑞 (𝑥𝑖))

𝑛

𝑖=1

 (8) 

 

where, 𝑞(𝑥) is the approximation; 𝑝(𝑥) is the true distribution. 

 

 

3. EVALUATION 

 

3.1 Confusion matrix 

 

The Confusion matrix (Table 1) is a popular approach to 

evaluate model performance. The performance metrics like 

accuracy, specificity, and sensitivity can be calculated based 

on the number of samples assigned to the proper classes and 

the number of samples assigned to the incorrect classes. 

 

Table 1. Confusion matrix 

 
  Predicted Class 

   Positive Negative 

Actual Class 
Pos. True Positive (TP) False Negative (FN) 

Neg. False Positive (FP) True Negative (TN) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (9) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (10) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

 

Since the SNN is a binary classifier, its performance is 

generally evaluated by metrics like accuracy (9), specificity 

(10), and sensitivity (11).  

 

3.2 Hold-out and cross validation methods 

 

Hold-out and cross validation are two widely adopted 

techniques by researchers of automatic sleep staging. The 

hold-out technique separates the data into a training set and a 

test set. The performance of the target model is evaluated on 

the previously untrained test set, and trained on the training set. 

Normally, the training set and test set are split by the ratio of 

80%:20%. Of course, this ratio varies with the data sizes. 

Cross validation divides the original dataset into k groups. 

One of the groups is taken as the test set, and the other groups 

as training sets. Because training is done on several training 

and test sets, cross validation could predict the model 

performance on an unknown dataset. When the dataset is large, 

however, cross validation will involve many more 

computations, and thus consume much more time than the 

hold-out technique. 

Considering the high computing and processing 

requirements of the SNN, the hold-out technique might be 

preferred. In this paper, the hold-out technique is chosen to 

process a total of 56,764 sleep stage data (Wake: 14984, 

NREM 1: 5581, NREM 2: 22676, NREM 3: 5197, NREM 4: 

8326), each with a length of 3000 samples. 
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4. RESULTS AND DISCUSSION 

 

As shown in Figure 2, SNNs were created, the input data 

were encoded, and the distance between the eigenvectors were 

measured, using seven different methods: Euclidean, 

Manhattan, Jaccard, Cosine, Canberra, Bray-Curtis, and KLD. 

Then, the optimal threshold was calculated empirically for 

each method, giving the highest classification accuracy. 

Specifically, numbers in the range of 0-1 were tested on the 

training dataset with 0.025 intervals, and the value giving the 

highest accuracy was accepted as the optimal threshold. The 

results obtained are shown in Table 2. 

 

Table 2. Optimal thresholds 

 
Distance measurement methods Threshold values 

Euclidean 0.55 

Manhattan 0.525 

Jaccard 0.5 

Cosine 0.525 

Canberra 0.6 

Bray Curtis 0.6 

KLD 0.425 

 

According to the classification results (Table 3) on the data 

in five different classes (0: W, 1: N1, 2: N2, 3: N3, 4: N4), the 

SNN with Bray-Curtis achieved the best performance. The 

classification results of this SNN are reported in Table 4. 

 

Table 3. Classification results with different distance 

measurement methods 

 
  Sensitivity (%) Specificity (%) Accuracy (%) 

Euclidean 84.83 81.16 82.89 

Manhattan 84.25 77.96 80.79 

Jaccard 83.43 80.72 82.02 

Cosine 82.49 82.34 82.42 

Canberra 85.37 80.97 83.03 

Bray Curtis 86.02 81.35 83.52 

KLD 71.15 62.32 65.57 

 

Table 4. Binary classification results with Bray-Curtis 

 
Stages Sensitivity (%) Specificity (%) Accuracy (%) 

0 vs 1 81.21 74.16 77.24 

0 vs 2 86.13 95.86 90.42 

0 vs 3 93.79 99.39 96.42 

0 vs 4 90.05 90.57 90.31 

1 vs 2 72.33 63.82 67.07 

1 vs 3 88.23 96.10 91.80 

1 vs 4 71.26 58.48 62.13 

2 vs 3 87.07 78.75 82.38 

2 vs 4 83.43 78.05 80.50 

3 vs 4 93.95 98.49 96.11 

 

Table 5. Results on augmented dataset 

 
  Sensitivity (%) Specificity (%) Accuracy (%) 

Euclidean 85.22 83.42 84.29 

Manhattan 87.52 79.03 82.74 

Jaccard 83.71 82.82 83.26 

Cosine 85.65 84.25 84.94 

Canberra 87.38 82.26 84.63 

Bray Curtis 88.01 82.11 84.81 

KLD 73.45 60.57 64.57 

 

 

Table 6. Binary classification results with cosine distance 

 
Stages Sensitivity (%) Specificity (%) Accuracy (%) 

0 vs 1 80.98 77.21 78.97 

0 vs 2 84.29 96.53 89.48 

0 vs 3 93.54 99.26 96.22 

0 vs 4 90.06 92.36 91.18 

1 vs 2 73.11 68.88 70.78 

1 vs 3 87.65 97.45 91.99 

1 vs 4 74.78 62.31 66.45 

2 vs 3 85.23 79.62 82.18 

2 vs 4 83.09 82.69 82.89 

3 vs 4 94.38 98.71 96.44 

 

As shown in Table 4, the SNN with Bray-Curtis obtained 

the best performance, when 0 and 3 stages were given together 

to the network. Then, the data were approximately doubled 

using the overlapping technique, and the classification results 

of the SNN with different distance measures are shown in 

Table 5. In this case, the best performance corresponded to the 

cosine distance measure. The classification results of the SNN 

with cosine distance are given in Table 6. 

Finally, the results obtained by one of the identical parallel 

CNNs in our SNN were compared with those of the traditional 

classification method (subsection 2.3). The traditional method 

was evaluated on the same datasets as the SNN, an augmented 

set and a non-augmented set. The former set is about two times 

the size of the latter set. As shown in Table 7, the classification 

performance on augmented set was better than that on non-

augmented set. Tables 8 and 9 provide the details on the binary 

classification results on augmented set. 

 

Table 7. Classification results obtained using the CNN 

 
 Sensitivity (%) Specificity (%) Accuracy (%) 

Dataset 75.43 77.62 82.08 

Aug. Dataset 78.89 79.32 83.8 

 

Table 8. Binary classification results obtained using the CNN 

 
Stages Sensitivity (%) Specificity (%) Accuracy (%) 

0 vs 1 94.59 30.55 77.56 

0 vs 2 94.59 86.70 89.84 

0 vs 3 94.59 89.61 93.31 

0 vs 4 94.59 75.71 87.95 

1 vs 2 30.55 86.70 75.84 

1 vs 3 30.55 89.61 59.49 

1 vs 4 30.55 75.71 57.62 

2 vs 3 86.70 89.61 88.83 

2 vs 4 86.70 75.71 83.80 

3 vs 4 89.61 75.71 81.15 

 

Table 9. Results obtained using the CNN on augmented 

dataset 

 
Stages Sensitivity (%) Specificity (%) Accuracy (%) 

0 vs 1 91.43 51.04 80.74 

0 vs 2 91.43 88.82 89.87 

0 vs 3 91.43 88.44 90.68 

0 vs 4 91.43 74.71 85.61 

1 vs 2 51.04 88.82 81.44 

1 vs 3 51.04 88.44 69.04 

1 vs 4 51.04 74.71 65.17 

2 vs 3 88.82 88.44 88.75 

2 vs 4 88.82 74.71 85.09 

3 vs 4 88.44 74.71 80.00 
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During the analysis of Tables 3 and 5, it should be noted 

that the SNNs with distance measures other than KLD and 

Manhattan achieved close results, because neural networks are 

stochastic algorithms. In other words, the similarity of the 

results cannot reveal the superiority between the techniques, 

but suggest that these techniques take advantage of 

stochasticity, such as the random initialization of weights. This 

means the same network can produce different results despite 

being trained on the same data.  

Furthermore, although the SNN outperformed the CNN, the 

network did not perform better in the binary classification of 

all sleep stages. Compares Table 4 and 6 with Tables 8 and 9, 

it is evident that the CNN outshines the SNN in 0 vs 1, 1 vs 2, 

2 vs 3, and 2 vs 4. 

 

Table 10. Comparison between our SNN and previous state-

of-the-art results 

 
Study Sensitivity (%) Precision (%) Accuracy (%) 

This work 85.65 83.93 84.94 

[48] 74 - 83 

[49] 74 91 82 

[50] 75.8 77.3 84.5 

[13] 82.49 78.6 82 

[22] 73.9 73.7 81.9 

[35] - - 83.78 

 

Table 10 compares the proposed SNN with the existing 

methods. The highest values are shown in bold font. Overall, 

it can be said that data augmentation improves the 

performance of both SNN and CNN. 

In conclusion, the SNNs using binary classification methods 

are much better than traditional methods. Since EEG signals 

can be easily obtained from the forehead with a dry electrode, 

our method bodes well for developing low-cost and portable 

high-performance devices in the future. Meanwhile, the SNN 

system must be supported by the hold-out technique to solve 

the high requirements of random-access memory (RAM). If 

the memory issue can be solved in future, the results can be 

evaluated through the k-fold cross-validation. In addition, 

more approaches can be explored, and the system performance 

can be compared with the system proposed here. 

 

 

5. CONCLUSIONS 

 

Sleep quality varies greatly from person to person, making 

it impossible to obtain an equal number of balanced data from 

each stage of sleep. This paper mainly intends to solve the 

classification problem of unbalanced datasets in automatic 

sleep-staging systems, with the aid of the SNNs. The proposed 

SNN was compared with traditional classification methods. 

The comparison shows that the SNN outshined conventional 

methods with 84.94% accuracy, 84.25% specificity, and 

85.65% sensitivity. This innovative approach for automatic 

sleep staging is promising for future studies. 
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