

Simple, Flexible Method to Extract Digital Image Features

Mohammad S. Khrisat1*, Hatim Ghazi Zaini1, Ziad A. Alqadi2

Check for updates

¹ Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134, P.O. Box 15008, Jordan ² Computer and Information Technology College, Taif University, Taif 21944, P.O. Box 11099, KSA

Corresponding Author Email: mkhrisat@bau.edu.jo

https://doi.org/10.18280/ts.380527	ABSTRACT
Received: 19 May 2021 Accepted: 26 July 2021	The process of digital image features extraction is very important and it is required in many applications such as classification, prediction and regression. The extracted features for each
Keywords:	image must be unique and capable to be used as an image identifier. In this paper we will introduce a method of image features extraction; it will be shown that this method will

features vector, classification, speedup, throughput, k means clustering, WPT, composite vector applications such as classification, prediction and regression. The extracted features for each image must be unique and capable to be used as an image identifier. In this paper we will introduce a method of image features extraction; it will be shown that this method will enhance the efficiency of the features extraction process. The proposed method will be compared with other existing methods of feature extraction to show the advantages of the proposed method and to show how to increase the speed up of the method.

1. INTRODUCTION

Digital color image is represented by a 2D matrix (gray image) [1, 2], or a 3D matrix (color image), each 2D matrix in the 3D matrix represents a color channel (red, green and blue). Digital gray image can be represented by a histogram [3, 4]. The histogram is a 1D array with 256 elements, each element points to the repetition of the pixel color in the image [5, 6]. Each color channel in color image also can be represented by histogram vector, adding the three vectors together we can get the color image total histogram (Total histogram=Red histogram array + green histogram array +blue histogram array) as shown in Figure 1.

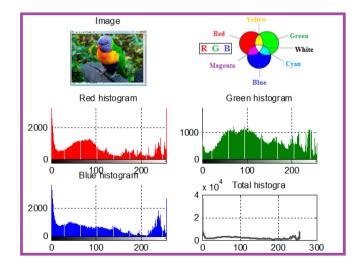


Figure 1. Color image and the associated histograms

Image histogram can be used in many applications [7, 8], it can be used as an input data set for the image features extraction method, some of these methods are based on the image histogram such as wavelet packet tree (WPT) decomposition [9, 10].

Digital images are used in many important applications such as image classification and recognition systems [11, 12]. Since the size of the image is very large, it is necessary to search for a way through which to extract a small number of values to represent the image and use these values as an identifier for the image (see Figure 2). The set of these values is called the vector of the features of the image [13, 14]. This vector must satisfy the following requirements [15, 16]:

- Small size and small number of elements to simplify the process of using these elements in a classification system and to reduce the memory size required to store the features.
- Minimum time of extraction.
- Unique for each image.

The extracted images features vectors must be stored in the features database, this database can be used as an input dataset for the classification or prediction tool (see Figure 3) in order to identify the image.

2. FEATURES EXTRACTION USING KMEANS CLUSTERING

Clustering means grouping input data items(pixels values) into groups called clusters as shown in Figure 4 [17, 18]. One of the most popular methods of data clustering is kmeans clustering. This method can be used to cluster the input data into 2 or more clusters, the clusterin process can be used to retrieve valuable information, this information can be used to form the image features vector [19, 20].

Kmeans clustering is a flexible method, it can be done by using 1D or 2D dimentional matrix as an input dataset, the digital colr image can be easily reshaped for 3D matrix to 1D array (see Figure 5), this array can be then clustered to find the following informations [21]:

- \checkmark The clusters centroids.
- The within clusters sums (WCS) (summation of points values which are belong to the cluster).

✓ Average distances between each point and the centroid for each cluster.

One of the above mentioned information can be used to form the image features vector.

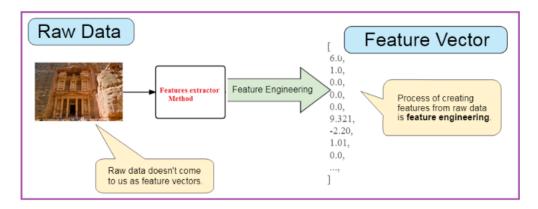


Figure 2. Image features extraction

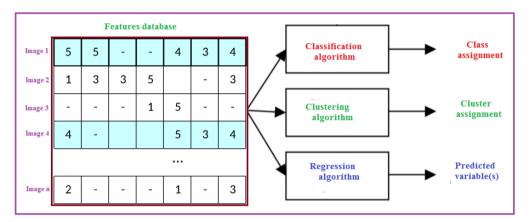


Figure 3. Using features database

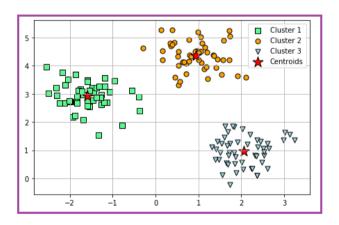


Figure 4. Data clustering

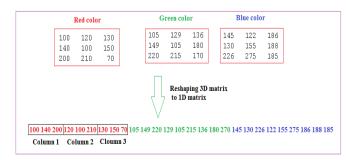


Figure 5. Reshaping example

3. WAVELET PACKET TREE DECOMPOSITION

Wavelet packet tree (WPT) [22, 23] decomposition can be used to decompose a reshaped 3D color image matrix to 1D matrix to approximations and details based on using Haar equations [24]. The first level of decomposition split the input data into approximation and detail, the length of each of them is equal the half of the input data length (see Figure 6). Here the number of selected levels will determine the length of the features vector.

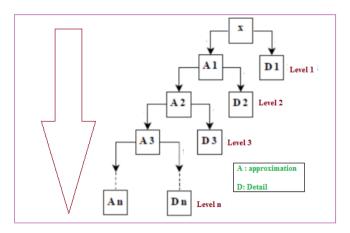


Figure 6. WPT decomposition

To extract the image features, we use the obtained approximation at the previous level as a new input data set for decomposition, by repeating this process for several determined levels we can obtain an approximation with the required number of elements to be used later as an image features vector.

Digital images have various sizes, so it is difficult to select the number of decomposition levels, so we can use the total color image histogram with 256 elements to get the image features using WPT decomposition [25].

4. THE PROPOSED METHOD

The proposed method of image features extraction can be implemented applying the following steps:

Step 1: Get the image, and retrieve the image size (rows and columns: Nro, Ncol).

Step 2: Determine the features vector length, here we have to select the number of composite rows and columns (NFro and NFcol), and the features vector length will equal NFro + NFcol.

Step 3: Calculate the average of each row in the image to from comRo vector.

Step 4: Calculate the average of each column in the image to from comCol vector.

Step 5: Aggregate the comRo vector of Nro elements into compFro vector of NFro elements.

Step 6: Aggregate the comCol vector of Ncol elements into compFcol vector of NFcol elements.

Step 7: Composite features vector of compFro and compFcol.

Below is a matlab function that can be used to implement the proposed method:

% aggregating the CompCol vector of NCol elements into CompFCol vector of % NFcol elements CompColStep=floor(Ncol/NFcol); d=NFcol; CompFCol(1:d)=0; i=1; k=1: while i <= d l=k + CompColStep -1; for j= k :1 CompFCol(i) = CompFCol(i) + CompCol(j); end: CompFCol (i) = CompFCol(i)/CompColStep; k=k + CompColStep; i=i+1; end; %while

% Composite profile feature vector features= [CompFRo CompFCol]

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Several images (see Figure 7) with various sizes were selected, the features vector length with length = 4 was selected, Table 1 show the obtained experimental results:

Figure 7. Used images

From Table 1 we can see the following:

- The features vector length is fixed and equal 4.
- The features vector is unique for each image.
- The features extraction time is significant small.
- The method is efficient by providing a throughput of 1.9704e+007 byte per second.

The proposed method is flexible; it can be easily changed to create a feature vector with any length by adjusting *NFro and NFcol* parameters, Table 2 shows the features vector with length =6 for the same selected images, here the average extraction time remain small.

The same images were treated using kmeans clustering, 4 clusters were selected, and the clusters centroids were selected as a features vector, Table 3 shows the obtained experimental results.

 Table 1. Proposed method results (features vector length=4)

Image num	ber Resolution	Size(byte)		Feat	ures		Extraction time (seconds)
1	151 333 3	150849	150.1636	90.0209	125.1993	114.8626	0.034000
2	152 171 3	77976	214.2279	212.2096	218.8906	207.5312	0.015000
3	360 480 3	518400	110.0616	62.6860	86.1564	86.5912	0.040000
4	1071 1600 3	5140800	99.1678	103.8407	122.4715	80.5573	0.243000
5	981 1470 3	4326210	164.6155	90.8392	126.3232	129.0533	0.170000
6	165 247 3	122265	118.0844	91.4567	88.7047	120.1296	0.020000
7	360 480 3	518400	100.7605	64.4090	88.8745	76.2950	0.039000
8	183 275 3	150975	150.5115	104.4943	140.8969	114.5462	0.022000
9	183 275 3	150975	139.5991	81.9698	118.3683	102.8616	0.021000
10	201 251 3	151353	74.5080	100.4746	98.7142	76.6994	0.019000
11	600 1050 3	1890000	158.0257	115.0430	148.9100	124.1587	0.105000
12	1144 1783 3	6119256	133.0626	139.3956	146.5038	125.9705	0.252000
А	verage	1.6098e+006	Throughput=1.	6098e+006/0.081	7=1.9704e+007 l	oyte per second	0.0817

 Table 2. Proposed method results (features vector length=6)

Image number	Features					Extraction time (seconds)	
1	186.4707	78.6212	95.1849	126.7492	122.2955	110.9450	0.023000
2	212.9356	208.8769	217.2241	225.4204	216.1531	198.0828	0.017000
3	109.5097	102.1804	47.4313	90.7175	87.7056	80.6983	0.043000
4	94.3544	109.3746	100.8142	143.7382	98.2167	62.5882	0.174000
5	192.2893	103.6399	87.1356	132.5569	110.3678	140.1400	0.153000
6	111.6450	131.4171	70.2296	81.5154	100.6012	131.1751	0.020000
7	94.6460	101.2674	51.8409	94.3294	81.1034	72.3215	0.045000
8	177.4976	85.3655	119.9428	130.9332	137.9840	113.8887	0.020000
9	157.4983	92.3999	81.8265	115.7081	116.3203	99.6964	0.021000
10	59.3113	109.3241	94.5084	103.6602	95.4630	64.0205	0.020000
11	172.6813	137.1078	99.8140	141.4802	142.5161	125.6068	0.089000
12	135.4069	127.1200	145.9410	149.1750	138.6913	120.8210	0.196000
	Average						

Table 3. Kmeans clustering method results (features vector length=4)

Image number		Features			Extraction time (seconds)
1	231.4323	25.5328	90.8931	165.3871	1.203000
2	150.1751	238.7813	57.9272	205.8391	0.604000
3	11.1279	122.7569	189.0679	64.5786	3.404000
4	132.1343	27.7147	197.7589	79.0318	19.121000
5	51.3912	161.2255	224.6232	100.6020	26.189000
6	122.5739	169.7968	33.0259	83.5358	0.815000
7	6.2029	225.4998	140.4629	81.2838	3.414000
8	152.3228	35.1126	235.1358	92.7938	0.898000
9	137.3452	33.2478	202.4468	85.7968	0.512000
10	80.2431	19.3801	151.1589	218.0935	1.773000
11	111.8570	55.6583	237.6980	177.7467	9.501000
12	228.0653	109.4986	61.9170	147.7168	25.402000
	Throughput=1.6098e	+006/7.7363=2.0808e	+005 byte per second		7.7363

 Table 4. WPT method results (features vector length=4)

Image number		Extraction time (seconds)			
1	28382	26681	5214	9242	0.119000
2	1290	1147	-643	11567	0.117000
3	312000	281610	29680	6940	0.122000
4	577200	535750	325920	94500	0.128000
5	57800	53390	241240	158630	0.127000
6	11343	10058	8725	1535	0.150000
7	715770	639140	25430	13710	0.119000
8	1962	2411	5707	15281	0.142000
9	12669	11671	9351	3003	0.115000
10	51161	47444	7019	4406	0.153000
11	-2900	5910	59860	227090	0.176000
12	8940	-50560	430150	156530	0.124000
	Throughput=1.	0.1327			

Method	Avanage extraction time(seconds)	Speedup				
Methou	Average extraction time(seconds)	Proposed	WPT	Kmeans		
Proposed	0.0817	1	0.1327/0.0817=1.6242	7.7363/0.0817= 94.6916		
WPT	0.1327	0.0817/ 0.1327= 0.6157	1	7.7363/0.1327= 58.2992		
Kmeans	7.7363	0.0817/7.7363= 0.0106	0.1327/7.7363= 0.0172	1		

From Table 3 we can see the following:

- The features vector length is fixed and equal 4.
- The features vector is unique for each image.
- The features extraction time is bigger than that obtained by the proposed method.
- The method is less efficient by providing a throughput of 2.0808e+005 byte per second.

The same images were treated using WPT method, the image histogram was taken as an input dataset for decomposition, and Table 3 shows the obtained experimental results.

From Table 4 we can see the following:

- The features vector length is fixed and equal 4.
- The features vector is unique for each image.
- The features extraction time is higher than that obtained by the proposed method.
- The method is medium efficient by providing a throughput of 1.2131e+007 byte per second.

From the previous obtained results we can see that the proposed method will speed up the process of image features extraction process, this is shown in Table 5.

6. CONCLUSIONS

A method of digital image features extraction was proposed and implemented. The proposed method can be used for any type of images and with any sizes. The proposed method is very efficient simple and accurate. Comparisons with other methods of features extraction were done based on the obtained experimental results. The results showed that the propose method has a speed up greater than 1, this means that this method will increase the extraction process efficiency. It was shown that the proposed method is very flexible, miner a simple change can be done to obtain a features vector with any length, the extracted image features satisfies the requirements of image features to be used as a classifier.

REFERENCES

- Shivaprasad, S., Sadanandam, M. (2021). Optimized features extraction from spectral and temporal features for identifying the Telugu dialects by using GMM and HMM. Ingénierie des Systèmes d'Information, 26(3): 275-283. https://doi.org/10.18280/isi.260304
- [2] Chu, W., Hung, W.C., Tsai, Y.H., Chang, Y.T., Li, Y.J., Cai, D., Yang, M.H. (2021). Learning to caricature via semantic shape transform. International Journal of Computer Vision, 129: 2663-2679. https://doi.org/10.1007/s11263-021-01489-1
- [3] Zou, D.N., Zhang, S.H., Mu, T.J., Zhang, M. (2020). A new dataset of dog breed images and a benchmark for finegrained classification. Computational Visual Media,

6: 477-487. https://doi.org/10.1007/s41095-020-0184-6

- [4] le Négrate, A., Beghdadi, A., Dupoisot, H. (1992). An image enhancement technique and its evaluation through bimodality analysis. CVGIP: Graphical Models and Image Processing, 54(1): 13-22. https://doi.org/10.1016/1049-9652(92)90030-2
- [5] Ackar, H., Almisreb, A.A., Saleh, M.A. (2019). A review on image enhancement techniques. Southeast Europe Journal of Soft Computing, 8(1): 42-48. http://dx.doi.org/10.21533/scjournal.v8i1.175
- [6] Lin, H.Y., Lin, C.Y., Lin, C.J., Yang, S.C., Yu, C.Y. (2014). A study of digital image enlargement and enhancement. Mathematical Problems in Engineering, 2014: 1-7. https://doi.org/10.1155/2014/825169
- [7] Cromey, D.W. (2012). Digital images are data: And should be treated as such. In: Taatjes D., Roth J. (eds) Cell Imaging Techniques. Methods in Molecular Biology (Methods and Protocols), vol 931. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-056-4_1
- [8] Gitto, S., Cuocolo, R., Emili, I., Tofanelli, L., Chianca, V., Albano, D., Messina, C., Imbriaco, M., Sconfienza, L.M. (2021). Effects of interobserver variability on 2D and 3D CT- and MRI-based texture feature reproducibility of cartilaginous bone tumors. Journal of Digital Imaging, 34: 820-832. https://doi.org/10.1007/s10278-021-00498-3
- [9] Benton, J.F., Gillespie, A.R., Soha, J.M. (1979). Digital image-processing applied to the photography of manuscripts. In: Scriptorium, 33(1): 40-55. https://doi.org/10.3406/scrip.1979.1119
- [10] Wiggins, W.F., Caton, M.T., Magudia, K., Rosenthal, M.N., Andriole, K.P. (2021). A conference-friendly, hands-on introduction to deep learning for radiology trainees. Journal of Digital Imaging, 34: 1026-1033. https://doi.org/10.1007/s10278-021-00492-9
- [11] El-Khamy, S.E., Hadhoud, M.M., Dessouky, M.I., Salam, B.M., Abd El-Samie, F.E. (2014). An iterative method for the evaluation of the regularization parameter in regularized image restoration. International Journal of Computing, 8(2): 15-23. https://doi.org/10.47839/ijc.8.2.662
- [12] Korsunov, N.I., Toropchin, D.A. (2016). The method of finding the spam images based on the hash of the key points of the image. International Journal of Computing, 15(4): 259-264. https://doi.org/10.47839/ijc.15.4.857
- [13] Yu, T., Meng, J., Fang, C., Jin, H., Yuan, J. (2020). Product quantization network for fast visual search. International Journal of Computer Vision, 128: 2325-2343. https://doi.org/10.1007/s11263-020-01326-x
- [14] Ansari, M.D., Ghrera, S.P. (2016). Feature extraction method for digital images based on intuitionistic fuzzy local binary pattern. 2016 International Conference System Modeling & Advancement in Research Trends (SMART), pp. 345-349. https://doi.org/10.1109/SYSMART.2016.7894547

- [15] Wang, Z., Yong, J. (2008). Texture analysis and classification with linear regression model based on wavelet transform. IEEE Transactions on Image Processing, 17(8): 1421-1430. https://doi.org/10.1109/TIP.2008.926150
- [16] Chen, C.C., Chen, C.C. (1999). Filtering methods for texture discrimination. Pattern Recognition Letters, 20(8): 783-790. https://doi.org/10.1016/S0167-8655(99)00042-2
- [17] Chang, T., Jay Kuo, C.C. (1992). Tree-structured wavelet transform for textured image segmentation. Proc. SPIE 1770, Advanced Signal Processing Algorithms, Architectures, and Implementations III. https://doi.org/10.1117/12.130945
- [18] Çarkacıoğlu, A., Yarman-Vural, F. (2003). SASI: A generic texture descriptor for image retrieval. Pattern Recognition, 36(11): 2615-2633. https://doi.org/10.1016/S0031-3203(03)00171-7
- [19] Tang, C., Yang, X., Zhai, G. (2015). Noise estimation of natural images via statistical analysis and noise injection. IEEE Transactions on Circuits and Systems for Video Technology, 25(8): 1283-1294. https://doi.org/10.1109/TCSVT.2014.2380196
- [20] Nader, J., Alqadi, Z.A., Zahran, B. (2017). Analysis of

color image filtering methods. International Journal of Computer Applications, 174(8): 12-17. https://doi.org/10.5120/ijca2017915449

- [21] Unser, M. (1986). Local linear transforms for texture measurements. Signal Processing, 11(1): 61-79. https://doi.org/10.1016/0165-1684(86)90095-2
- [22] Walia, S., Kumar, K. (2019). Digital image forgery detection: A systematic scrutiny. Australian Journal of Forensic Sciences, 51(5): 488-526. https://doi.org/10.1080/00450618.2018.1424241
- [23] Al Azzeh, J., Alhatamleh, H., Alqadi, Z.A., Abuzalata, M.K. (2016). Creating a color map to be used to convert a gray image to color image. International Journal of Computer Applications, 153(2): 31-34. https://doi.org/10.5120/ijca2016911975
- [24] Khawatreh, S., Ayyoub, B., Abu-Ein, A., Alqadi, Z. (2018). A novel methodology to extract voice signal features. International Journal of Computer Applications, 179(9): 40-43. https://doi.org/10.5120/ijca2018916088
- [25] Ayyoub, B., Nader, J., Al-Qadi, Z., Zahran, B. (2019). Suggested method to create color image features victor. Journal of Engineering and Applied Sciences, 14(1): 2203-2207.

https://doi.org/10.36478/jeasci.2019.2203.2207