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Monocular depth estimation is a hot research topic in autonomous car driving. Deep 

convolution neural networks (DCNN) comprising encoder and decoder with transfer 

learning are exploited in the proposed work for monocular depth map estimation of two-

dimensional images. Extracted CNN features from initial stages are later upsampled using a 

sequence of Bilinear UpSampling and convolution layers to reconstruct the depth map. The 

encoder forms the feature extraction part, and the decoder forms the image reconstruction 

part. EfficientNetB0, a new architecture is used with pretrained weights as encoder. It is a 

revolutionary architecture with smaller model parameters yet achieving higher efficiencies 

than the architectures of state-of-the-art, pretrained networks. EfficientNet-B0 is compared 

with two other pretrained networks, the DenseNet-121 and ResNet50 models. Each of these 

three models are used in encoding stage for features extraction followed by bilinear method 

of UpSampling in the decoder. The Monocular image is an ill-posed problem and is thus 

considered as a regression problem. So the metrics used in the proposed work are F1-score, 

Jaccard score and Mean Actual Error (MAE) etc., between the original and the reconstructed 

image. The results convey that EfficientNet-B0 outperforms in validation loss, F1-score and 

Jaccard score compared to DenseNet-121 and ResNet-50 models. 
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1. INTRODUCTION

Object detection and subsequent maneuvering have been 

the primary motto of any autonomous vehicle project. In terms 

of conventional single-lens cameras, the world is perceived in 

2D, the two dimensions being the Width and the Height, but 

the real world and its objects have a 3D structure. The third 

dimension is perceived as Depth in Computer Vision. This 

factor is highly significant in self-driving cars for controlling 

the vehicle's speed and its movement. Ultrasonic sensors have 

a meager distance range so for high-end self-driving cars, 

sophisticated sensors like LIDAR, RADAR, Stereo camera 

setup, or a combination of some of the above technologies, 

including various sensors and cameras, are used for 3D 

mapping of the surroundings. These 3D point clouds are 

generated by the on-board computer depending on the 

incoming light signals/radio signals. LIDAR has a great future 

in autonomous vehicles. Though LIDAR technology is highly 

efficient and reliable, it is not cost-effective. LIDAR 

equipment installed on the car costs almost double when 

compared to the cost of the vehicle itself. High cost was the 

main driving motto to shift the research from LIDAR 

technology to stereoscopic and monocular depth estimation. 

Stereo cameras contain more than one lens, each with their 

own image sensors and they mimic human binocular Vision, 

such phenomenon is termed as Stereo Disparity. However, to 

find correlations, the two images need to have sufficient 

details and texture or non-uniformity. 

Moreover, Depth can be perceived accurately only at short 

distances. Still, stereo-vision based research is the most 

trending one in the field of depth map estimation. The other 

research field is looking into estimating the Depth from 

monocular images, i.e., images/videos taken using a single-

lens camera. Many revolutionary methods are proposed to 

estimate the Depth from monocular estimation like Markov 

Random Fields, Continuous Random Fields, Deep learning, 

adversarial learning, etc., Datasets like NYU2-Depth dataset 

and KITTI datasets were also created to aid the supervised 

deep learning approach. It was observed that the modern deep 

learning models are efficient at extracting Depth than 

traditional handcrafted features. Many deep learning models 

have been utilized for supervised deep learning-based depth 

map estimation like ResNet, DenseNet, VGG, etc. This project 

is one such effort that uses the supervised transfer learning 

approach to estimate the Depth. 

The architecture employed in this is based on the Encoder-

Decoder concept. The encoder is used for feature extraction, 

and the decoder is used to improve the depth map's resolution. 

The deep learning model used for the encoder is EfficientNet-

B0, a new model developed using a compound scaling 

approach. A decoder consisting of consecutive UpSampling 

blocks and convolutional and ReLu activation layers are added 

to upscale the image to the desired resolution. The name 

'EfficientNet' emphasizes that this model is minimal in terms 

of the number of training parameters requirement and 

computational power. Yet, it delivers efficiencies more 

excellent than the previous state of the art deep learning 

models. In this project, the depth information is extracted in 

the form of a depth map. A depth map is an image that consists 

of RGBD parameters in which the D indicates the Depth. 

Many universities worldwide are working on this depth map 

estimation model and have brought out many databases. In this 

project, the NYU2 dataset (New York University) is used. It 

contains all images from various indoor scenes. The depth map 
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estimation from these indoor scenes would help in the research 

study of indoor robot localization and movement. 

As the NYU2 dataset contains both training images and 

corresponding depth labels, supervised deep learning 

techniques are employed for training the model. The transfer 

learning approach is used to ease computation. In this project, 

EfficientNet-B0 is used in the encoding and Bilinear 

UpSampling, Conv. and ReLu activation layers are included 

in the decoder architecture. DenseNet-121 and ResNet-50 

architectures are also experimented with and compared with 

the EfficientNet-B0 model.  

Contribution of the paper: 

• A low computational network architecture is 

designed with few parameters based on transfer learning using 

EfficientNet-B0 for the first time in the literature. The 

proposed architecture produces high resolution depth map 

images when compared to existing state of the art methods 

with less number of epochs. The subsequent depth maps 

represent object boundaries more consistently than those 

developed by current approaches with fewer parameters and 

lesser iterations of training. 

• The proposed work is tested on image database that 

consists of both heterogeneous and homogeneous images. 

Comparison is carried with DenseNet-121 and ResNet-50 

models, that are pre-trained on large image database such as 

Image Net. The proposed network EfficientNet-B0 

outperforms the other two nets for depth estimation when 

heterogeneous or distinct images are used in the database with 

less validation loss.  

• An appropriate loss function, skip connections in 

encoder design, learning strategy, and the strategy of data 

augmentation that facilitates faster learning are identified and 

implemented. 

• EfficientNet-B0 would be more efficient for high-

resolution images since the resolution scaling is one of the 

critical factors of the EfficientNet-B0. 

The prior works on the dense-depth estimation model and 

preliminaries are presented in section 2. The proposed 

methodology for depth estimation is proposed in section 3. 

Experimental results are discussed in section 4. Conclusions 

are provided in section 5.  

 

 

2. LITERATURE REVIEW 

 

The research on depth map estimation has a long history of 

40 years. Generally, the Depth of the image is estimated by 

taking photographs of the same object at slightly different 

locations. Later disparity maps are drawn by taking the 

correspondence/similarity between the images. These 

disparity maps when scaled by focal lengths give the Depth of 

the field. Stereo vision is the motivation behind the Structure 

from Motion (SFM). It is proposed that by dividing the images 

[1] into groups and testing for rigid interpretation will result in 

the decomposition of scenes from motion. The structure has 

been used to map the 3D topography of the surface captured 

by Unmanned Aerial Vehicle [2]. The results obtained from 

SFM were comparable with those of Terrestrial Laser 

Scanning (TLS) surveys. ORB SLAM has been effectively 

proposed for 3D depth information [3]. Depth can be obtained 

from sparse features using SFM through structural similarities 

and other feature correspondences like texture variations, 

defocus, etc. The disparities of several 3D points are mapped 

to pixels of two images using the triangulation principle [4, 5].  

The breakthrough in the monocular work was carried out by 

the researchers at Stanford University [6], in which they used 

a supervised learning approach for the depth estimation 

problem. Their supervised model used a discriminatively-

trained Markov Random Field (MRF) that incorporates 

multiscale local and global image features and models both 

depths at individual points and the relation between depths of 

different points. Torralba and Oliva [7] integrated global 

image structure analysis and local features for depth map 

estimation from monocular images. Gabor wavelets were 

utilized for local feature extraction and the mean of the 

amplitude spectrum for capturing global features. 

Guo et al. [8] demonstrated that haze could be used as a 

global feature to estimate the depth map from a single-view 

image. In another paper, a defocus map was used to estimate 

the depth map from a single image [9]. Considering the spatial 

layout, much more accurate depths were obtained [10]. 3D 

based object detector was developed using perspective cues 

from the global scene geometry. This detector is competitive 

with an image-based detector built using state-of-the-art 

methods; however, combining the two produces a notably 

improved detector because it unifies contextual and geometric 

information. A branch and bound approach was put forward, 

which splits the label space in terms of candidate sets of 3D 

layouts and efficiently bounds the potentials in these sets by 

restricting each face's contribution. 

A compromise between the Spatial and Depth resolutions 

can improve network training [11]. Regression-classification 

Cascaded Network (RCNN) explicitly trains two separate 

networks, one which works on the problem of regression, i.e., 

generating low-resolution depth maps and at an individual 

scale in a continuous fashion. The other network poses this 

problem as a classification one and globally classifies different 

depth maps. 

Monocular depth map estimation is an ill-posed problem. 

The depth estimation becomes complex with insufficient 

information in the images. Also, scale ambiguities, over/under 

illumination, and many more such image properties alleviate 

the complexity. Many machine learning and deep learning 

methodologies have tried to generate depth maps from 

monocular images with/without dataset. Machine learning and 

deep learning have paved the way for many advancements in 

the field of Computer vision. The pioneering research of CNN 

initially was propelled by the paper of LeCun et al. [12]. 

Gradient-based learning is introduced to synthesize a complex 

decision surface that can classify high-dimensional patterns. 

AlexNet started the revolution in Deep Learning in the year 

2012 [13]. CNN is used for Image classification. AlexNet net 

won the 2012 ILSVRC (ImageNet Large-Scale Visual 

Recognition Challenge). Since then, many deep networks have 

developed, which further increased the efficiency of 

classification. The regression task involves comparing a 

relationship between one dependent variable and a series of 

independent variables. In one of the classic regression 

problems, the Depth map may change depending on the type 

of camera used. CAM-Convolution neural networks [14] are 

used to provide an ideal condition for their functioning. These 

convolutional layers take camera parameters like Calibration, 

focal length, etc. 

A Depth map image using a Multiscale deep network is 

proposed by Fischer et al. [15] using two deep network stacks; 

one that makes a coarse global prediction based on the entire 

image and another that refines this prediction locally. They 

also applied a scale-invariant error to help measure depth 
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relations rather than scale. The depth map may change 

depending on the type of camera used. 

Camera Aware Multi-Scale-Convolutions [14] were 

employed in the encoder-decoder design. These convolutional 

layers take camera parameters like Calibration, focal length, 

etc. The first breakthrough was obtained by Eigen et al. [16] 

when they plotted a depth map image using a Multiscale deep 

network. They have used two deep network stacks; one that 

makes a coarse global prediction, and the other stack refines 

the local prediction. They also applied a scale-invariant error 

to measure depth relations rather than the scale.  

Li et al. [17] removes the ambiguity for mapping images 

with Depth by combining pretrained RESNET with 

UpSampling blocks based on residual learning. Eigen and 

Fergus [18] proposed multiscale convolutional network 

architecture to apply three different computer vision tasks: 

Depth estimation, surface normal, and semantic labeling with 

slight modifications. The predictions of the depth map are 

improved by capturing image fine details with the sequence of 

scales. Depth map estimation is used in obstacle detection [19]. 

ResNet [20] is a very revolutionary architecture introduced in 

the deep learning arena. ResNet has also changed the retrieval 

efficiency of a depth map estimation problem. Residual 

learning is presented in the network to use layers with more 

Depth, which improves accuracy. Depth map estimation using 

residual networks has drastically increased the retrieval 

efficiency and decreased the computational power and 

memory requirement. 

The usage of ResNet [21] improved the output resolution 

and accuracy of the overall model by training with just a few 

parameters. This model outperformed previous approaches to 

depth map estimation. Deep architectures and Residual 

networks were propelled with the pioneering work of using 

DenseNet architecture [22] in finding depth maps. DenseNet 

169 was used to extract the features of the depth map using an 

encoder-decoder concept, in which the DenseNet layers form 

the feature extraction part and the UpSampling layers form the 

decoder part. In reconstructing the image, Bilinear 

UpSampling is used. Convolution layers alone with the 

UpSampling process is used rather than deconvolution and 

unpooling layers. 

The upsurge in IoT and EDGE devices necessitated 

reducing no. of parameters, computational intensity, and the 

network's overall structure. Lightweight auto-encoder is 

proposed using MobileNet [23] also depthwise decomposition 

is used in both encoder and decoder architecture along with the 

pruning of the network. Mobilenet is gaining much 

significance in the field of deep learning. Large scale networks 

are pretrained on huge datasets—the network and its trained 

weights are employed in the depth regression problem. The 

pretrained network proposed by Alhashim and Wonka [22] is 

DenseNet-169. Supervised learning-based methods require a 

considerable amount of labeled datasets for training. 

Unsupervised techniques are used for alleviating the need for 

labeling in supervised models. One such approach estimated 

the depth map with left-right consistency methodology [24]. 

Disparity maps are generated by considering an image 

reconstruction loss. Training data is generated intrinsically by 

finding the correlations, correspondences between the 

different images of a dataset. Siamese and GAN networks are 

increasingly used in the self-supervised domain. GAN utilizes 

a Generator and a discriminatory network. A generator 

network generates random noise, and a discriminative network 

learns by comparing the network with sparse ground truth 

labels. GAN models have been used in-depth estimation. 

Siamese learning is also known as One-shot learning since 

only one training class is sufficient to train the network. A 

similarity function, which takes two variables (Images in our 

case), is solved by taking the single class label. This method 

was utilized for depth map estimation in robotic surgery [25]. 

The da Vinci surgical platform used in robotic surgery has the 

flexibility for allowing preoperative information to be 

incorporated into the live procedures using Augmented Reality 

(AR). Therefore scene depth estimation is essential in AR for 

3D correspondence between the preoperative and 

intraoperative organ models. Scene depth estimation is a 

prerequisite for AR, as accurate registration requires 3D 

correspondences between preoperative and intraoperative 

organ models. The model consists of an autoencoder for 

Depthprediction and a differentiable spatial transformer for 

training the autoencoder on stereo image pairs without ground 

truth depths. The loss function in such adversarial networks 

relies on the loss function of joint correspondence of predicted 

depth values at the patch-level instead of pixel-level [26]. 

Unsupervised/self-supervised methodologies suffer from the 

problem of collapsing the network during training due to 

diverse datasets. The spectral normalization method was 

employed to avoid this problem. A technique using a Cyclic 

GAN was proposed [27]. Two generative networks are 

organized cyclically and later jointly trained with adversarial 

learning for reconstructing the disparity map. 

Unsupervised/Semi-supervised seems to be the future, but 

they are computationally very complex. Hence, the majority 

of the studies still concentrate on the supervised approach. 

Depth estimation was performed on datasets like the NYU 

depth dataset [28] and the KITTI dataset [29]. These datasets 

provide many data-labels captured by Depth sensing 

equipment like Velodyne-laser camera and Kinect camera. 

These accurate data-labels help in the efficient building up of 

the models. Many efficient models were developed using these 

datasets in a supervised, unsupervised or semi-supervised 

fashion. The real challenge arises when these models are 

needed to deploy on IoT and EDGE platforms. Some deep 

learning models are highly computationally intensive and 

require huge memory for storage. Lightweight networks that 

result in less parameterization and high efficient output are 

required in-depth map estimation. One such network called 

EfficientNet [30] is implemented in this network. This 

network scales all dimensions of depth/width/resolution using 

a compound coefficient. The effectiveness of this method is 

demonstrated by scaling up MobileNets and ResNet. This 

method achieved a higher state of the art accuracy than 

previous ConvNets yet being a much smaller network. The 

large scale version EfficientNet-B7 is about 8.7x times smaller 

and 6.1x faster than the best previous state of the art networks. 

In this project, EfficientNet-B0 is experimented alongside 

ResetNet-50 and DenseNet-121. The proposed research 

computes the number of the parameters required in-depth 

estimation using EfficientNet-B0 by Encoder Decoder 

architecture is shown in Figure 1. Loss and Validation loss 

values are plotted for all the three networks DenseNet-121, 

ResNet-50 and EfficientNet-B0. 
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Figure 1. Encoder-decoder architecture 

 

The proposed monocular depth estimation framework 

comprises EfficientNet-B0 combined with Bilinear 

UpSampling. The disadvantages in existing deep learning 

models motivated us to use the EfficientNet-B0. Generally, 

Deep learning models become computationally intensive and 

occupy more memory when the model 'depth, 'width' or 

'resolution' increases. The arbitrary increasing of two or three 

of these parameters requires laborious manual tuning and still 

may give sub-optimal accuracy and efficiency. These three 

factors are scaled with constant ratio in the efficient net. If the 

resolution of the model increases, then the network requires 

more layers to escalate the receptive field and more channels 

to represent more fine-grained patterns on the High resolution 

image. The Depth in the network captures the higher level of 

abstractions in the image. The width of the model incorporated 

low-level features since more fine-grained patterns can be 

captured with more pixels. Hence, all three viz., Depth, width, 

and high resolution are required for adequate processing, but 

when all the three are combined, the network becomes very 

complicated. The compound scaling of depth/width and 

resolution was tried by Zoph et al. [31], and Real et al. [32]. 

This method suffers from manual intervention. An exceptional 

model with the name Efficient Net was developed by 

combining all the three parameters resulting in a significant 

increase in efficiency with a drastic decrease in the parameters. 

In the Efficient Net model, a compound scaling coefficient 'r' 

is utilized, which uniformly scales all the three parameters. 

Consider the following equations 

 

Depth: 𝑓 = 𝑎𝑟  (1) 

 

Width: 𝑑 = 𝑏𝑟 (2) 

 

Resolution: 𝑛 = 𝑐∅ (3) 

 

where, 𝑎 ≥ 1, 𝑏 ≥ 1, 𝑐 ≥ 1 and 𝑎. 𝑏2. 𝑐2 ≅ 2, and a, b, c are 

scaling factors taken at small grid in the original tiny model. 

Generally, an increase in network complexity is determined by 

the rise in the number of FLOPS. In a conventional CNN, the 

number of FLOPS required is doubled if the network depth is 

doubled, but FLOPS are quadrupled if the network width or 

resolution is doubled. In this method the total increase of 

FLOPS is scaled by (𝒂. 𝒃𝟐. 𝒄𝟐)𝒓, to curtail the number of flops 

required. From the above equation, the total FLOPS increase 

by 𝟐𝒓  approximately. EfficientNet follows the same fitting 

function as [33] i.e., 

 

𝐴𝐶𝐶(𝑚) × [𝐹𝐿𝑂𝑃𝑆(𝑚) 𝑇]⁄ 𝑤
 (4) 

 

The above fitting function is the optimization goal, where 

ACC(m) denotes the accuracy and FLOPS (m) represents the 

FLOPS of a model m, T is the target FLOPS, and w is the 

hyperparameter to balance accuracy and FLOPS. W is usually 

chosen as -0.07. Based on the above same search space [33], 

architecture similar to MnasNet called EfficientNet-B0 was 

developed. In terms of efficiency and requirement of the 

number of train parameters, EfficientNet-B0 outperformed 

much earlier state of the art methods. By scaling up the 

baseline network, different versions of the EfficientNet from 

B0 to B7 were obtained, where B7 being the highest scaled 

version among the EfficientNet. EfficientNet-B0 version is 

used in this project for the depth map estimation regression 

problem.  

Deep Network only forms the Encoder part of our project. 

The Depth maps reconstructed must be the same dimension as 

the input. But the Deep Network reduces the spatial 

dimensions of the image. UpSampling is applied to increase 

the size of the depth image same as the size of the input image. 

Figure 2 depicts the UpSampling process for the given input 

image. For example, an image of 64 pixels of height and width, 

with 4096 pixels needs to be resized with the new pixel value 

of 256x256, i.e., 655356 pixels.  

Following are the various types of interpolation methods 

used: 

• Nearest neighbour: As the name suggests, the value is 

copied from the nearest pixel. 

• Bilinear: Bilinear interpolation replaces each missing 

pixel with a linear interpolation of the nearest pixels. 

• Bicubic: Here, the missing pixel is replaced with 

polynomial interpolation of neighboring pixels. It isn't easy to 

compute even when a smoother surface is produced. 

In this research, Bilinear UpSampling is utilized, which is 

the advancement of linear interpolation. In linear interpolation, 

interpolating any two variables is carried out on a rectangular 

grid. As the name indicates, bilinear deals with performing 

linear interpolation in two different directions. Although the 

operations carried out in each direction are linear, the entire 

output may not be linear; rather, it can be quadratic. The 

following provides an example of a Bilinear Up-Sampling 

operation. 

Bilinear Up-sampling uses all the neighbouring pixels to 

calculate the value of an upsampled block. At first zeroes are 

padded as shown in Figure 2 and the weighted average of the 

two translated pixels are calculated for the output value. 

Bilinear interpolation produces smoother surface than linear 

interpolation and is less complicated than Bicubic 

interpolation. Similar operation is illustrated in the Figure 3. 

The UpSampling employed in this paper is a combination of 

Bilinear interpolation, convolution and ReLu layers. 

Deconvolutions is not used in this paper due to its high 

sensitivity to noise. 
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Figure 2. UpSampling process 

 
 

Figure 3. Illustration of bilinear UpSampling operation 

 

 

3. PROPOSED METHODOLOGY 

 

EfficientNet-B0 is used as an encoder in this project along 

with the bilinear-UpSampling method as the decoder. 

Experimentations were also conducted with ResNet and 

DenseNet architectures, and the results are compared with 

EfficientNet-B0. The Figure 4 illustrates the process flow. 

 

 
 

Figure 4. Proposed depth estimation framework 

 

 

Figure 5. Feature correspondence between Up-sampling and 

Encoder layers 

 

Algorithmic steps for process flow: 

• The database used in the proposed methodology 

comprises of 4400 images in the training set and 600 images 

in the testing set.  

• Data-Augmentation is performed on the dataset to 

increase diversity. AutoAugmentation technique with sub-

policies pre-learned on ImageNet is used in the current 

experimentation 

• EfficientNet-B0/ResNet-50/DenseNet-121 models 

are defined using TensorFlow and Keras. The transfer learning 

approach is used in this project with pretraining performed on 

ImageNet.  

• Custom UpSampling block is defined, which consists 

of Bilinear UpSampling layer along with convolutional and 

activation layers. The convolutional layers consist of skip 

connections from the encoder. These connections provide 

feature-rich correspondences as shown in Figure 5. 

• The model is trained in Google Colab with GPU 

support for 50 epochs. 

• Depth maps are predicted and visualized. 

 

Pseudo code for Encoder and Decoder design 

Inputs: Batch Normalization is performed to 

standardize the size of the input parameters of the 

network and to reduce the number of epochs; Input 

resolution is downsized from 640*480 to 256*256. 

Few data augmentation principles such as horizontal 

flipping, swapping color channels etc., but not rotation. 

Inpainting is done to color the depth maps. Test and 

Train set are passed for training the model. The input 

is then passed to encoder-decoder for depth 

reconstruction. 
Encoder: 
Input Resolution: 256*256, EfficientNet-B0 model 

The images of spatial resolution 256*256 in the 

database is encoded into 8*8 bits using Efficientnet -

B0 as shown in Figure 6. 

Decoder: 

Input resolution: 8*8 

The images of spatial resolution 8*8 produced in the 

encoder stage is decoded into 256*256 bits using 

Bilinear interpolation as shown in Figure 7. 

 

• For performance evaluation, Loss, Validation loss, 

Mean Actual Error(MAE), Structural Similarity Index 

Measurement, Jaccard, and F1-score metrics used. For 

validation loss measurement, the test dataset is taken as the 

validation dataset. 

All the images in the dataset are of 640×480 size. All the 

images are downsized to 256×256, including the output 

predicted depth maps.  

 

 
 

Figure 6. Encoding steps for proposed depth map estimation 

using EfficientNet-B0 
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Figure 7. Decoding steps for proposed depth map estimation 

using EfficientNet B0 

 

 

4. EXPERIMENTAL RESULTS 

 

This experimentation was initially executed on a local 

computer with an I5 processor (2.4Ghz processing speed) and 

8GB of RAM. 90min was taken for 2 epochs experimentation. 

Google Colab Jupyter environment which consists of 12GB of 

VRAM is used to overcome the computational limitations. The 

average running time for 50 epochs on 5000 images was 5.5hrs. 

The zipped dataset is first loaded into Google Drive, and the 

drive is mounted on to the Colab notebook. Custom 

UpSampling layers, AutoAugmented custom object, and some 

other utilities are loaded before training. The total time taken 

for training the model is 6hrs.  

 

 
 

Figure 8. Ground truth depth maps 

 

In the Experimentation two different datasets are used, the 

first database comprises of 500 heterogeneous images, out of 

which 400 are used for training and 100 for testing. The second 

database comprises of 5000 heterogeneous and homogeneous 

images, out of which 4400 are used for training and 600 

images for testing. Ground truth and depth maps are presented 

in Figure 8. All the three models DenseNet-121, ResNet-50 

and EfficientNet-B0 follow the model parameters as defined 

in Table 1. Figure 9 (a)-(d) illustrate the depth maps of the 

ground truth, ResNet-50, DenseNet-121 and EfficientNet-B0 

respectively when experimented on the first dataset. Similarly, 

Figure 10 (a)-(d) illustrate the depth maps of the ground truth, 

ResNet-50, DenseNet-121 and EfficientNet-B0 respectively 

when experimented on the second dataset. Figure 11 (a), (c), € 

and (g) shows the original images of different scenes and 

Figure 11 (b), (d), (f) and (h) shows the corresponding depth 

map results obtained with the EfficientNet model. The results 

obtained from Figures 9 and 10 shows the effectiveness of 

EfficientNet when compared with the other two nets in terms 

of resolution. 

 

Table 1. Model parameters and their corresponding values 

 
Model Parameters Value 

Learning Rate 0.0001 

Optimizer Adam 

No.of Epochs 50 

Batch Size 8 

LossFunction Customized 

 

 
(a)                   (b)                    (c)                   (d) 

 

Figure 9. The different dense depth maps with 500 images 

(a) Ground Truth (b) ResNet-50 (c) DenseNet-121 (d) 

EfficientB0 

 

 
(a)                   (b)                    (c)                   (d) 

 

Figure 10. The different dense depth maps with 5000 images 

(a) Ground Truth (b) ResNet-50 (c) DenseNet-121 (d) 

EfficientNet-B0 

 

 
(a)                    (b)                    (c)                   (d) 

 
€                    (f)                    (g)                   (h) 

 

Figure 11. EfficientNet-B0 architecture with 5000 images 

experimentations (a)(c)(e)(g) and (b)(d)(f)(h) are the ground 

truth images and their depth maps with EfficientNet-B0 

 

Plots are drawn for Loss values with respect to various 

epochs for the three models and are depicted in Figure 12 and 

Figure 13 for the first and second dataset respectively. 

Similarly, plots are drawn for Validation Loss values with 

respect to various epochs for the three models and are depicted 

in Figures 14 and 15 for the first and second dataset 

respectively. Tables 2 and 3 depict the Mean absolute Error 
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(MAE) of the first and second datasets. From the Table 2, it is 

observed that Efficient Net has low MAE when compared with 

the other two nets. From Table 3 the MAE is low for ResNet-

50. These results indicate that the EfficientNet-B0 

outperforms the other two nets for depth estimation when 

heterogeneous or distinct images are used in the database. 

Besides this, EfficientNet-B0 outperforms in case of 

validation loss as shown in Figure 15. Jaccard Index is also a 

similarity coefficient that statistically measures the similarities 

between sample sets. Jaccard is defined as the ratio between 

the intersection size to the union size between two sample sets. 

F1 score is the harmonic mean of precision and recall known 

as the Dice similarity coefficient (DSC). It is a weighted 

average technique that evaluates the model extensively than 

the accuracy especially in regression problems. Table 4 shows 

the F1 score and Jaccard score values obtained for various 

models.  

Overall a good trade-off between the size of the model and 

the efficiency can be obtained using EfficientNet-B0. 

 

 
 

Figure 12. Plot depicting the loss for 500 images set 

 

 
 

Figure 13. Plot depicting the loss for 5000 image 

experimentation 

 

 
 

Figure 14. Validation loss plot for 500 images dataset 

 

 
 

Figure 15. Validation loss plot for 5000 images 

 

Table 2. Mean Absolute Error (MAR) comparison (500 

images) 

 
Epochs ResNet-50 DenseNet-121 EfficientNet-B0 

1 1.1477 1.2060 1.0967 

10 0.3506 0.3174 0.2675 

20 0.2690 0.2226 0.1876 

30 0.2266 0.2084 0.1385 

40 0.1766 0.1626 0.1155 

50 0.1633 0.1468 0.1012 

 

Table 3. Mean Absolute Error (5000 images) 

 
Epochs ResNet-50 DenseNet-121 EfficientNet-B0 

1 0.9044 1.1477 1.0154 

10 0.2215 0.3506 0.2351 

20 0.1551 0.1633 0.1655 

30 0.1256 0.1371 0.1412 

40 0.1103 0.1219 0.1257 

50 0.1012 0.1119 0.1139 
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Table 4. F1-score and Jaccard score comparison 

 

Parameter/Neural-

Net 

500 Images 

Dataset 

5000 Images 

Dataset 

F1-

Score 

Jaccard 

Score 

F1-

score 

Jaccard 

Score 

ResNet-50 0.54 0.64 0.65 0.68 

DenseNet-121 0.58 0.65 0.66 0.69 

EfficientNetB0 0.58 0.66 0.67 0.69 

 

 

5. CONCLUSION 

 

In this work, we propose a monocular depth estimation 

using encoder and decoder architecture. The encoder is a 

lightweight network EfficientNet-B0, and bilinear 

interpolation is used in the decoder to increase the model 

parameters. The results confirm that EfficientNet-B0 would be 

more efficient for high-resolution images, since the resolution 

scaling is one of the critical factors of the EfficientNet-B0. 

Further, due to varied scaling, it has also been observed that 

EfficientNet-B0 delivers low validation loss compared to other 

models when experimented on 5000 images. The rate of loss 

is less in EfficientNet-B0 compared with ResNet-50 and 

DenseNet-121 when the resolution of input is high. 

In the future, the motto would be to develop a full-scale 

deployable model especially for autonomous cars. Datasets 

like KITTI which consists of outdoor scenes taken from a 

velodyne LIDAR camera installed on a car can serve such 

purposes. However, datasets may not be available for all the 

scenarios. The research will also concentrate on Semi-

supervised and Unsupervised employing networks such as 

GAN and Siamese, which already have outstanding 

performance with meager labels. This knowledge needs to 

integrate into IoT and edge for robotic surgery, 3D scene 

analysis, and autonomous car systems. 
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