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 The thermal camera systems can be used in all kinds of applications that require the detection 

of heat change, but thermal imaging systems are highly costly systems. In recent years, 

developments in the field of deep learning have increased the success by obtaining quality 

results compared to traditional methods. In this paper, thermal images of neonates (healthy 

- unhealthy) obtained from a high-resolution thermal camera were used and these images 

were evaluated as high resolution (ground truth) images. Later, these thermal images were 

downscaled at 1/2, 1/4, 1/8 ratios, and three different datasets consisting of low-resolution 

images in different sizes were obtained. In this way, super-resolution applications have been 

carried out on the deep network model developed based on generative adversarial networks 

(GAN) by using three different datasets. The successful performance of the results was 

evaluated with PSNR (peak signal to noise ratio) and SSIM (structural similarity index 

measure). In addition, healthy - unhealthy classification application was carried out by 

means of a classifier network developed based on convolutional neural networks (CNN) to 

evaluate the super-resolution images obtained using different datasets. The obtained results 

show the importance of combining medical thermal imaging with super-resolution methods. 
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1. INTRODUCTION 

 

Thermal cameras are imaging systems that are based 

invisible infrared energy and provides the general structure of 

the image as colors and shapes formed according to this 

infrared energy. Thermal systems have an important position 

as a non-invasive and harmless method for applications to be 

performed on living beings such as humans and animals, as 

they can provide non-contact temperature measurement. 

Thermal imaging devices can be used as an important problem 

diagnosis tool in some areas that require the detection of 

thermal variations, especially in military and civilian areas [1]. 

Despite the widespread use, low-cost thermal imaging systems 

create blurry images with insufficient edge detail information. 

In this case, the resolution of thermal images used for various 

problems such as disease diagnosis in medical fields can 

greatly affect the success. For such reasons, the interest in 

studies to improve the resolution of thermal images has 

increased in recent years. In addition, the effective use of 

super-resolution techniques on thermal images can be an 

alternative to thermal camera systems, which are costly [2]. 

The term super-resolution is a technique for obtaining an 

image with a higher resolution than the obtained low-

resolution images. This super-resolution image can also be 

expressed as an estimate from the low resolution (LR) 

equivalent of a high resolution (ground truth) image [3]. High-

resolution images can be obtained from low-resolution images 

by using methods such as the nearest to the neighbor 

relationships of the pixels in the field of the super-resolution, 

as well as bicubic interpolation [4]. The nearest neighbor 

interpolation takes into account a single-pixel nearest to the 

interpolation point. In bilinear interpolation, the closest 2x2 (4 

pixels) neighbors to the unknown pixel are taken into account. 

While considering the closest known 4x4 (16 pixels) 

neighbors to the unknown pixel in the bicubic interpolation 

method, which gives the most successful results among the 

three methods mentioned, higher weight is given to the 

neighbors closer to the unknown pixel. One of the most 

important factors determining the sharpness of the high-

resolution image obtained is that the image contains sharp 

transitions. Mosaicization occurs in the images obtained as a 

result of the nearest neighbor interpolation. Blurred images 

occur when bilinear interpolation is applied. It is more 

common to use the bicubic interpolation method in order to 

minimize such situations [5]. 

In recent years, developments in the field of deep learning 

due to hardware advances have positively affected the 

applications of super-resolution. The successful results 

obtained have spread the use of deep learning methods in the 

field of super-resolution [6]. Super-resolution methods have 

many application areas such as face detection and face 

recognition [7], object recognition [8], astronomy [9], remote 

sensing [10], hyperspectral image improvement [11], 

compressed image or video quality improvement [12], iris and 

eye recognition [13], sign or license plate recognition [14], 

fingerprint recognition [15]. In addition, many applications 

related to super-resolution have been introduced in the field of 

medical imaging in recent years [16]. 

For deep learning-based super-resolution applications, 

GAN-based developed TSRGAN (Thermal Super Resolution 

GAN) model was used. Then, the high-resolution images 

(ground truth) set and the dataset containing high-low 
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resolution image pairs consisting of low-resolution images 

obtained by downscaling of these images are used. In this 

study, firstly, thermal images of unhealthy and healthy babies 

were resized by scaling at 1/2, 1/4, 1/8 ratios, and 3 different 

datasets of low-resolution images were obtained. In this way, 

3 different datasets were prepared to consist of low and high-

resolution images. The results of super-resolution applications 

performed on these 3 different datasets were evaluated using 

image quality metrics PSNR (peak signal to noise ratio) and 

SSIM (structural similarity index measure) [17]. In addition, a 

deep learning-based classifier model was developed and the 

success of making an unhealthy-healthy distinction between 

low-resolution and super-resolution images belonging to 

applications performed with 3 different datasets was compared. 

So, task-based evaluation of super-resolution images obtained 

using different datasets was carried out. 

 

 

2. PROPOSED APPROACH 

 

In this section, detailed information on two different studies 

performed with thermal baby images is given. Section 2.1 

provides information on how the different datasets used in 

applications are obtained and made available for applications. 

Section 2.2 gives detailed information about the deep network 

model created and the training process of this network. 

 

2.1 Data collection 

 

In the study carried out, high resolution (ground truth) 

thermal images of 250 premature (healthy) and 250 unhealthy 

babies of neonatal obtained by using Variocam HD thermal 

camera with a thermal resolution of 640x480 were used. The 

thermal sensitivity of the thermal camera used is 0.05℃. In 

addition, the thermal camera was placed 60-100 cm from the 

neonatal in the supine position [18, 19]. The images obtained 

with the thermal camera were transferred to the computer 

environment and these thermal images have an image size of 

640x480. Examples of high-resolution thermal images of 

healthy and unhealthy babies are shown in Figure 1. Then, 

high-resolution thermal images were downscale at 1/2, 1/4, 1/8 

ratios in Matlab environment, and low-resolution images with 

320x240, 160x120, 80x60 image sizes were obtained 

respectively [17]. Thus, 3 different datasets consisting of 500 

high resolution and 500 low-resolution image pairs were 

obtained. 

Among the thermal images of the dataset obtained, samples 

from low resolution (LR) images resized at the ratios of 1/8, 

1/4, 1/2, and high resolution (ground truth) images 

corresponding to these sample images are shown in Figure 2, 

in order from left to right. Here, it is seen that as the reduction 

degree of the image size is increased, the deterioration in 

image quality due to data loss also increases. 

 

 
 

Figure 1. Topline belongs to healthy babies, bottom line 

belongs to unhealthy babies 

 

 
 

Figure 2. Sample images in order from left to right (1/8, 1/4, 

1/2, ground truth) 

 

2.2 Deep learning architecture and training process 

 

In this section, the deep network model TSRGAN (Thermal 

Super Resolution GAN) developed for the applications is 

explained in detail. The architecture of this deep network 

model, which is developed based on GAN (generative 

adversarial networks), consists of generator networks and 

discriminator networks [20]. Here, convolution and batch 

normalization layers are used in both network parts. In 

addition, sub-pixel convolution layers are used in the generator 

network. The generator network creates super-resolution 

thermal images by upscaling low-resolution thermal images at 

x2, x4, and x8 ratios. The number of sub-pixel convolution 

layer changes according to the up-scaling ratio to be realized. 

The discriminator calculates the GAN loss of the deep network 

model by determining the difference between the super-

resolution image and the high-resolution image. In addition, 

the training process of the deep network was carried out using 

the backpropagation method. The architecture of the 

developed deep network is shown in Figure 3. 

 
Figure 3. TSRGAN architecture 
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Perceptual loss obtained by collecting the content and 

adversarial losses was used to increase the visual quality in the 

thermal images created by the deep network. The purpose of 

using perceptual loss is to minimize the visual quality 

difference between super-resolution thermal images and high 

resolution (ground truth) thermal images [21]. Deep network 

loss (GAN loss) is calculated by summing MSE, content, and 

adversarial losses. The GAN loss calculation formula is given 

in Eq. (2). 

The MSE (mean squared error) value is always positive and 

is taken into account in order to evaluate the performance of 

the deep network models. The network model is successful as 

long as the MSE value approaches zero [22]. The formula for 

the MSE value is given in Eq. (1). Here n represents the size 

of the dataset, and ej represents the error value between the 

actual value and predicted value. 

 
n1 2

e
jj 1n

MSE = 
=  

(1) 

 

Content loss is created from the combination of VGG loss 

and MSE loss value and is calculated using a pre-trained 19-

layer network (VGG19). Here, VGG loss is used to ensure that 

the improvement in visual quality can be perceived by people, 

while MSE loss is used to observe the visual improvement in 

PSNR and SSIM values [23]. 

Adversarial loss is based on the probabilities of the 

discriminator network on all training instances. The main 

purpose here is to achieve improvements in thermal image 

quality by reducing structural differences [24]. In other words, 

it is aimed to improve visual quality in thermal images instead 

of focusing only on the increase in PSNR and SSIM values. 

 

( ) ( )l l l l lmse vggcontenttotal gan adversarial
= + +

 
(2) 

 

The proposed deep network architecture consists of 

convolution layers, sub-pixel layers, batch normalization 

layers, and activation layers. While using the swish activation 

function to realize negative learning in the generator network 

part, a significant decrease in the training rate was prevented 

by using the ReLU activation function. In this way, both fast 

and efficient applications can be carried out with a dataset that 

is not very large. In addition to this, by applying the skip 

connection technique similar to residual networks (ResNet), 

both the training speed and the success of the deep network 

have been tried to be increased [25]. In the discriminator 

network part, the LeakyReLU activation function has been 

preferred to ensure that negative learning takes place more 

stably. In addition, using batch normalization layers in both 

generator and discriminator networks is aimed to prevent the 

vanishing gradient problem and to add non-linearity to the 

deep network model [26]. 

The proposed deep network model has been used in the 

applications detailed in Section 3. In all applications 

implemented, learning rate 0.0005 was preferred as the 

hyperparameters of the network model, and the Adam 

algorithm was used as the optimization method. Also, a 

training process in small patches was carried out in order to 

keep the training speed of the network high and to improve its 

successful performance. While the patch sizes are (16, 16, 3) 

at the input of the generator network in all applications, (32, 

32, 3), (64, 64, 3), (128, 128, 3) sized patches are delivered to 

the input of the discriminator network for the x2, x4, x8 super-

resolution applications, respectively. In all applications 

performed, the deep network model was trained for 20,000 

epochs. The training process of the deep network was 

completed through the workstation with CPU E5-2680 

processor and 32 Gb GeForce GTX 1080 Ti graphics card. For 

each of the applications detailed in Section 3.1, the training 

time of the network lasted around 110 hours on average. The 

evaluation of the successful performance of all the studies was 

carried out using the image quality metrics PSNR (peak signal 

to noise ratio) and SSIM (structural similarity index measure) 

values. In the evaluation phase, high resolution (ground truth) 

images were determined as reference images, and low 

resolution, bicubic interpolation, and super-resolution images 

were compared with each other [27]. 

The PSNR value provides information about the amount of 

noise in an image. The higher the PSNR value of an image, the 

lower the noise, indicating that the image is of high quality. 

The PSNR value is obtained by comparing the input image 

determined as a reference and the output image and calculating 

the noise ratio. In Eq. (3), the PSNR calculation formula is 

given. Here I represent the reference input image and I0 

represents the output image [28]. 

 

( )10 025520 log ( , )MSE IPSN x IR =
 

(3) 

 

SSIM metric is an image quality metric that takes into 

account structural changes in the image by comparing the 

frames of different images. In other words, it shows the 

distortion in the frames of two different images. The higher the 

SSIM value, the higher the structural similarity. Eq. (4) shows 

the formula for the SSIM value. In Eq. (4), µIR(𝑛), μID(𝑛) 

markers reference (IR), and distorted (ID) image sequence n. 

means the average of the frame, and 𝜎IR(𝑛) and 𝜎ID(𝑛) are the 

references (IR) and the distorted (ID) image sequence n. is the 

standard deviation of the frame. C1 and C2 are constants used 

to get rid of any instability in the structural similarity 

comparison [28]. 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

[2 1 ][2 2]

2 2 2 2
[ 1 ][ 2]

I n I n C I I n CR D R DSSIM
I n I n C I n I n CR D R D

  

   

+ +
=

+ + + +
 

(4) 

 

 

3. EXPERIMENTAL RESULTS 

 

This section provides detailed information about the use of 

datasets prepared for the applications and the training process 

of the deep network model. In Section 3.1, details about super-

resolution applications performed with thermal images of 

neonatal and the obtained results are presented. In Section 3.2, 

a classification implementation has been carried out for task-

based evaluation of super-resolution applications. The general 

pipeline for the proposed approach is shown in Figure 4. 

 
 

Figure 4. General pipeline for the proposed approach 
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3.1 Super-resolution implementation for neonatal thermal 

images 

 

In this study, the dataset previously described in detail in 

Section 2.1 was used. In this dataset, there are 500 high-

resolution thermal images and 500 low-resolution thermal 

images in three different sizes (1/1, 1/4, 1/8) of unhealthy and 

healthy babies. Image pairs in this dataset were divided into 

400 (200 healthy + 200 unhealthy) image pairs as training 

dataset, and 100 (50 healthy + 50 unhealthy) image pairs were 

separated as test dataset. During all the applications, the 

training and test images were arranged independently from 

each other. The low-resolution training and test images used 

in the applications have 80x60, 160x120, 320x240 image sizes. 

Super-resolution thermal images in 640x480 dimensions are 

obtained by upscaling the test images in the dataset by 

applying the deep network model mentioned in Section 2.2 

before, at x2, x4, x8 ratios. Here, super-resolution images and 

ground truth images have the same dimensions which are 

640x480. The developed deep network model (TSRGAN) and 

the original SRGAN network were passed through six 

different training and testing processes separately for three 

different datasets. From the results obtained, sample thermal 

images of healthy and unhealthy babies are shown in Figure 5 

as low-resolution, bicubic interpolation, super-resolution, 

high-resolution (ground truth) images, respectively. In 

addition, all results of the obtained images were evaluated 

using PSNR / SSIM image quality metrics. Here, high-

resolution (ground truth) images are used as reference images. 

PSNR / SSIM results were calculated separately for the three 

different datasets mentioned before and the results are shown 

in Table 1. In the proposed deep network model, as a result of 

the use of MSE loss as well as VGG loss in the 

backpropagation method, an average increase of 0.6 dB in 

PSNR values and an average of 3% increase in SSIM values 

compared to the SRGAN network was observed. In addition, 

the results obtained were compared with the images obtained 

as a result of low-resolution thermal images and bicubic 

interpolation. An increase of around 3.5 dB and 2 dB was 

observed in PSNR values, respectively, while an increase of 

around 12% and 5% in SSIM values was observed, 

respectively. 
 

Table 1. PSNR/SSIM results for super-resolution implementations 
 

  LR Bicubic  SRGAN TSRGAN (proposed) 

Image datasets PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

X2 30.614 0.9 32.584 0.918 33.946 0.945 34.585 0.966 

X4 25.449 0.795 26.862 0.834 28.408 0.854 28.96 0.904 

X8 21.33 0.659 22.729 0.736 24.074 0.821 24.472 0.843 
 

Table 2. The parameters of the CNN based classifier model 
 

Number of Layers Layers Number of Output Features Convolution Kernel and Maxpooling Size 

0 Input layer 1 - 

1 Convolution layer 128 3x3x3 

2 Maximum pooling layer 128 2x2x2 

3 Convolution layer 64 3x3x3 

4 Maximum pooling layer 64 2x2x2 

5 Convolution layer 64 3x3x3 

6 Maximum pooling layer 64 2x2x2 

7 Flatten - - 

8 Fully connected layer 128 - 

9 Fully connected layer 64 - 

10 Fully connected layer 32 - 

11 Dropout layer - - 

12 Fully connected layer 1 - 
 

Table 3. Confusion matrices for classification results 
 

Methods 
LR  SRGAN TSRGAN (proposed) HR (original) 

(x2) (x2) (x2) (x2) 
 Unhealthy Healthy Unhealthy Healthy Unhealthy Healthy Unhealthy Healthy 

 (predicted) (predicted) (predicted) (predicted) (predicted) (predicted) (predicted) (predicted) 

Unhealthy (actual) 42 8 45 5 49 1 48 2 

Healthy (actual) 5 45 5 45 4 46 0 50 

         

Methods 
LR  SRGAN TSRGAN (proposed) HR (original) 

(x4) (x4) (x4) (x4) 
 Unhealthy Healthy Unhealthy Healthy Unhealthy Healthy Unhealthy Healthy 

 (predicted) (predicted) (predicted) (predicted) (predicted) (predicted) (predicted) (predicted) 

Unhealthy (actual) 40 10 46 4 47 3 48 2 

Healthy (actual) 2 48 3 47 1 49 0 50 

         

Methods 
LR  SRGAN TSRGAN (proposed) HR (original) 

(x8) (x8) (x8) (x8) 
 Unhealthy Healthy Unhealthy Healthy Unhealthy Healthy Unhealthy Healthy 

 (predicted) (predicted) (predicted) (predicted) (predicted) (predicted) (predicted) (predicted) 

Unhealthy (actual) 44 6 42 8 46 4 48 2 

Healthy (actual) 8 42 0 50 3 47 0 50 
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Figure 5. Sample images in order from left to right (low 

resolution, bicubic, srgan, tsrgan, ground truth) 

 

3.2 Effects of super-resolution methods on classification 

implementation 

 

In this section, classification studies have been carried out on 

super-resolution thermal baby images obtained by using 

different datasets and super-resolution techniques as unhealthy 

and healthy. As a result of this study, it was aimed to reveal 

the effect of the super-resolution method applied to low-

resolution thermal images in disease diagnosis. The general 

scheme of the CNN (convolutional neural networks) based 

classifier network developed for the classification application 

is shown in Figure 6. The network architecture consists of 

three convolution layers and four dense layers. The deep 

network architecture consists of convolution, pooling, and 

dense layer [29]. As the activation function, ReLU in the 

layers and sigmoid activation function in the output layer are 

used. The list of parameters belonging to the classifier network 

is given in Table 2. The classifier network based on the Keras 

library was individually trained and tested for low resolution, 

ground truth, and reconstructed super-resolution image groups. 

During the test phase, as a result of the applications performed 

for three different datasets, low resolution, the super-

resolution thermal images obtained with the original SRGAN 

and super-resolution thermal images obtained with the 

proposed TSRGAN method were evaluated separately. Also 

high resolution (ground truth) dataset was considered as a 

reference target. 

The confusion matrices provide us with a general 

framework for evaluating the success of the classification 

model [30]. The confusion matrices of the classification results 

obtained after the test phase are completed are shown in Table 

3. It may differ the preferred metric according to applications 

[31]. In this implementation, the success of classifying 

unhealthy and healthy babies will be evaluated in the practice 

and there are equal numbers of observations for both classes. 

Therefore the use of the accuracy metric was preferred. 

However, precision, recall and F1 score metrics were also 

calculated to crosscheck the success of the classifier model. 

Table 4 shows the formulas for calculating accuracy, precision, 

recall and F1 score values from the confusion matrix. Here, the 

true negative (TN) value indicates how many healthy babies it 

predicts as healthy, while the true positive (TP) value indicates 

how many of the unhealthy babies are predicted as unhealthy. 

Also the false positive (FP) value indicates how many healthy 

babies are predicted as unhealthy, while false negative (FN) 

indicates how many unhealthy babies are predicted as healthy 

[32, 33]. 

 

Table 4. Calculation of classification metrics 

 

Accuracy (%) 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
𝑥100  

Recall (%) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑥100  

Precision (%) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑥100  

F1 Score (%) 2𝑥
𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑥100  

 

 
 

Figure 6. CNN based classifier architecture 
 

Table 5. Classification results of three different data sets 
 

Upscaling Methods Image Sets for Classification Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

x2 

LR 87 89.4 84 86.6 

SRGAN 90 90 90 90 

TSRGAN (Proposed) 95 92.5 98 95.2 

HR (Ground truth) 98 100 96 97.9 

x4 

LR 88 95.2 80 86.9 

SRGAN 93 93.9 92 92.9 

TSRGAN (Proposed) 96 97.9 94 95.9 

HR (Ground truth) 98 100 96 97.9 

x8 

LR 86 84.6 88 86.3 

SRGAN 92 100 84 91.3 

TSRGAN (Proposed) 93 93.9 92 92.9 

HR (Ground truth) 98 100 96 97.9 
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In addition, the accuracy, precision, recall and F1 score rates 

calculated for all datasets are compared in Table 5. Accuracy 

rate is a measure of how accurately the classifier predicts. It is 

used to measure the success of a model, but accuracy value is 

not enough in the evaluation of the model. Therefore, the F1 

Score has an important position as a measurement metric is 

needed to include all error factors. The F1 Score value refers 

to the harmonic mean of the Precision and Recall values. Here, 

precision value shows us how many of the values predicted as 

positive which are actually positive. Recall value is a measure 

of how much the classifier correctly predicts true positive 

value. Essentially, F1 score is preferred to avoid the wrong 

model selection in datasets that do not have an unequal 

distribution. When the results were examined, it was observed 

that accuracy and F1 Score values were close to each other, 

because the datasets used in this study are equally distributed. 

Comparison of classification metrics belonging to 3 

different datasets is shown in Figure 7. When the results were 

evaluated for accuracy and F1 Score values, it was observed 

that the rate of classifying unhealthy and healthy babies with 

super-resolution images obtained as a result of the application 

of the proposed TSRGAN network correctly increased by an 

average of 7% compared to low-resolution images. In addition, 

when compared with the success of classifying super-

resolution thermal images obtained with the original SRGAN, 

an average increase of 3% is observed. Considering these 

results, the classification success of the proposed method has 

largely approached the results of the classification study 

carried out with high resolution (ground truth) images. In 

addition, considering the recall values, the super-resolution 

images obtained with the proposed TSRGAN network 

increased by an average of 10% compared to low resolution 

images, while an average of 6% increase was observed when 

compared with the images obtained with the original SRGAN 

network. So, It was seen that babies who need to be identified 

as unhealthy are highly estimated as unhealthy. 

 

 
 

Figure 7. Comparison of classification metrics 

 

 

4. DISCUSSIONS AND CONCLUSIONS 

 

This paper presents a new approach designed based on 

generative adversarial networks for super-resolution 

applications in the field of thermal imaging. With this 

proposed deep network model, applications have been carried 

out on three different datasets. Here, six different training and 

testing processes were carried out separately for the developed 

deep network model (TSRGAN) and the original SRGAN 

network for three different datasets. As a result of the 

applications of the proposed method, the significant increases 

in PSNR and SSIM values have occurred as well as visual 

improvement in images. However, in order to evaluate the 

results visually, some sample images are shown in the sections 

where the studies are described. Considering the obtained 

results, the improvements in the quality of thermal baby 

images are seen when factors such as obtaining image edge 

details and minimizing blurriness are considered. In this paper, 

classification applications were carried out using the super-

resolution images obtained as a result of the application of low 

resolution, ground truth, SRGAN, and proposed TSRGAN 

networks in order to perform a task-based evaluation of super-

resolution thermal images. These applications show that 

super-resolution images have a significant success compared 

to low-resolution images based on the rate at which they can 

classify unhealthy and healthy babies correctly. In other words, 

when the accuracy rates were compared, it was seen that the 

proposed approach had a positive effect on classification 

problems. In addition, when precision, recall and F1Score 

values were evaluated, it was proven that the success of super 

resolution and classifier models. So, it has been observed that 

the classification success of obtained the super-resolution 

images is close to the ground truth images. In addition, these 

studies clearly demonstrate the importance of combining 

medical thermal imaging with super-resolution methods. Thus, 

the use of thermal imaging systems and super-resolution 

methods in medical fields such as disease diagnosis will be 

facilitated and it is foreseen that researchers' interest in studies 

on these issues will increase day by day, and studies in these 

areas will become widespread. As a result, successful results 

can be obtained with lower-cost imaging systems, and a 

solution to an important problem will be provided. 

 

 

ACKNOWLEDGEMENT 

 

This project is financially supported by the Scientific 

Research Projects Coordinatorship of Konya Technical 

University (project number: 201102001). 

The thermal images used in this study were obtained in 

project studies supported by the Scientific and Technological 

Research Council of Turkey (TUBITAK, project number: 

215E019). 

 

 

REFERENCES  

 

[1] Chudasama, V., Patel, H., Prajapati, K., Upla, K., 

Ramachandra, R., Raja, K., Bush, C. (2020). 

TherISuRNet-A computationally efficient thermal image 

super-resolution network. 2020 IEEE/CVF Conference 

on Computer Vision and Pattern Recognition Workshops 

(CVPRW), Seattle, WA, USA, pp. 388-397. 

http://dx.doi.org/10.1109/CVPRW50498.2020.00051 

[2] Zhang, X., Li, C., Meng, Q., Liu, S., Zhang, Y., Wang, J. 

(2018). Infrared image super resolution by combining 

compressive sensing and deep learning. Sensors (Basel), 

18(8): 2587. https://doi.org/10.3390/s18082587 

[3] Chen, W.K. (1993). Linear Networks and Systems. 

Belmont, 123-135. https://doi.org/10.1142/0676 

[4] Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, H., 

Zhang, L. (2018). Image super-resolution: the techniques, 

applications, and future. Signal Processing, 128: 389-408. 

http://dx.doi.org/10.1016/j.sigpro.2016.05.002 

[5] Toyran, M. (2008). Reconstructing super resolution 

1366



 

images from low resolution images. M.Sc. Thesis, 

Institute of Science, Istanbul. 

[6] Lobanov, A.P. (2005). Resolution limits in astronomical 

images. arXiv, preprint astro-ph/0503225.  

[7] Dong, C., Loy, C.C., He, K., Tan, X. (2016). Image 

super-resolution using deep convolutional networks. 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 38(2): 295-307. 

http://dx.doi.org/10.1109/TPAMI.2015.2439281 

[8] Guei, A., Akhlouf, M. (2018). Deep learning 

enhancement of infrared face images using generative 

adversarial networks. Applied Optics, 57(18): D98-D107. 

http://dx.doi.org/10.1364/AO.57.000D98 

[9] Girshick, R., Donahue, J., Darrell, T., Malik, J. (2016). 

Region-based convolutional networks for accurate object 

detection and segmentation. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 38(1): 142-

158. http://dx.doi.org/10.1109/TPAMI.2015.2437384 

[10] Ciftci, S., Karaman, M. (2020). Landsat Uydu 

Görüntülerinde Derin Öğrenme Tabanlı Tek Görüntülü 

Süper-Çözünürlük Deneyleri. Harran Üniversitesi 

Muhendislik Dergisi, 5(3): 194-204. 

https://doi.org/10.46578/humder.819176 

[11] Lillesand, T., Kiefer, R.W., Chipman, J. (2014). Remote 

Sensing and Image Interpretation. John Wiley & Sons, 

Hoboken. 

[12] Dong, W., Fu, F., Shi, G., Cao, X., Wu, J., Li, G., Li, X. 

(2016). Hyperspectral image super-resolution via non-

negative structured sparse representation. IEEE 

Transactions on Image Processing, 25(5): 2337-2352. 

http://dx.doi.org/10.1109/TIP.2016.2542360 

[13] Thawakar, O., Patil, P.W., Dudhane, A., Murala, S., 

Kulkarni, U. (2019). Image and video super resolution 

using recurrent generative adversarial network. In 2019 

16th IEEE International Conference on Advanced Video 

and Signal Based Surveillance (AVSS), pp. 1-8. 

http://dx.doi.org/10.1109/AVSS.2019.8909900 

[14] Nguyen, K., Fookes, C., Sridharan, S., Denman, S. 

(2013). Feature-domain super-resolution for iris 

recognition. Computer Vision and Image Understanding, 

117(10): 1526-1535. 

http://dx.doi.org/10.1016/j.cviu.2013.06.010 

[15] Glasner, D., Bagon, S., Irani, M. (2009). Super-

resolution from a single image. IEEE 12th International 

Conference on Computer Vision, pp. S349-S356. 

http://dx.doi.org/10.1109/ICCV.2009.5459271 

[16] Singh, K., Gupta, A., Kapoor, R. (2015). Fingerprint 

image super-resolution via ridge orientation-based 

clustered coupled sparse dictionaries. Journal of 

Electronic Imaging, 24(4): 043015. 

http://dx.doi.org/10.1117/1.JEI.24.4.043015 

[17] Gu, Y., Zeng, Z., Chen, H., Wei, J., Zhang, Y., Chen, B., 

Li, Y., Qin, Y., Xıe, Q., Jiang, Z., Lu, Y. (2020). 

MedSRGAN: Medical images super-resolution using 

generative adversarial networks. Multimedia Tools and 

Applications, 79: 21815-21840. 

http://dx.doi.org/10.1007/s11042-020-08980-w 

[18] Senalp, F.M., Ceylan, M. (2020). Enhancement of low 

resolution thermal face image resolution using deep 

learning. European Journal of Science & Technology, 

S131-S135. https://doi.org/10.31590/ejosat.802174 

[19] Ornek, A.H., Ceylan, M., Ervural, S. (2019). Health 

status detection of neonates using infrared thermography 

and deep convolutional neural networks. Infrared 

Physics & Technology, 103: 103044. 

http://dx.doi.org/10.1016/j.infrared.2019.103044 

[20] Savasci, D., Ceylan, M., Ornek, A.H., Konak, M., Soylu, 

H. (2020). Heart disease detection from neonatal ınfrared 

thermograms using multiresolution features and data 

augmentation. International Journal of Intelligent 

Systems and Applications in Engineering, 8(1): 28-36. 

http://dx.doi.org/10.18201/ijisae.2020158886 

[21] Ledig, C., Theis, L., Huszar, F., Caballero, J., 

Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, 

J., Wang, Z., Shi, W. (2017). Photo-realistic single image 

super-resolution using a generative adversarial network. 

2017 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), Honolulu, pp. 105-114. 

http://dx.doi.org/10.1109/CVPR.2017.19 

[22] Johnson, J., Alahi, A., Li, F. (2016). Perceptual losses for 

real-time style transfer and super resolution. In European 

Conference on Computer Vision (ECCV) Springer, 694-

711. http://dx.doi.org/10.1007/978-3-319-46475-6_43  

[23] Du, W., Addepalli, P., Zhao, Y. (2019). The spatial 

resolution enhancement for a thermogram enabled by 

controlled sub-pixel movements. IEEE Transactions on 

Instrumentation and Measurement, 69(6): 3566-3575. 

http://dx.doi.org/10.1109/TIM.2019.2932175 

[24] Dosovitskiy, A., Brox, T. (2016). Generating images 

with perceptual similarity metrics based on deep 

networks. In Advances in Neural Information Processing 

Systems (NIPS), pp. 658-666. 

[25] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., 

Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. 

(2014). Generative adversarial networks. 

Communications of the ACM, 63(11): 139-144. 

http://dx.doi.org/10.1145/3422622 

[26] Anwar, S., Khan, S., Barnes, N. (2020). A deep journey 

into super-resolution: A survey. ACM Computing 

Surveys, 53(3): 1-34. http://dx.doi.org/10.1145/3390462 

[27] Ioffe, S., Szegedy, C. (2015). Batch normalization: 

accelerating deep network training by reducing internal 

covariate shift. Proceedings of The 32nd International 

Conference on Machine Learning (ICML), pp. 448-456. 

[28] Rivadeneira, R., Sappa, A., Vintimilla, B. (2020). 

Thermal image super-resolution: A novel architecture 

and dataset. 15th International Conference on Computer 

Vision Theory and Applications, pp. 111-119. 

http://dx.doi.org/10.5220/0009173601110119 

[29] Javaid, H., Babar, T.K., Rasool, A., Saghir, R.U. (2013). 

Video colour variation detection and motion 

magnification to observe subtle changes. M.Sc. Thesis, 

Blekinge Institute of Technology, Faisalabad, Pakistan. 

[30] Lai, Z., Deng, H. (2018). Medical image classification 

based on deep features extracted by deep model and 

statistic feature fusion with multilayer perceptron. 

Computational Intelligence and Neuroscience, 2018: 1-

13. https://doi.org/10.1155/2018/2061516 

[31] Miranda, E., Aryuni, M., Irwansyah, E. (2016). A survey 

of medical image classification techniques. 2016 

International Conference on Information Management 

and Technology (ICIMTech), pp. 56-61. 

http://dx.doi.org/10.1109/ICIMTech.2016.7930302 

[32] Loussaief, S., Abdelkrim, A. (2018). Machine learning 

framework for image classification. Advances in Science, 

Technology and Engineering Systems Journal, 3(1): 1-10. 

http://dx.doi.org/10.25046/aj030101 

[33] Xin, M., Wang, Y. (2019). Research on image 

1367



classification model based on deep convolution neural 

network. EURASIP Journal on Image and Video 

Processing. http://dx.doi.org/10.1186/s13640-019-0417-

8 

1368




