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In this paper we have utilized a hybrid lightweight 1D deep learning model that combines 

convolutional neural network (CNN) and long short-term memory (LSTM) methods for 

accurate, fast, and automated beat-wise ECG classification. The CNN and LSTM models 

were designed separately to compare with the hybrid CNN-LSTM model in terms of 

accuracy, number of parameters, and the time required for classification. The hybrid CNN-

LSTM system provides an automated deep feature extraction and classification for six ECG 

beats classes including Normal Sinus Rhythm (NSR), atrial fibrillation (AFIB), atrial flutter 

(AFL), atrial premature beat (APB), left bundle branch block (LBBB), and right bundle 

branch block (RBBB). The hybrid model uses the CNN blocks for deep feature extraction 

and selection from the ECG beat. While the LSTM layer will learn how to extract contextual 

time information. The results show that the proposed hybrid CNN-LSTM model achieves 

high accuracy and sensitivity of 98.22% and 98.23% respectively. This model is light and 

fast in classifying ECG beats and superior to other previously used models which makes it 

very suitable for embedded systems designs that can be used in clinical applications for 

monitoring heart diseases in faster and more efficient manner. 
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1. INTRODUCTION

The diagnosis of heart diseases highly depends on the 

electrocardiogram (ECG) [1, 2]. However, using computer 

programs to automatically extract relevant and reliable 

information from ECG is challenging. There exist distinct 

electrical depolarization-repolarization patterns in each 

heartbeat of the cardiac cycle which lead to different heart’s 

electrical activities [1-4]. 

In general, the morphological characteristics of heartbeat 

vary from person to person. The shapes of QRS complex and 

R-R interval might change for the same subject under different

circumstances [3, 4]. Experienced doctors can easily use heart

pulse or variations in the morphological pattern of the

heartbeat to detect any anomaly condition. But this task is not

easy when using automatic computerized system due to the

external noise and imbalanced classes in the dataset.

It was reported by the World Health Organization (WHO) 

that 31% of the worldwide human deaths in 2016 was caused 

by cardiovascular disease (CVD) [2] while heart attack caused 

85% of these deaths. Traditionally, the medical history and 

clinical examinations of a patient are used for diagnosing CVD 

paradigm [1, 5-7]. A set of the quantitative medical parameters 

are used to classify the patient’s conditions based on the 

taxonomy of medical diseases. The diagnosis paradigm that is 

commonly used is inefficient since it deals with large amount 

of heterogeneous data, and it requires complex analysis and 

medical expertise for accurate diagnosis [6]. This problem is 

more critical in developing countries where there is not enough 

number of medical experts and clinical equipment. Therefore, 

A reliable, automatic, and low-cost system is necessary for 

diagnosis by linking appropriate medical assessments to 

utilizing Computer-Aided Diagnosis Systems (CADS). An 

automatic monitoring procedures of health conditions is 

provided by CADS; it basically works based on analyzing 

physiological signals for monitoring and evaluating the 

functionality of the corresponding organ [6, 7].  

Electrocardiogram (ECG) is a non-stationary physiological 

signal that represents the heart’s electrical activity. ECG is 

normally represented as a waveform in PQRST pattern that has 

peaks and valleys [3, 8, 9]. In a normal heart rhythm, the events 

of the atria and the ventricles of the heart are represented in the 

deflections of the sinus rhythm. The condition of the heart is 

measured by the amplitudes of the P wave, QRS complex, S 

wave, T wave, and the intervals namely RR, PR, QT, and QRS 

complex. Predicting the changes of these measures from the 

normal values is an indicator of an irregular cardiac cycle 

patterns called Arrhythmia [7-12]. The irregular pattern in the 

rhythm of ECG is usually observed by physicians to identify 

the type of cardiac arrhythmia. After identifying the type of 

cardiac arrhythmia, the necessary treatment should begin. 

However, the decision-making time is very critical for 

physicians if the patient was in the intensive care unit (ICU). 

Therefore, the development of the assistance based on the 

technological advancements becomes very important to save 

the life of the patient. 

In recent years, Machine learning (ML) algorithms have 

been widely used to help in the detection of ECG signal and 

arrhythmia classification [13-18]. Preprocessing, feature 

extraction, and classification are the main steps commonly 

used to complete the task of the ML algorithms [15-19]. 

Empirical mode decomposition [20] and wavelet transform 
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[2, 21-23] on ECG data are superior tools used in the 

preprocessing to de-noise the ECG signals with high accuracy. 

The ECG waveforms are extracted after denoising by means 

of segmentation [24, 25], then the features of the ECG signal 

are generated from the extracted waveforms. Relatively 

independent features can be reduced by applying dimension 

reduction algorithms [14]. A better method of feature 

extraction can be achieved by combining principal component 

analysis (PCA) with independent component analysis (ICA) in 

what is called PCA-ICA algorithm [26]. Linear discriminant 

analysis (LDA) is also used to reduce the ECG features [27]. 

ML algorithms are used to construct classification models 

for the ECG features [9, 13, 15, 28]. Different ML algorithms 

were previously used in heartbeat recognition and ECG signal 

classification. Support vector machine (SVM) has shown a 

good accuracy in confirming the reliability of the heartbeat and 

ECG classification [3, 6, 29-32]. Approaches based on hidden 

Markov models have shown good performance in analyzing 

cardiac arrhythmia [33, 34]. Random forest method has shown 

accurate results in investigating cardiac arrhythmia [6, 35, 36]. 

The approaches that depend on combining a small, customized 

classifier with a global one has shown great results in 

integrating system on ECG data [14, 37]. Nonnegative matrix 

factorization-based classification method proposed by Lee and 

Seung [38] has been applied successfully on many 

classification tasks and used to automatically identify 

electrocardio signal with high accuracy. However, using the 

above methods to identify and extract useful features is 

complex and time consuming, and when standard tests are 

used to evaluate their performance, they don’t perform very 

well. New methods such as deep learning classifier based on 

multi-layer convolutional neural networks (CNNs) have been 

used to solve these drawbacks. CNNs have been used for ECG 

signals classifications [4, 39-42]. A complex deep learning 

model with convolution layers was built by Rajpurkar et al. 

[43] and trained/tested using their own datasets. They achieved 

a precision (positive predictive value) and recall rate 

(sensitivity) that exceeded the average cardiologist 

performance. In recent years, different works including wide 

range of medical tasks have used Deep Neural Network 

(DNN) for classification and prediction purposes [44-46]. 

DNN has shown a significant effect on the accuracy of 

classification and provided continuous monitoring of the heart 

conditions and arrhythmia of a captured ECG signal with low 

cost and improved prediction quality. Recently, various 

Machine Learning (ML) and Deep Learning (DL) algorithms 

have been widely used to analyze Seismocardiogram (SCG) 

signals to get descriptive and predictive information for 

diagnosis purposes [46]. A three-layer artificial neural 

network have been proposed by Yao et al. [47], it combines 

both ECG and SCG signals on a beat-by-beat basis for 

personalized quiescence prediction. The application of 

unsupervised learning on SCG signals was explored by Mora 

et al. [48] using variational autoencoder to extract user heart 

conditions from corresponding SCG waveforms. Haescher et 

al. [49] has used convolutional autoencoder to transform SCG 

signals into ECG signals and used the Pan Tompkins algorithm 

[50] for detecting the R-peak of the signal resulted from the 

transformation. This algorithm has been applied on ECG 

signal with noise [51]. The results have shown a degrading 

performance which indicate that there is still a problem in 

using this algorithm for reliable analysis of ECG signals. 

There is a rise in the number of devices that are used in 

everyday life for monitoring non-medical grade signals, 

however achieving a reliable analysis of these signals is still a 

challenging task. The gap between a non-clinical signal 

acquisition and a reliable signal analysis can be bridged by 

proposing an end-to-end deep learning network that could 

extracts information from the prevalent SCG signals in robust 

manner [46]. 

Zhang et al. [14] proposed a 12-layer 1-d CNN for 

classifying a 1 lead individual heartbeat signal into five classes 

of heart diseases. They tested this method on MIT/BIH 

arrhythmia database and obtained a positive predictive value 

of 0.977, a sensitivity of 0.976, and F1 score of 0.976. Their 

results are comparable with the results achieved in the 

previously used methods. 

Suresh et al. [46] proposed SeismoNet, a Deep Fully 

Convolutional Neural Network to accurately detects R-peaks 

for robust monitoring of the SCG signal. SeismoNet is trained 

in an end-to-end manner to detect position of the R-peaks in 

spite of noise. A novel neural network architecture combines 

anomalous morphology of Electrocardiogram (ECG) 

waveform with abnormal Heart Rate Variability (HRV) has 

been proposed by Banerjee et al. [52]. They have used A 

Convolutional Neural Network (CNN) structure to extract the 

morphological ECG features. They measured the extent of 

HRV by applying a composite structure based on Long Short- 

Term Memory (LSTM) [53-56] and a set of hand-crafted 

statistical features. Their model has a degraded accuracy since 

they have used binary classification only, and it requires more 

processing time because they have used manual feature 

extraction. 

In this paper, we have used 1D Convolutional Neural 

Network (CNN) combined with Long Short-Term Memory 

(LSTM) for fast, accurate, and automated ECG beat-wise 

classification. The proposed methodology consists of two 

major steps: the first step is to segment the ECG into beats, the 

second step is to feed the beats to the designed hybrid CNN-

LSTM model. We have designed CNN and LSTM models 

separately to compare with the hybrid CNN-LSTM model. 

The combined CNN-LSTM system provides an automated 

deep feature extraction and classification for six ECG beats 

classes including Normal Sinus Rhythm (NSR), atrial 

fibrillation (AFIB), atrial flutter (AFL), atrial premature beat 

(APB), left bundle branch block (LBBB), and right bundle 

branch block (RBBB). The hybrid model uses the CNN blocks 

for deep feature extraction and selection from the ECG beat. 

While the LSTM layer which is fed with these features as time-

dependent feature will learn how to extract contextual time 

information. The proposed CNN-LSTM is light (it consists of 

6 layers only) and fast in classifying ECG beats which makes 

it very suitable for embedded systems that can be used in 

clinical applications for heart diseases monitoring. 

 

 

2. ECG DATASET 

 

This research paper employs the MIT-BIH arrhythmia 

dataset to implement and validate the proposed methodology. 

The MIT-BIH dataset consists of 48 ECG recordings from 47 

different patients (records 201 and 202 are from the same 

subject). The distribution of subjects in the database is as 

follows: 25 men aged 32 to 89 years and 22 women aged 23 to 

89 years. While around 60% of the subjects were inpatients 

while the remaining 40% are outpatients. The dataset contains 

different types of arrythmia, and it was the first dataset 

available for evaluation of arrhythmia detectors. Each 
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recording consists of 30 minutes long signal selected from 24-

hour recordings [57, 58]. The dataset is available online for 

free at PhysioNet (MIT repository) at 

(https://physionet.org/content/mitdb/1.0.0/). All beats in this 

dataset are annotated based on the Association for the 

Advancement of Medical Instrumentation (AAMI) standards. 

In this work, the methodology is designed to classify the beats 

into six classes: Normal Sinus Rhythm (NSR), atrial 

fibrillation (AFIB), atrial flutter (AFL), atrial premature beat 

(APB), left bundle branch block (LBBB), and right bundle 

branch block (RBBB) [57]. 

 

 

3. ECG PRE-PROCESSING AND BEAT 

SEGMENTATION 

 

Preprocessing techniques are used to denoise the ECG 

signal and make it suitable for further processing. In this 

research, the pre-processing techniques started with applying 

a Butterworth bandpass filter with a frequency range of 0.1 to 

100 Hz to eliminate the baseline wandering and the high-

frequency noise. Then, a notch filter designed at 60 Hz was 

used to remove the powerline interference. Finally, a moving 

average filter was applied to smooth the ECG signal [59, 60]. 

Figure 1 shows the ECG signal before and after preprocessing 

techniques. 

 

 
 

Figure 1. ECG signal before and after preprocessing 

 

 
 

Figure 2. Samples of a segmented ECG beats 

 

After successfully preprocessing the ECG signals and 

making them suitable for further processing, the R-peak of 

QRS complex of each ECG beat is detected using robust Pan-

Tompkins method [61]. The average index is calculated for 

each two R-peaks and used as a separation index between ECG 

beats. This ECG beat segmentation is fast, robust, and can be 

easily implemented in real-time manner; this can be done by 

detecting R peaks from each two consecutive QRS complex 

and use the index as separating index for the first ECG beat. 

Finally, all segmented ECG beats are resized into 187 samples 

in length using interpolation method. Figure 2 shows some 

samples of the segmented ECG beats using the previously 

described method. 

Using the segmentation method, we successfully extracted 

5,681 beats, all beats are split into training and testing sets. 150 

beats are selected from all classes to make a balanced set for 

testing, while the remaining beats were used as training set. 

The distribution of ECG beats classes among the training set 

and testing set is shown in Table 1. 

 

Table 1. Distribution of ECG beats among classes 

 
ECG 

Beat 

Class 

Number of 

Cases in 

Training Set 

Number of 

Cases in 

Testing Set 

Total 

Number of 

Cases 

NSR 1787 150 1937 

AFIB 1070 150 1220 

AFL 110 150 260 

APB 586 150 736 

LBBB 830 150 980 

RBBB 398 150 548 

 

To solve the unbalanced training set problem, up-sampling 

process for all classes were done by duplicating ECG beats 

from all classes to reinforce the training process. In this 

research, we up-sample all ECG beats to 2000 beats for all 

classes to ensure that we have a balanced training dataset. 

 

 

4. DEEP LEARNING MODELS  

 

Deep learning is one of the newest types and state of art 

technologies in artificial intelligence appeared with the 

increasing number of large datasets [39-42]. Deep learning is 

mainly characterized and differentiated by developing a 

different architecture that composed from multiple and 

sequential layers in which subsequent stages of input 

processing performed [1, 6, 12-14]. Deep learning mimics and 

inspired by the deep structure of a human brain [62]. 

 

 
 

Figure 3. An illustration of common LSTM network 

architecture [63] 
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Figure 4. The proposed CNN model architecture 
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Deep structures of a human brain have a huge number of 

hidden layers, this allows us to extract and abstract the deep 

features at different levels and from different aspects. Many 

deep learning algorithms have been proposed in recent years 

[1, 6, 12, 14, 16, 17, 64]. Convolutional Neural Network 

(CNN) [32, 43] and Long Short- Term Memory (LSTM) [25, 

33, 56] are the most widely used, powerful, and efficient deep 

learning methods.  The CNNs include large number of hidden 

layers that apply convolution and subsampling techniques on 

the input data to extract deep features [65]. CNN consists of 

different types of layers called input, convolution, RELU, fully 

connected, classification, and output layers. These layers are 

arranged together to build a CNN model to perform the 

required task. 

CNN has shown an outstanding performance in different 

science areas especially in the medical field [66]. CNN layers 

are mainly used to extract deep, representative, and 

discriminative features. When using the CNN layers, the 

preceding layers perform the process of down-sampling and 

feature selection, and generate the classification of patterns [65, 

66]. The LSTM was initially introduced by Hochreiter and 

Schmidhuber in 1997 [67] and enhanced by a group headed by 

Gers in 2000 [63]. Nowadays researchers introduce different 

types of LSTM, while the details of LSTM were given by 

Zaremba et al. [68]. The most common architecture of LSTM 

is composed of a memory cell, input gate, output gate and 

forget gate. Figure 3 shows an illustration of the common 

LSTM network architecture. Assume that 𝑥𝑡, 𝑐𝑡  and ℎ𝑡 denote 

the input, cell, and hidden states, respectively, at iteration 𝑡. 

For current input 𝑥𝑡 , the previous cell state 𝑐𝑡−1 , and its 

corresponding previous hidden state ℎ𝑡−1, the cell state 𝑐𝑡 and 

hidden state ℎ𝑡 are obtained [68]. 

Most of the research work done in the literature focused on 

how to utilize the pre-trained deep learning models rather than 

developing new models, or used the CNN and LSTM models 

separately for the classification of ECG beat arrhythmia [68]. 

Moreover, the deep learning technique that attracts most of the 

researchers all around the world is CNN. Recently, hybrid 

models started to take a great part in the biomedical signal 

processing classification, these hybrid models achieved a 

better accuracy than separate models of CNN and LSTM, and 

their lower layers are designed very well [68, 69]. 

 

4.1 CNN model  

 

We have used a CNN model to classify the input ECG beat 

into 6 classes. The model consists of 32 layers as shown in 

Table 2 and Figure 4. The proposed CNN model decreases the 

number of layers when it is compared to the other CNN models 

used in the literature. The reduced number of layers shortens 

the time required for training the model to find the class of the 

input ECG beat beside reducing the number of the resources 

required to run the system, which make it more suitable for 

embedded system.  

 

4.2 LSTM model 

 

We have used a LSTM model to classify the input ECG beat 

into 6 classes. The model consists of 5 layers as shown in 

Figure 5. The proposed LSTM model is very light and simple 

when it is compared to previously designed CNN model. This 

model expected to be faster in training and finding the class of 

newly generated input ECG beats. 

 

Table 2. Layers information for proposed CNN architecture 

 
Number Layer Parameters 

1 Input Size = [1, 187] 

2 Conv1D 
Filters=32, Kernel Size=5, 

Strides=1 

3 Conv1D 
Filters=32, Kernel Size=5, 

Strides=1 

5 Conv1D 
Filters=32, Kernel Size=5, 

Strides=1 

6 MaxPooling1D Pool Size=5, strides=2 

7 Conv1D 
Filters=32, Kernel Size=5, 

Strides=1 

8 Conv1D 
Filters=32, Kernel Size=5, 

Strides=1 

9 MaxPooling1D Pool Size=5, strides=2 

10 Conv1D 
Filters=32, Kernel Size=5, 

Strides=1 

11 Conv1D 
Filters=32, Kernel Size=5, 

Strides=1 

12 MaxPooling1D Pool Size=5, strides=2 

13 Conv1D 
Filters=32, Kernel Size=5, 

Strides=1 

14 Conv1D 
Filters=32, Kernel Size=5, 

Strides=1 

15 MaxPooling1D Pool Size=5, strides=2 

16 Conv1D 
Filters=32, Kernel Size=5, 

Strides=1 

17 Dense Size = 32 

18 Dense Size = 6 

 

 
 

Figure 5. The proposed LSTM model architecture 

 

4.3 The hybrid CNN-LSTM model 

 

In this hybrid model, the CNN blocks which are the 1D 

convolutional layer and the max pooling layer are responsible 

about the deep feature extraction and selection from the ECG 

beat. While the LSTM layer which is fed with these features 

as time-dependent features will learn how to extract contextual 

time information. The architecture of the proposed CNN-

LSTM based deep learning framework is shown in Figure 6. 

Our study reveals a deep feature extraction and classification 

using a hybrid 1D CNN-LSTM which outperforms the CNN 

or LSTM based ones. Moreover, utilizing the LSTM layer 

makes it possible to build a much shallower models than pure 

CNN models, which provides outstanding performance while 

using fewer parameters. 
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Figure 6. The proposed hybrid CNN-LSTM model 

 
 

5. PERFORMANCE EVALUATION 

 

In any Artificial Intelligence (AI) based system there must 

be an evaluation of the system performance corresponding to 

any new data. To evaluate the performance of the proposed 

models, the original annotations of the ECG beats have been 

compared to the same ECG beats annotations predicted by the 

models. Then based on these annotations, the accuracy, 

sensitivity, precision, and specificity have been calculated. 

These measures indicate how precisely the x-ray chest images 

are diagnosed [70]. To compute these measures, four different 

types of statistical values are computed which are True 

positive (TP), False Positive (FP), False Negative (FN), and 

True Negative (TN) [56, 70]. Then using these values, the 

above mentioned performance evaluation parameters have 

been computed as follows: 

 

Accuracy =
TP + TN

TP + FP + TN + FN
 

Sensitivity =
TP

TP + FN
 

Specificity =
TN

FP + TN
 

Precision =
TP

FP + TP
 

 

 

6. EXPERIMENTAL RESULTS AND DISCUSSION 

 

In this section, the details of the proposed system 

implementation are introduced first. Then, the performance of 

the proposed three models is discussed. Finally, we give the 

comparison between our proposed models to show the best 

model among all proposed models. In this experiment, all 

models are implemented on Google colab server, this server is 

equipped with 12G memory, a 2.3GHz Intel(R) Xeon(R) CPU, 

and an NVIDIA K80 / T4 graphics card. Each model is trained 

in Python using Keras based on the backend of Tensorflow. 

We used Adaptive moment estimation as the optimizer for 

back propagation with a batch size of 256, a learning rate set 

at 0.001, a number of epochs of 500, and categorical cross 

entropy as a loss function. 

 

6.1 The results from the CNN model  

 

In this section we are showing the results from the designed 

CNN model. The number of parameters used is 727,302 and 

the number of classes is 6. Figure 7 shows the accuracy results 

of the training and testing dataset during the model training. 

Figure 8 shows the confusion matrix of the testing data using 

the CNN model. The average accuracy of our CNN model is 

97.44% which is comparable with the accuracy achieved from 

CNN models used in literature [14, 63]. 

 

 
 

Figure 7. The training and testing sets using CNN model 

 

 
 

Figure 8. The confusion matrix of testing set using CNN 

model 

 

6.2 The results from the LSTM model  

 

In this section we are showing the results from the designed 

LSTM model. The number of parameters used is 51,506 and 

the number of classes is 6. Figure 9 shows the accuracy of the 

training and testing data during the model training. Figure 10 

shows the confusion matrix of the testing set using LSTM 

model. The average accuracy of our LSTM model is 97.11% 

which is comparable with the accuracy achieved from LSTM 

models used in literature [53, 55, 56]. 
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Figure 9. The training and testing sets using LSTM model 

 

 
 

Figure 10. The confusion matrix of testing set using LSTM 

model 

 

6.3 The results from the hybrid CNN-LSTM model  

 

In this section we are showing the results from the hybrid 

CNN-LSTM model. The number of parameters used is 64,034 

and the number of classes is 6. Figure 11 shows the accuracy 

of the training and testing data during the model training. 

Figure 12 shows the confusion matrix of the testing data using 

the hybrid CNN-LSTM model. The average accuracy of our 

hybrid model is 98.22% which is comparable with the 

accuracy achieved from similar models used in literature [52-

54, 71, 72]. 

 

 
 

Figure 11. The training and testing sets using CNN-LSTM 

model 

 
 

Figure 12. The confusion matrix of testing set using CNN-

LSTM model 

 
To make a comprehensive comparison between the three 

proposed models, a full performance evaluation of the models 

is calculated based on the results of the confusion matrix 

shown previously for each model. Table 3 shows the 

classification report using performance evaluation metrics 

among all proposed models. 

 

Table 3. The classification report of the proposed models 

using testing set 

 
Metric CNN LSTM CNN-LSTM 

Accuracy %  97.44 97.11 98.22 

Sensitivity % 97.44 97.11 98.23 

Specificity % 99.49 99.42 99.64 

Precision % 97.56 97.40 98.26 

 

The results in Table 4 show that all models perform very 

well in classifying the ECG beats with good values of accuracy, 

sensitivity, specificity, and precision which are comparable to 

the values achieved in literature [14, 25-56, 64, 71, 72]. The 

results also show that the hybrid CNN-LSTM model is 

superior  to the separate CNN and LSTM models in terms of 

accuracy, sensitivity, and precision. One of our main research 

objectives is to propose a light, accurate, and fast deep learning 

model that suitable for embedded system application. 

Therefore, the information in Table 4 can help us to understand 

the simplicity of each model, and it clearly shows that the 

hybrid CNN-LSTM model in addition to its light weight is the 

fastest among the three models which make it superior for 

clinical applications. 

 

Table 4. The classification report of the proposed models 

using testing set 

 
Parameter CNN LSTM CNN-LSTM 

Number of Model 

Parameters 
727,302 51,506 64,034 

Number of Layers 32 5 6 

Average Time for Beat 

Classification (ms) 
4.423 3.174 2.987 
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Based on the results we achieved in this work, we have 

found that the hybrid CNN-LSTM model outperforms CNN 

and LSTM models in all performance evaluation metrics as 

expected. Our results also show that the hybrid model is faster 

in classification than the separate CNN and LSTM models, 

and it needs less parameter values than CNN. Moreover, to 

demonstrate the superiority of our proposed method for ECG 

beat classification, we compared the performance of our 

method with recently published works. As shown in Table 5, 

the accuracy of our hybrid model is higher than the accuracy 

achieved from CNN model [14, 64], the LSTM model [56], 

and the CNN and LSTM models used in this work. Also, the 

accuracy of our hybrid model is higher than that achieved from 

hybrid CNN-LSTM [52, 54, 72] and is comparable to that 

achieved by Oh et al. [71].  

 

Table 5. Comparison of the proposed models with models in 

literature 

 

Reference 
Accuracy 

(%) 
Parameters 

Number of 

Classes 

[14] (CNN) 97.6 102,548 5 

[52] (CNN-

LSTM) 

88.93 (two 

datasets) 
- 2 

[54] (CNN-

LSTM)  
98.13 - 2 

[56] (bi-LSTM) 97.3 100,701 5 

[64] (CNN) 95 259,789 18 

[71] (CNN-

LSTM)  
98.48 320,650 2 

[72] (CNN-

LSTM) 
97.87 - 4 

This Work 

(CNN) 
97.44 727,302 6 

This Work 

(LSTM) 
97.11 51,506 6 

This Work 

(CNN-LSTM) 
98.22 64,034 6 

 

Furthermore, the hybrid model presented in this work 

achieves higher accuracy with 64,034 parameters which is 

reduced by 3.6 to 53.6 times compared with other models. 

Most of the models published in literature don’t focus on the 

number of model parameters although it is an important 

measurement to check whether the model is suitable for the 

embedded system or not. Comparing our hybrid model with 

other similar hybrid models in recent works [52, 54, 71, 72], 

our model is capable to successfully do classification for six 

ECG beats classes with comparable accuracy and least number 

of parameters. Furthermore, our model can do automated 

feature extraction in faster manner compared with the slow 

manual feature extraction presented by Banerjee et al. [52].  

It is very interesting to make a test for separate CNN and 

LSTM models to check their successfulness in ECG beat 

classification tasks since these models show the ability to work 

with historical data like time series. Moreover, it is important 

to show that 1D CNN models perform very well in the 

classification of ECG beat over 2D CNN since it does not 

require any transformation to be applied on the ECG beat. In 

another hand, a short time Fourier transform (STFT), 

continuous wavelet transform (CWT), etc. requires time and 

more computation power and not suitable for embedded 

systems. 

The main problem that is faced in this type of research is 

how to exactly decide what kind of models should be used for 

a given dataset, and how to select the number of neurons, 

layers, and type of optimization method. These factors are all 

reflected on the size of the model and the number of its 

parameters. Such problems are solved by comparing the 

results of all models on the same dataset(s). The proposed 

hybrid CNN-LSTM model shows that the new provided model 

has high classification rates compared to the other methods in 

the literature, while the size of the model is lighter and requires 

less time for classification. This is mainly because the used 

models are perfectly designed to extract very strong and deep 

features. 

 

 

7. CONCLUSIONS 

 

In this paper, we have successfully developed a hybrid deep 

learning model composed of one-dimensional CNN and 

LSTM for automated and fast ECG beat-wise classification. 

The model achieved an average accuracy of 98.22% verified 

on six classes from MIT-BIH dataset. The preprocessing 

techniques and the hybrid model proposed in this work are 

very light and suitable for embedded system implementation. 

Simultaneously, the performance of our method is better than 

state-of-art networks. The results indicate that the proposed 

network architecture is well-suited to extract deep temporal 

features in ECG beat signals. The test accuracy may be 

improved by optimizing the convolution layer kernel size and 

adding larger dataset. Our network consists of an efficient 

model with a small number of parameters. Our plan for future 

work is to use this model in an embedded system that can be 

used to efficiently monitor the heart diseases in clinical 

applications. 
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