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The aim of this paper is to analyze the performance of the two-phase MX/M/1 queueing 

mechanism. The other conditions of the queueing system under study are state-dependent 

arrival rates, N-policy, unreliable server and delayed repair. A single server provide service in 

two stages. The first stage is batch service and the second one is individual to each customer 

in the batch. The client’s arrival rate depends upon the state of the server. We developed the 

steady state equations. Probability generating functions were used to solve the equations. The 

expected size of the queue while the server is at different states are derived. Cost function has 

been developed to determine the optimal threshold of N. Sensitivity analysis is presented to 

study the effect of the system parameters at the threshold of N for the geometric batch size 

distribution. The findings of this research help in designing two-phase queueing systems that 

occur in telecommunication networks, production etc. at a low cost. 
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1. INTRODUCTION

In many queueing systems that are observed in 

telecommunication networks, production systems etc. the 

arrival rates are not constant, but depends on the state of the 

server. Various authors have studied queueing problems with 

state dependent arrival rates under different queue control 

policies. 

One of the critical works done towards this path was 

performed by Yechiali and Naor [1]. Haris and Marchal [2] 

studied the M/G/1 queue with server vacations whose 

distributions can be state dependent. Yijun and Quanlin [3] 

examined the two-stage queueing system with state dependent 

vacation policy. They derived the stationary distributions of 

the queue length and the cycle time for the closed state-

dependent vacation model. 

Kumar and Chandan [4], analyzed the performance of two-

phase MX/EK/1 queuing system with server startups and N-

policy. They derived optimal threshold value of N by 

computing average queue size of the system and average cost 

considering three batch size distributions. Al Hanbali, & 

Boxma [5] studied Busy period analysis of the state dependent 

M/M/1/K queue. Vasanta Kumar et al. [8, 9] examined the 

performance of two-phase MX/M/1 and MX/Ek/1 queueing 

systems with N-policy and unreliable server, respectively.  

Madhu Jain and Agarval [6] dealt with a state dependent 

batch arrival queueing system with modified Bernoulli 

vacation under N-policy. They proposed a method to find the 

optimal value of the threshold parameter to minimize the total 

expected cost. Singh et al. [10] considered a single server, state 

dependent Poisson arrival system. They used supplementary 

variable technique to obtain probability generating function of 

number of units in the system. In addition, some special cases 

are also provided. Charan Jeet Singh and Binay Kumar [11] 

investigated a batch arrival queueing system with unreliable 

server, state dependent arrival rates and two stages of 

heterogeneous service. They studied the transient and steady-

state behaviour of the queue length distribution. 

Banik [7] assessed state-dependent arrival in GI/BMSP/1/∞ 

queue. Rashmita [12] evaluated MX/G/1 queueing model. 

They considered the state-dependent server vacation and 

derived the explicit expressions for the system size. Charan 

Jeet Singh et al. [15] investigated a single repairable server 

queueing system with bulk input and state dependent rates 

considering the general distributions for the repair, delay to 

repair and service processes. 

Hanumantha Rao et al. [13] studied two-phase M/M/1 

queueing system with server breakdowns, delayed repair, and 

impatient customers. They found expected loss due to balking 

and reneging. Numerical illustrations are presented to support 

the model. Recently, Hanumantha Rao et al. [14] examined the 

M/M/1 two -phase queueing system with state dependent 

arrival rates under N policy. 

As observed from the review of literature two-phase 

MX/M/1 queueing system with state dependent arrival rates, 

N-policy and unreliable server has not been studied so far.

Thus the present study is aimed at the analysis of this queueing

system. The remainder of this paper is organized as follows:

Section 2 describes the model and its assumptions. Section 3

describes the analysis under steady state, Section 4 presents

the performance analysis of the system, Section 5 describes the

cost function and the optimal operating policy, Section 6

describes the sensitivity analysis and summary is presented in

Section 7.

Ingénierie des Systèmes d’Information 
Vol. 24, No. 3, June, 2019, pp. 233-240 

Journal homepage: http://iieta.org/journals/isi 

233



 

2. DESCRIPTION OF PROPOSED MODEL AND 

UNDERLYING ASSUMPTIONS 

 

In the present research we examine the performance 

analysis of MX/M/1 queueing system. The queueing system is 

considered with two phases of service, state-dependent arrival 

rates, server breakdowns and delayed repair under N-policy. 

Notation symbols used in this paper are presented below: 

Notation symbols used in the present paper are presented below. 

λ1: Arrival rate while idle or startup states  

λ2: Arrival rate while batch and individual services  

λ3: Arrival rate while breakdown and delay states 

θ: Startup rate 

β: Batch service rate 

µ: Individual service rate 

α1: Breakdown rate while batch service 

α2: Breakdown rate while individual service 

δ: Delay rate while batch and individual services 

γ: Repair rate while batch and individual services 

WV , Ws, Wb, Wbb,, Wdb, Wi , Wbi , Wdb: Average length of 

vacation time,  startup time, first phase service time, delay 

period during first phase service,  waiting time for repair 

during first phase service,  second phase service time, during 

second phase service, waiting time for repair during second 

phase service, and the cost parameter notations are taken from 

our previous publication [14]. 

Assumptions 

The first assumption of present queueing model is that a 

single server provides with two-phases of service. The first 

stage of service is batch service while the second one is 

individual. 

The customers arrive into the queue in batches of size ‘X’ 

according to Poisson process. The queueing model has state-

dependent arrival rates, as given in the notation. The queue 

discipline is FCFS.  

After providing batch service, the server proceeds to the 

second phase. In the second phase individual customers in the 

entire batch are served.   

The service times for the batch stage and individual stage 

are exponentially distributed with parameters β and μ. 

After offering individual service to the customers, the server 

returns to the batch service queue and serve the newly joined 

customers to the queue. After finishing batch service for the 

waiting customers, the server proceeds to individual service.  

At the moment of system being unoccupied, the server turns 

off.  The server will turn on as and when the number of arrivals 

in the queue meet a preset threshold ‘N’. However, on return 

the server is not available momentarily to restart the service to 

the clients in waiting. At this moment it calls for a startup time. 

The startup time of the server follows a negative exponential 

distribution with average 1/θ. On fulfillment of startup time 

requirement, the server starts serving the clients in batch. 

During the preservice and batch service, the new customers 

are permitted to be included in the ongoing batch of service. 

The server in the system which may face breakdown at 

whatsoever moment follows Poisson breakdown with 

parameters α1 for initial phase of batch service and α2 for the 

second phase of individual serve. At whatever point the server 

breaks down, the server is sent for repairing and it cannot 

accomplish the service till it gets repaired. The delayed time 

and repair time are considered to be negative exponentially 

distributed with means 1/δ and1/γ.  

When there is server failure during service, the customers 

in process and in queue need to wait till the server available to 

complete the service. The customers are allowed to join the 

queue even during the delay time and repair time. 

 

 

3. ANALYSIS 

 

In the current paper, the following notations have been 

utilized as below: 

Π0,m,0=Steady state probability when m customers are in the 

batch queue and the server is on vacation state, m= 0,1, 

2, ...(N-1). 

Π1,m,0=Steady state probability when m customers are in the 

batch queue while the server is in startup state, where m = N, 

N+1, N+2, … 

Π2,m,0=Steady state probability when m customers are in the 

batch which is in batch service state, m = 1, 2, 3… 

Π3,m,0= Steady state probability when m customers are in the 

batch which is in batch service, while the server is found to be 

broken down and waiting for repair state, m = 1, 2, 3, … 

Π4,m,0= Steady state probability when m customers are in the 

batch which is in batch service, while the server is undergoing 

repair, m = 1, 2, 3, … 

Π5,m,n= Steady state probability when m customers are in the 

batch queue service and n customers in the individual service 

while the server is in individual service state, m = 0, 1, 2…, 

and n = 1, 2, 3, … 

Π6,m,n= Steady state probability when m customers are in the 

batch service and n customers in the individual service state, 

while the server is in individual service but found to be broken 

down and waiting for repair, m = 0,1,2 …, and n = 1,2,3…. 

Π7,m,n = Steady state probability when m customers are in 

the batch service and n customers in the individual service 

queue while the server is in individual service, but undergoing 

repair, m =0, 1, 2…, and n =1, 2, 3…. 

The steady state equations for the queue length distribution 

 

λ1Π0,0,0 = μΠ5,0,1.                            (1) 

 

λ1Π0,m,0 = λ1 ∑ alΠ0,m−l,0, 1 ≤ m ≤ (N − 1)m
l=1 .  (2) 

 

(λ1 + θ)Π1,N,0 = λ1 ∑ alΠ0,N−l,0.  N
l=1             (3) 

 

(λ1 + θ)Π1,m,0 = λ1 ∑ alΠ1,m−l,0 +m−N
l=1

λ1 ∑ alΠ0,m−l,0, m ≥ N + 1.  m
l=m−(N−1)            (4) 

 
(λ2 + β + α1)Π2,m,0 = λ2 ∑ alΠ2,m−l,0 + μΠ5,m,1 +m

l=1

γΠ4,m,0, 1 ≤ m ≤ (N − 1).                   (5) 

 
(λ2 + β + α1)Π2,m,0 = λ2 ∑ alΠ2,m−l,0 + μΠ5,m,1 +m

l=1

γΠ4,m,0 + θΠ1,m,0, m ≥ N                     (6) 

 
(λ3 + δ)Π3,1,0 = α1Π2,1,0.                        (7) 

 
(λ3 + δ)Π3,m,0 = α1Π2,m,0 + λ3 ∑ alΠ3,m−l,0,    m > 1m

l=1   (8) 

 
(λ3 + γ)Π4,1,0 = δΠ3,1,0.                        (9) 

 
(λ3 + γ)Π4,m,0 = δΠ3,m,0 + λ3 ∑ alΠ3,m−l,0,m

l=1   m> 1  (10) 

 
(λ2 + α2 + μ)Π5,0,n = μ Π5,0,n+1 + βΠ2,n,0 + γΠ7,0,n, n ≥ 1 

(11) 
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(λ2 + α2 + μ)Π5,m,n = λ2 ∑ al
m
l=1 Π5,m−l,n + μ Π5,m,n+1 +

γΠ7,m,n, m ≥ 1, &n ≥ 1.                    (12) 

 
(λ3 + δ)Π6,0,n = α2Π5,0,n ,n ≥ 1.                 (13) 

 
(λ3 + δ)Π6,m,n = α2Π5,m,n + λ3 ∑ al

m
l=1 Π6,m−l,n, m ≥

1, &n ≥ 1                                 (14) 

 
(λ3 + γ)Π7,0,n = δΠ6,0,n ,n ≥ 1                 (15) 

 
(λ3 + γ)Π7,m,n = δΠ6,m,n + λ3 ∑ al

m
l=1 Π7,m−l,n, m ≥ &n ≥ 1

 (16) 

 

In the next step PGF’s (Probability generating functions) of 

queue size at an arbitrary time epoch are derived for different 

states of the system. Prior to that PGF’s are defined below: 

 

F0(s) = ∑ Π0,m,0sm

∞

m=0

,  F1(s) = ∑ Π1,m,0sm ,

∞

m=0

 F2(s)

= ∑ Π2,m,0sm

∞

m=0

, 

 

F3(s) = ∑ Π3,m,0sm

∞

m=0

F4(s) = ∑ Π4,m,0sm

∞

m=0

, F5(s, y)

= ∑ ∑ Π5,m,nsmyn

∞

n=1

,

∞

m=0

 

 

F6(s, y) = ∑ ∑ Π6,m,nsmyn

∞

n=1

, F7(s, y)

∞

m=0

= ∑ ∑ Π7,m,nsmyn

∞

n=1

,

∞

m=0

 

 

Sn(s) = ∑ Π6,m,nsm ,∞
m=0 Tn(s) =

∑ Π7,m,nsm,∞
m=0 andRn(s) = ∑ Π5,m,nsm, |s| ≤ 1, |y| ≤ 1∞

m=0 . 
 

Let B(s)  = ∑ amsm∞
m=1  be the probability generating 

function of the arrival batch size random variable X and 

B′(s), 𝐵′′(s) represents the first and second order derivatives 

of  B(s) respectively. 

From equation (1) to (16), using the PGFs, we will get 

F0(s) = Π0,0,0YN(s) , 

where   

 

YN(s) = ∑ ymsmN−1
m=0 , YN(1) = ∑ ym&YN

′ (1) =N−1
m=0

∑ m ym
N−1
m=1 .                          (17) 

 
[λ1(1 − B(s) + θ]F1(s) = λ1Π0,0,0 + λ1(B(s) − 1)F0(s)(18) 

 
[λ2(1 − B(s) + β + α1]F2(s) = µR1(s) + θF1(s) −
λ1Π0,0,0 + γF4(s). (19) 

 
[λ3(1 − B(s) + δ]F3(s) = α1F2(s).          (20) 

 
[λ3(1 − B(s) + γ]F4(s) = δF3(s).            (21) 

 
[λ2(1 − B(s) + α2 + µ]Rn(s) = µRn+1(s) + γTn(s) +

βΠ2,n,0,                               (22) 

 

[λ2y(1 − B(s) + α2y + µ(y − 1)]F5(s, y) = −μyR1(s) +
γyF7(s, y) + βyF2(y).                      (23) 

 
[λ3(1 − B(s) + δ]Sn(s) = α2Rn(s),          (24) 

 
[λ3(1 − B(s) + δ]F6(s, y) = α2F5(s, y).          (25) 

 
[λ3(1 − B(s) + γ]Tn(s) = δ Sn(s),              (26) 

 
[λ3(1 − B(s) + γ]F7(s, y) = δF6(s, y).            (27) 

 

Put the value of F6(s, y) in equation (27) we obtain 

 

[λ3(1 − B(s) + γ]F7(s, y) =
δα2F5(s,y)

[λ3(1−A(s)+δ]
 (28) 

 

Put y = s in Eq. (23), we get 

 
[λ2s(1 − B(s)) + α2s + µ(s − 1)]F5(s, s)

= −μsR1(s) + γsF7(s, s) + βsF2(s). 
 

Put the values of F2(s)  and F7(s, s) obtained through 

equations (19) and (28) respectively, we get 

 
[(λ2s(1 − B(s) + α2s + µ(s − 1)(λ3(1 − B(s) + δ)(λ3(1 −

B(s) + γ) − γδα2s]F5(s, s) = (βsF2(s) − μsR1(s))[λ3(1 −

B(s) + γ][λ3(1 − B(s) + δ].              (29) 

 

Put s=1 and y=1 in Eqns. (17), (18), (19), (20), (21), (25), 

(28), and (29), we get  

 

F0(1) = YN(1)Π0,0,0.                       (30) 

 

F1(1) =
λ1Π0,0,0

θ
                             (31) 

 

F2(1) =
μ

β
R1(1)                            (32) 

 

F3(1) =
α1

δ
F2(1)                            (33) 

 

F4(1) =
α1

γ
F2(1)                            (34) 

 

F5(1,1) =

λ2A′(1)

μ
(1+

λ3
λ2

(
α1
δ

+
α1
γ

))F2(1)+
θ

μ
F1

′ (1)

1−
λ 2A′(1)

μ
(1+

λ3
λ2

(
α2
δ

+
α2
γ

))

       (35) 

 

F6(1,1) =
α2

δ
F5(1,1)                        (36) 

 

F7(1,1) =
α2

γ
F5(1,1)                        (37) 

 

Thequeue length distribution is given by 

 

F(s, s) = F0(s) + F1(s) + F2(s) + F3(s) + F4(s) +
F5(s, s) + F6(s, s) + F7(s, s). 

 

Probability that the server is not doing any service is given 

by 

 

F0(1) + F1(1) = 1 −
λ2𝐵′(1)

β
−

λ3𝐵′(1)

β
(

α1

γ
+

α1

δ
) −

λ2B′(1)

μ

−
λ3𝐵′(1)

μ
(

α1

γ
+

α1

δ
). 
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This gives  

 

(
𝜆1+𝜃𝑌𝑁(1)

𝜃
) Π0,0,0 = 1 − ρ1 − ρ2             (38) 

where               𝜌1 =
𝜆2𝐵′(1)

𝛽
(1 +

𝜆3

𝜆2
(

𝛼1

𝛾
+

𝛼1

𝛿
)), 

𝜌2 =
𝜆2𝐵′(1)

𝜇
(1 +

𝜆3

𝜆2
(

𝛼2

𝛾
+

𝛼2

𝛿
)),  

 

and 𝜌 = 𝜌1 + 𝜌2 is the utilizing factor of the system. 

Hence, Π0,0,0 = (1 − 𝜌)
𝜃

(𝜆1+𝜃𝑌𝑁(1))
. 

The Normalizing condition is  

 

F(1,1) = F0(1) + F1(1) + F2(1) + F3(1) + F4(1) +
F5(1,1) + F6(1,1) + F7(1,1) = 1.            (39) 

 

Using the normalizing condition, we get 

 

𝑅1(1) =
𝛽[(𝜌1+𝜌2)(1−𝜌2)𝜇−(1+

𝛼2
𝛾

+
𝛼2
𝛿

)𝜃F1
′ (1)]

𝜇[(1+
𝛼1
𝛾

+
𝛼1
𝛿

)𝜇+(𝛼2−𝛼1)(
1

𝛾
+

1

𝛿
)(𝜆2−𝜆3)𝐵′(1)]

.    (40) 

 

Let F(1,1) = 1  in the forms lim
y→1

F(1, y) = 1  and 

lim
s→1

F(s, 1) = 1we find 

𝑅1
′ (1) =

𝜌2

(1−𝜌2)
[(

𝜆2𝐵′(1)

𝜇
+

𝜆3𝐵′(1)

𝛽
(

𝛼1

𝛿
+

𝛼1

𝛾
)) F2(1) +

𝜆1𝐵′(1)

𝜇 
(1 − 𝜌1 − 𝜌2)].                          (41) 

 

 

4. PERFORMANCE ANALYSIS OF THE SYSTEM 

 

In the present segment, authors evaluated the mathematical 

expressions for average size of the system at distinct states of 

the server: 

• The average size of the system while the server is on 

vacation state is  

 

Lv = ∑ mΠ0,m,0 = F0
′ (1) =N−1

m=1 𝑌𝑁
′ (1)Π0,0,0.   (42) 

 

• The average size of the system while the server is in 

startup state is 

 

Ls = ∑ mΠ0,m,0 = F1
′ (1) =

𝜆1𝐵′(1)(𝜆1+𝜃𝑌𝑁(1))

𝜃2 Π0,0,0
∞
m=N   (43) 

 

• The average size of the system while the server is 

offering in first of batch service 

 

Lb = ∑ mΠ2,m,0 = F2
′ (1) =

𝜆2
2(𝐵′(1))

2

𝛽2 (1 +
𝜆3

𝜆2
(

𝛼1

𝛿
+N−1

m=1

𝛼1

𝛾
)) +

𝜇

𝛽
𝑅1

′ (1) +
𝜃

𝛽
F1

′ (1),               (44) 

 

• The average size of the system while the server is waiting 

for repair during service 

 

Lbb = ∑ mΠ3,m,0 = F3
′ (1) =∞

m=1
𝛼1𝜆3 𝐵

′(1)

𝛿2 F2(1) +
α1

δ
F2

′ (1)   

(45) 

 

• The average size of the system while the server is in 

under repair during batch service, 

 

Ldb = ∑ mΠ4,m,0 = F4
′ (1) =

𝜆3𝐵′(1)𝛼1

𝛾2 F2(1) +N−1
m=1

𝛼1𝜆3 𝐵
′(1)

𝛾𝛿
F2(1) +

α1

γ
F2

′ (1),                  (46) 

 

• The average size of the system while the server is 

offering individual service state 

 

Lm = ∑ ∑ (m + n)∞
n=1 Π5,m,n = F5

′ (1,1)∞
m=0   

    =
λ3B′(1)

μ(1−ρ2)
[

λ2

λ3
+ (μ + α2 − λ 2B′(1)) (

1

δ
+

1

γ
) +

A′′(1)

2A′(1)
(

λ2

λ3
+

α2

δ
+

α2

γ
) −

λ 3A′(1)α2

γδ
] F5(1,1) 

   +
λ3B′(1)

μ(1−ρ2)
[(

λ2

λ3
+

α1

δ
+

α2

γ
) (F2(1) + F2

′ (1))λ 3𝐵′(1) (
α1

γ2 +

α1

γδ
+

α2

δ2) F2(1) + 

        
B′′(1)

2A′(1)
(

λ2

λ3
+ (

α1

δ
+

α1

γ
)) F2(1)

λ1
2B′′(1)

2λ3
(1 − ρ1 −

ρ2)
λ1

2B′(1)

λ3
(1 − ρ1 − ρ2) 

 +
λ1

2B′(1)

λ3
(1 − ρ1 − ρ2) +

λ1

λ3
(1 − ρ1 − ρ2) +

λ1

λ3
YN

′ (1)Π0,0,0] 

-
λ3B′(1)

μ(1−ρ2)
(

1

δ
+

1

γ
) [λ3B′(1) (

λ2

λ3
+

α1

δ
+

α1

γ
) F2(1) +

λ1B′(1)(1 − ρ1 − ρ2)]                     (47) 

 

• The average size of the system while the server is in 

waiting for repair in second phase of service 

 

Lbi = ∑ ∑ (m + n)∞
n=1 Π6,m,n =∞

m=0

F6
′ (1,1) =

𝜆3𝐵′(1)𝛼2

𝛿2 F5(1,1) +
α2

δ
F5

′ (1,1)       (48) 

 

• The average size of the system while the server is under 

repair in second phase service 

 

Ldi = ∑ ∑ (m + n)∞
n=1 Π7,m,n = F7

′ (1,1) =∞
m=0

𝜆3𝐵′(1)𝛼2

𝛾
(

1

𝛾
+

1

𝛿
) +

𝛼2

𝛾
F5

′ (1,1)                             (49) 

 

The average quantity of clients in the system is given by 

 

L(N) = F0
′ (1) + F1

′ (1) + F2
′ (1) + F3

′ (1) + F4
′ (1) +

F5
′ (1,1) + F6

′ (1,1) + F7
′ (1,1). 

= 𝑌𝑁
′ (1)Π0,0,0 + 𝜆1𝐵′(1)

(𝜆1 + 𝜃𝑌𝑁(1))

𝜃2
Π0,0,0

+ (1 +
𝛼1

𝛾
+

𝛼1

𝛿
) F2

′ (1) 

         +𝜆3𝐵′(1) (
𝛼1

𝛿2
+  

𝛼1

𝛿𝛾
+

𝛼1

𝛾2
) F2(1)

+ 𝜆3𝐵′(1) (
𝛼2

𝛿2
+

𝛼2

𝛿𝛾
+

𝛼2

𝛾2
) F5(1,1) 

 + (1 +
𝛼2

𝛿
+

𝛼2

𝛾
) F5

′ (1,1).                         (50) 

 

Then the average length of a busy cycle is given by 

 

Wc = Wv + Ws + Wb + Wbb + Wdb + Wi + Wbi + Wdi. (51) 

 

The long run fractions of time, the server is in distant states 

are given below:  

• The fraction of time the server is in vacation state 
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Wv

Wc
= Πv =  𝑌𝑁(1)Π0,0,0                      (52) 

 

• The fraction of time the server is in startup state 

 
Ws

Wc
= Πs =   

𝜆1Π0,0,0

𝜃
,                      (53) 

 

• The fraction of time the server is in first phase service 

state 

 
Wb

Wc
= Πb =   

𝜆2𝐵′(1)

𝛽
,                      (54) 

 

• The fraction of time the server is in delay period during 

first phase service state 

 
Wbb

Wc
= Πbb =  

𝛼1

𝛿
F2(1)                    (55) 

 

• The fraction of time the server is in waiting time for 

repair during first phase service state 

 
Wdb

Wc
= Πdb =   

α1

γ
F2(1)                       (56) 

 

• The fraction of time the server is in second phase service 

state 

 

Wi

Wc
= Πi =   

λ2B′(1)

μ
(1+

λ3
λ2

(
α1
δ

+
α1
γ

))F2(1)+
θ

μ
F1

′ (1)

1−
λ 2B′(1)

μ
(1+

λ3
λ2

(
α2
δ

+
α2
γ

))

       (57) 

 

• The fraction of time the server is in delay state during 

second phase service and  

 
Wbi

Wc
= Πbi =

α2

δ
F5(1,1),  and            (58) 

 

• The fraction of time the server is in waiting time for 

repair state during second phase service respectively. 

 
Wdi

Wc
= Πdi =  

α2

γ
F5(1,1)              (59) 

 

• The expected length of vacation period WV =
YN(1)

λ1B′(1)
. 

Substituting this in equation (52), we get WC =
1

λ1𝐵′(1)Π0,0,0
. 

 

 

5. COST FUNCTION AND OPTIMAL OPERATING 

POLICY 

 

System managers are keen on limiting the total expenditure. 

For this reason, we establish the cost function in terms of 

adequate performance measures and interrelated cost 

components to ascertain the optimal threshold parameters. 

Let CA (N) be the average cost per unit of time. Then 

 

𝐶𝐴(N) = ChL(N) + Co (
Wb

Wc
+

Wi

Wc
) + Cm (

Ws

Wc
) +

Cb (
Wbb+Wdb+Wbi+Wdi

Wc
) + Cs (

1

Wc
) − Cr (

Wv

Wc
) (60) 

 

Neglecting the terms independent of N in CA(N), from (61) 

we get the new cost function 

 

T𝐴(N) = (
𝜆1𝐵′(1)

𝜇(1 − 𝜌2)
+ 1) YN

′ (1)Π0,0,0

Ch

𝑘
+ Cm

λ1

θ
Π0,0,0

+ λ1Π0,0,0Cs − CrYN(1)Π0,0,0 

            =  
1

(1−ρ2)
 [(𝜆1𝐵′(1) + 𝜇(1 − 𝜌2))YN

′ (1)
Ch

𝑘
+ 𝜇(1 −

𝜌2) (𝐶𝑚
𝜆1

𝜃
+ 𝜆1𝐶𝑠 − 𝐶𝑟YN(1))] Π0,0,0 

 

= [(𝜆1𝐵′(1) + 𝜇(1 − 𝜌2))YN
′ (1)

Ch

𝑘
+ 𝜇(1

− 𝜌2) (Cm

λ1

θ
+ λ1Cs 

−𝑌𝑁(1)Cr)] (
θ

λ1+θYN(1)
) (1 − 𝜌1 − 𝜌2). (61) 

 

Subsequently for determination of the superior operating N-

policy, minimizing CA(N) in (60) is equivale to minimizing 

T𝐴(N) in (61). 

It is tight to prove that TA(N) is convex but now we 

presented a technique to determine the optimal threshold N*. 

Result 

Utilizing the long run expected average cost criterion, the 

optimal threshold N* is given by  

 

N*=min{k ≥ 1/ (∑ (k − n)yn +
kλ1

θ

k−1
n=0 ) >

λ1

Ch
(

Cm+Cr

θ
+

Cs) (1 − ρ2)}.                               (62) 

 

Proof: Let J(k) = ∑ ym +k
m=1

λ1

θ
  and I(k)=∑ mym

k
m=1 . 

Consider the following difference 

 

ΔTA(k) = TA(k + 1) − TA(k) =
MYk

(1 − ρ2)

H(k)

J(k)J(k − 1)
. 

 

where Δ is the difference operator, and 

 

H(k) = Ch(k J(k) − I(k)) − λ1 (
Cm + Cr

θ
+ Cs) (1 − ρ2) 

 =Ch [∑ (k − n)k−1
n=0 yk +

kλ1

θ
] − λ1 (

Cm+Cr

θ
+ Cs) (1 − ρ2)(63) 

 

By definition, Ch [∑ (k − n)k−1
n=0 yk +

kλ1

θ
] > 0 and  

 
MYk

(1 − ρ2)J(k)J(k − 1)
> 0 

 

Then it follows that ΔTA(k) > 0. 

Thus, the sign of H(k) determines whether TA(N) increases 

or decreases,  

Let m be the first k such that 𝐻(𝑘) > 0, then we have  

 

𝐻(𝑚 + 1) = Ch[(m + 1) J(m + 1) − P(m + 1)]

− 𝜆1 (
Cm + Cr

𝜃
+ Cs) (1 − 𝜌2) 

= H(m)+Ch𝑃(𝑚). 
 

It follows that H(m+1)> H(m). 

Hence for some n>m, we have TA(n) > TA(m). 

Let N*be the optimal value of N, which minimizesTA(N), 

Then from equation (63) we have 
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N*=min{k ≥ 1/ (∑ (k − n)yn +
kλ1

θ

k−1
n=0 ) >

λ1

Ch
(

Cm+Cr

θ
+

Cs) (1 − ρ2)}                              (64) 

 

therefore, the premier threshold of N may be evaluated from 

equation (64), through selecting the pleasant value of k, that is 

one of the integers surrounding ‘N’. 

Also, note that if  
Ch

(
Cm+Cr

𝜃
+Cs)

> 𝜆1(1 − 𝜌2) , the optimal 

threshold N*should be 1. 

To carry out the sensitivity analysis, we assume that the 

arrival batch size follows geometric distribution. Then bk =
P(X = k) = p(1 − p)k−1, 0 < 𝑝 < 1, 𝑘 = 1,2, … 

with probability generating function  B(s) = 1−p
(1−ps)

. E(X) = 

𝐵′(1)= 
1

p
 and E(X(X-1)) =𝐵′′(1)= 

2(1−p)

p2  . Then 

 

𝐿(N) = YN
′ (1)Π0,0,0 +

λ1

p

(λ1 + θYN(1))

θ2
Π0,0,0

+ (1 +
α1

γ
+

α1

δ
) F2

′ (1)

+
λ3

p
(

α1

δ2
+

α1

δγ
+

α1

γ2
) F2(1)

+
λ3

p
(

α2

δ2
+

α2

δγ
+

α2

γ2
) F5(1,1) 

+ (1 +
α2

δ
+

α2

γ
) F5

′ (1,1). 

 

where,                Π0,0,0 = (1 − 𝜌1 − 𝜌2) (
𝜃

𝜆1+𝜃𝑌𝑁(1)
), 

, 𝜌1 =
𝜆2

𝑝𝛽
(1 +

𝜆3

𝜆2
(

𝛼1

𝛾
+

𝛼1

𝛿
)), and 

𝜌2 =
𝜆2

𝑝𝜇
(1 +

𝜆3

𝜆2
(

𝛼2

𝛿
+

𝛼2

𝛾
)). 

 

 

6. SENSITIVITY ANALYSIS 

 

In this section, authorsdemonstrated thenumerical 

illustrations of the model to study the variations in various 

performance measures with respect to some parameters. The 

illustrations presented in ensuing section show the analytical 

outcomes acquired and display a way to reach to a decision.  

The most suitable threshold N*, mean number of jobs inside 

the system and minimal expected cost arediscovered for a 

targeted range of values of λ1, λ2, λ3, μ, β, θ,γ, δ, α1, α2, Ch, Co, 

Cm, Cb, Cr, and Cs. Let us we ussume the λ1=0.1, λ2=0.9, λ3=0.5, 

μ=15, β=25, θ=2,γ=2, δ=1, α1=0.2, α2=0.5, Ch=20, Co=50, 

Cm=35, Cb=40, Cr=30, and Cs=30, and m=3. 

From Table 1, it can be observed that  

(i) N* shows enhancing trend with rise in the values of λ1, 

diminishing trend for increase in λ2, and is no significant with 

increase in the values of 𝜆3, 

(ii) both L(N*) and T(N*) increases with rise in the values 

of λ1,λ2, and𝜆3. 

From Table 2, we can concludeas 

(i) N* shows increasing trend with increase in the values of 

μ, and is insensitive with increase in the values of β and θ. 

(ii) (N*) and T(N∗) decrease for increase in the values of μ 

and β, and decreases slightly with increase in the values of θ. 

 

 

 

Table 1. Influence of (λ1, λ2, λ3) on N∗, L(N*), and T(N∗) 

 

λ1 N* L(N*) T(N*) 

0.1 4 18.62 481.35 

0.2 6 18.68 485.71 

0.3 7 18.71 489.29 

0.4 8 18.77 492.65 

0.5 9 18.87 496.04 

0.6 9 18.89 499.62 

λ2 N* L(N*) T(N*) 

0.9 10 7.61 273.31 

1 10 8.42 291.08 

1.1 10 9.46 312.64 

1.3 9 12.47 375.26 

1.4 9 15.07 424.42 

1.6 8 24.77 609.85 

λ3 N* L(N*) T(N*) 

0.5 9 8.22 282.65 

0.6 9 9.45 307.38 

0.7 9 11.01 338.72 

0.8 9 13 378.64 

0.9 9 15.56 429.81 

1 9 18.87 496.04 

 

Table 2. Influence of (µ, β, θ) on N∗, L(N*), and T(N∗) 
 

μ N* L(N*) T(N*) 

13 8 29.7 708.24 

15 9 18.97 496.04 

17 9 14.18 406.75 

20 9 10.92 342.41 

25 10 8.39 295.54 

30 10 7.21 273.78 

β N* L(N*) T(N*) 

20 9 20.29 526.75 

24 9 19.1 501.09 

28 9 18.39 483.19 

32 9 17.66 469.99 

36 9 17.19 459.87 

40 9 16.82 451.86 

θ N* L(N*) T(N*) 

1.3 9 18.93 496.93 

1.4 9 18.92 496.74 

1.5 9 18.91 496.58 

1.6 9 18.9 496.44 

1.7 9 18.89 496.32 

1.8 9 18.88 496.22 

 

Table 3. Influence of (𝛼1,𝛼2) on N∗, L(N*), and T(N∗) 

 

α1  N* L(N*) T(N*) 

0.1 9 23.48 621.08 

0.2 9 18.87 496.04 

0.3 9 16.55 432.25 

0.4 9 15.16 393.32 

0.5 9 14.24 366.92 

0.6 9 13.6 347.73 

α2 N* L(N*) T(N*) 

0.2 10 9.47 320.97 

0.3 10 11.65 360.1 

0.4 9 14.52 415.18 

0.5 9 18.87 496.04 

0.6 8 25.43 622.1 

0.7 7 36.54 837.68 
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From Table 3, one can conclude as 

(i) N∗ is insensitive with enhance in the values of 𝛼1,and 

shows decreasing trend with increase in the values of 𝛼2, 
(ii) Both L(N*) and T(N*) decrease for rise in the values of 

𝛼1, and 

(iii) with enhance in the values of 𝛼2, both L(N*) and T(N∗) 

increase. 

 

Table 4. Influence of (Cb, Cs, Cm) on N∗, L(N∗), and T(N∗) 

 

Cb N* L(N*) T(N*) 

25 9 18.87 484.78 

30 9 18.87 498.54 

35 9 18.87 492.29 

40 9 18.87 496.04 

45 9 18.87 499.79 

50 9 18.87 503.55 

Cs N* L(N*) T(N*) 

250 7 18.67 486.68 

300 8 18.77 490.06 

400 9 18.87 496.04 

500 10 18.97 501.42 

600 11 19.07 506.34 

700 12 19.17 510.88 

Cm N* L(N*) T(N*) 

25 9 18.87 495.95 

30 9 18.87 495.99 

35 9 18.87 496.04 

40 9 18.87 496.09 

45 9 18.87 496.13 

50 9 18.87 496.17 

 

From Table 4, it is observed that, 

(i) N∗ and L(N*) are insensitive with enhance in the values 

of Cb and Cm, and increases with rise in the values of Cs, and 

(ii) T(N∗)rises for enhance in the values of Cb and Cs, and 

T(N∗) increases slightly with rise in the values of Cm. 

 

Table 5. Influence of (Ch, Co, Cr) on N∗, L(N∗), and T(N∗) 

 

Ch N* L(N*) T(N*) 

15 11 19.07 401.4 

17 10 18.97 439.35 

21 9 18.87 514.91 

23 8 18.77 552.5 

31 7 18.67 702.19 

33 7 18.67 739.53 

Co N* L(N*) T(N*) 

25 9 18.67 460.69 

30 9 18.67 467.76 

35 9 18.67 474.83 

40 9 18.67 481.98 

45 9 18.67 488.97 

50 9 18.67 496.04 

Cr N* L(N*) T(N*) 

15 9 18.87 498.78 

20 9 18.87 498.1 

25 9 18.87 497.41 

30 9 18.87 496.73 

35 9 18.87 496.04 

40 9 18.87 495.36 

 

From Table 5, it observed that,  

(i) N∗and L(N*) show diminishing trend with rise in the 

values of Ch, and are no significant with enhance in the 

values of Co and Cr, and 

(ii) T(N∗)rises with enhance in the values of Ch and Co, and 

diminishes with increase in the values of Cr. 

 

 

7. SUMMARY 

 

In the present paper, we investigated some important 

performance measures of the two-phase MX/M/1 queueing 

system with state-dependent arrival rates, server startup and 

unreliable server. The average cost function per unit time is 

formulated to conclude the best threshold of N. Impact of the 

system parameters on N, mean system size and minimum cost 

are studied via numerical values. This work can be generalized, 

considering the general distributions for the batch size, service 

time, startup time and repair times. 
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