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 A Novel hybrid backstepping interval type-2fuzzy adaptive control (HBT2AC) for 

uncertain discrete-time nonlinear systems is presented in this paper. The systems are 

assumed to be defined with the aid of discrete equations with nonlinear uncertainties which 

are considered as modeling errors and external unknown disturbances, and that the 

observed states are considered disturbed. The adaptive fuzzy type-2 controller is designed, 

where the fuzzy inference approach based on extended single-input rule modules (SIRMs) 

approximate the modeling errors, non-measurable states and adjustable parameters are 

estimated using derived weighted simplified least squares estimators (WSLS). We can 

prove that the states are bounded and the estimation errors stand in the neighborhood of 

zero. The efficiency of the approach is proved by simulation for which the root mean 

squares criteria are used which improves control performance. 
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1. INTRODUCTION 

 

The last decades, backstepping technique concerned with 

strict feedback non-linear systems has been the most important 

research topic, and it goes a long way towards improving their 

overall robustness and stabilization. Based on the Lyapunov 

analysis, the design of feedback control is performed with the 

choice of an appropriate function in each virtual control input. 

Dealing with parametric uncertainties and mismatched 

perturbations of nonlinear systems, the adaptive backstepping 

control (ABC) has been shown to be an effective approach in 

order to guarantee asymptotic stability and much contributes 

to enhance the robustness [1-4]. 

Adaptive backstepping control (ABC) is one of the popular 

design methods for a large class of uncertain nonlinear systems, 

but the problem of “explosion of terms” due to the repeated 

differentiations of the design of the virtual controller causes 

relatively limited applications of the ABC. In this context, the 

authors [5] used the tuning function technique to alleviate this 

drawback. However, in practical problems, it is almost 

difficult to determine the upper limits of the most nonlinear 

uncertainties. Similarly, in the semi-strict feedback nonlinear 

system, the dynamic surface control procedure has been also 

used with much less complicated terms. However, the 

proposed techniques suffer from the measurement 

uncertainties whose are often nonlinear and immeasurable, 

and they are limited to SISO nonlinear systems [5-7]. 

In realistic applications, most systems are complicated and 

non-linear, which their characteristics can change with time. 

Due to the nonlinearity, it is difficult to formulate an accurate 

mathematical model. Therefore, to improve the behavior of 

adaptive controllers through identifying the unknown 

nonlinear functions, intelligent approaches such as, artificial 

neural networks and fuzzy logic [8-11] have been addressed.  

Adaptive fuzzy control is mainly categorized into two 

classes, direct adaptive fuzzy control that its parameters are 

regulated via the adaptation mechanism [10], while indirect 

adaptive fuzzy control that its parameters are regulated via the 

estimated plant based on fuzzy system [11]. In addition, based 

on the (T-S) models for approximating uncertain nonlinear 

system in the fuzzy IF-THEN rules, the design of an adaptive 

fuzzy feedback controller for uncertain nonlinear systems has 

been reported [1]. However, the designed controller had been 

developed without considering its unobtainable states and 

noisy output measurements. Under the aforementioned 

operating restriction, a nonlinear state observer should be 

proposed to estimate the immeasurable system states for 

generating the control signal [12]. Based on the combining of 

FLC with another control technique, various works were 

carried out to further demonstrate the enhancement to the 

control performance including non-linear parametric 

uncertainties and external disturbances [8, 9, 13].  

However, the designed controller had been developed 

without considering its unobtainable states and noisy output 

measurements. Under the aforementioned operating restriction, 

a nonlinear state observer should be proposed to estimate the 

immeasurable system states for generating the control signal 

[12]. Then, by using a large number of IF-THEN rules to 

satisfy the approximation accuracy requirement; a heavy 

computational burden is inevitably caused, so that the system 

performance is deteriorated. Therefore, to avoid the so-called 

“curse of dimensionality”, the single input rule modules have 

been constructed in various applications. In addition, the 

SIRMs model which has a simple structure can relatively 

reduce the number of IF-THEN inference rules and the 

adjusted parameters [12]. Consequently, to further improve the 
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traditional SIRMs model because of its performance is still 

limited to deal with high levels of nonlinear uncertainties, an 

interval type-2 fuzzy logic system (IT2FLS) has been 

incorporated to replace the ordinary type-1 fuzzy sets [14]. A 

novel hybrid interval type-2 fuzzy adaptive backstepping 

control is developed for a class of discrete-time systems with 

non-linear uncertainties. 

To the best of the authors’ knowledge, most research works 

have only involved uncertain continuous systems without 

considering the almost unobtainable states. With the 

aforementioned motivations, by designing state-observers and 

using the universal approximators [15]. 

The work is organized as follows. In section 2, we present a 

nonlinear system described by discrete-time equations with 

nonlinear uncertainties for which the mathematical models are 

unknown. A description of the adaptive backstepping control 

is given in section 3. Section 4 presents the Interval type-2 

fuzzy backstepping design. Finally, the application of the 

proposed method and the simulation results and conclusion are 

presented in Section 5 and 6.  

 

 

2. UNCERTAIN NONLINEAR SYSTEMS 

 

Let's consider a class of discrete-time uncertain nonlinear 

systems with modeling errors and unknown external 

disturbances. we can express the discrete-time uncertain 

nonlinear systems as:  

 

𝑥𝑖(𝑘 + 1) = 𝑐𝑖𝑥𝑖+1(𝑘) + 𝜑𝑖(�̅�𝑖, 𝑘) 𝑓𝑜𝑟 1 ≤ 𝑖
≤ 𝑛 − 1 

𝑥𝑛(𝑘 + 1) = 𝑐𝑛𝑢(𝑘) + 𝜑𝑛(𝐱, 𝑘) 

(1) 

 

the state vector is 𝐱(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘),⋯ , 𝑥𝑛(𝑘)]𝑇 ∈ ℝ𝑛 in 

the Eq. (1), where the sub-state vector is given by �̅�𝑖(𝑘) =
[𝑥1(𝑘), 𝑥2(𝑘),⋯ , 𝑥𝑖(𝑘)]𝑇 ∈ ℝ𝑖(1 ≤ 𝑖 ≤ 𝑛 − 1)  with initial 

conditions 𝐱(0) = 𝐱0 et  is the control �̅�𝑖(0) = �̅�𝑖0(1 ≤ 𝑖 ≤
𝑛 − 1), 𝑢(𝑘) ∈ ℝ signal, and the nonlinear uncertainty 

𝜑𝑖(�̅�𝑖, 𝑘) ∈ ℝ, 𝑖 = 1,2, … , 𝑛 , which is a combination of the 

modeling error 𝑚𝑖(�̅�𝑖) ∈ ℝ  and the unknown external 

disturbance 𝑑𝑖(𝑘) ∈ ℝ which is given by: 

 

|𝜑𝑖(�̅�𝑖 , 𝑘)| = |𝑚𝑖(�̅�𝑖) + 𝑑𝑖(𝑘)|
≤ |𝑚𝑖(�̅�𝑖)| + |𝑑𝑖(𝑘)|, 𝑖
= 1,2, … , 𝑛 ≤ 𝑚𝑖𝑚𝑎𝑥 ∥ �̅�𝑖

∥ +𝑑𝑖𝑚𝑎𝑥 

(2) 

 

where, 𝑚𝑖𝑚𝑎𝑥 and 𝑑𝑖𝑚𝑎𝑥 , 𝑖 = 1,2, … , 𝑛 are positive constants. 

The coefficient 𝑐𝑖(𝑐𝑖 ≠ 0), 𝑖 = 1,2, … , 𝑛  is supposed to be 

known constants. 

A measurement noises affect the observed states as follows: 

 

𝑦𝑖(𝑘) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘), 𝑖 = 1,2, … , 𝑛 (3) 

 

where, 𝑦𝑖(𝑘) ∈ 𝑅  is the measure, and 𝑣𝑖(𝑘) ∈ 𝑅  is the 

measurement noise. 

 

 

3. ADAPTIVE BACKSTEPPING CONTROL DESIGN 

 

3.1 Interval type-2 fuzzy adaptive control 

 

To solve the problem of 𝜑1(x1, 𝑘)and 𝜑2(x1, x2, 𝑘) , we 

approximate them by a two-interval type-2 fuzzy adaptive 

systems. A fuzzy system that uses fuzzy type 2 sets and 

inference is a fuzzy type 2 system [10-16]. Type-1 fuzzy set 

has a crisp membership degree, while type-2 fuzzy set (T2FS) 

has a fuzzy membership degree. So, type-2 fuzzy systems are 

"fuzzy-fuzzy" sets that allow better management of 

uncertainties. One way to represent fuzzy membership of 

fuzzy sets is using the uncertainty footprint (FOU), which is a 

2-D mapping, with uncertainties on the left side of the 

membership function and also on the right side of the 

membership function. 

Operations of a type-2 fuzzy sets are the same as the 

operations of a type-1 fuzzy sets, but a type-2 fuzzy system is 

an interval fuzzy system where the fuzzy operations are 

performed as two type-1 membership functions, lower 

membership function (LMF) and upper membership function 

(UMF) which produce a firing strength [17]. The process of 

mapping a fuzzy logic control action to a non-fuzzy control 

action (crisp) is called defuzzification. 

A type-2 fuzzy set consists of a two membership functions: 

primary and secondary. The membership function is a function 

and not a simple value for each value of the primary variable. 

Since FOU is not a single point but an interval, the type-2 

fuzzy controller can also be referred to as the interval type-2 

fuzzy controller. It gives a three-dimensional effect when 

taking their FOU on a range or an interval. An interval type-2 

fuzzy logic-controlled system, has the following architecture: 

fuzzifier, rule base, fuzzy inference engine, type-reducer and 

defuzzifier. Type-2 fuzzy systems have been used for 

modeling and controlling nonlinear systems due to their 

inherent abilities to approximate nonlinear functions to 

prescribed accuracies. Based on the universal approximation 

theorem [15], unknown functions 𝜑1(x1, 𝑘)  and 

𝜑2(x1, x2, 𝑘)can be approximated by: 

 

�̂�1(x̂1, 𝑘\𝜃1) = 𝜃1
𝑇𝜉1(x̂1) 

�̂�1(x̂1, x̂2, 𝑘\𝜃2) = 𝜃2
𝑇𝜉2(x̂1, x̂2) 

 

 

where: θ1 = [θ11, θ12, θ13, θ𝑑1]
T and θ2 =

[θ211, θ212, θ213, θ222, θ223, θ𝑑2]
T are respectively, sets of 

adjustable parameter vector, ξ1(x̂1) =
[ξ11(x̂1), ξ12(x̂1), ξ13(x̂1), 1]T  and ξ2(x̂1, x̂2) =
[ξ211(x̂1), ξ212(x̂1), ξ213(x̂1), ξ221(x̂1),ξ222(x̂1), ξ223(x̂1), 1]T

are the vector of fuzzy basis functions (FBF), such that: 

 

θ1
𝑇ξ1(x̂1) =

1

2
[ξ1r

T ξ1𝑙
T ][θ1r

T θ1𝑙
T ] 

θ2
𝑇ξ2(x̂1, x̂2) =

1

2
[ξ2r

T ξ2𝑙
T ][θ2r

T θ2𝑙
T ] 

 

 

where: ξ𝑙 = [ξ𝑙
1, ξ𝑙

2, … , ξ𝑙
m]T , ξ𝑟 = [ξ𝑟

1, ξ𝑟
2, … , ξ𝑟

m]T , θ𝑟 =
[θ1𝑟 , θ2𝑟 , … , θ𝑚𝑟] and θ𝑙 = [θ1𝑙 , θ2𝑙 , … , θ𝑚𝑙].  

This yields the minimum approximation error: 

 

𝜀1(𝑘) = 𝜑1(x1, 𝑘) − θ1
T(𝑘)ξ1(𝑘)(x̂1) 

𝜀2(𝑘) = 𝜑2(x1, x2, 𝑘) − θ2
T(𝑘)ξ2(𝑘)(x̂1, x̂2) 

 

 

3.2 Fuzzy inference approach 

 

Let 𝑥𝑖 , 𝑖 = 1,2, … , 𝑛 and 𝑦 are, respectively, the input and 

the output, the IF-THEN fuzzy rules are given by:  

 

𝑅𝑗 : 𝐼𝐹𝑥1𝑖𝑠𝐴1
𝑗
. . . 𝑥𝑖𝑖𝑠𝐴𝑖

𝑗
. . . 𝑥𝑛𝑖𝑠𝐴𝑛

𝑗
𝑇𝐻𝐸𝑁𝑦𝑖𝑠𝐵𝑗

𝑗 = 1,2, … , 𝑝
 (4) 
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where, 𝑅𝑗  is the 𝑗𝑡ℎ  fuzzy rule IF-THEN, and 𝐴𝑖
𝑗
 and 𝐵𝑖

𝑗
 are 

the fuzzy sets with 𝜇𝐴𝑖
𝑗

(𝑥𝑖)  and 𝜇𝐵
𝑗
(𝑥𝑖)  as membership 

functions respectively. Fuzzy inference engine performs a 

mapping of fuzzy sets in 𝐑𝑛 into the fuzzy set in 𝐑on the basis 

of the IF-THEN fuzzy rules given in Eq. (4). However, since 

the number of IF-THEN fuzzy rules must be large to enhance 

the precision of the approximation, consequently, the 

adjustable parameters number will increase exponentially as 

the number of IF-THEN fuzzy rules increases. Then, the 

control performance is degraded due to the heavy 

computational load and increases the operating costs. As a 

result, a fuzzy inference approach based on the extended 

SIRMs to reduce the computational load is used [18]. 

Denoting 𝑥𝑖 , 𝑖 = 1,2, … , 𝑛  and 𝑦𝑖 , 𝑖 = 1,2, … , 𝑛  are 

respectively the input and the output, the IF-THEN fuzzy rules 

based on extended single input rule modules are described as 

follows:  

 

𝑅1
𝑗
: 𝐼𝐹𝑥1𝑖𝑠𝐴1

𝑗
𝑇𝐻𝐸𝑁𝑦1𝑖𝑠𝐵1

𝑗
, 𝑗 = 1,2, … , 𝑟

⋮

𝑅𝑖
𝑗
: 𝐼𝐹𝑥𝑖𝑖𝑠𝐴𝑖

𝑗
𝑇𝐻𝐸𝑁𝑦𝑖𝑖𝑠𝐵𝑖

𝑗
, 𝑗 = 1,2, … , 𝑟

⋮

𝑅𝑛
𝑗
: 𝐼𝐹𝑥𝑛𝑖𝑠𝐴𝑛

𝑗
𝑇𝐻𝐸𝑁𝑦𝑛𝑖𝑠𝐵𝑛

𝑗
, 𝑗 = 1,2, … , 𝑟

 (5) 

 

where, 𝐴𝑖
𝑗

 and 𝐵𝑖
𝑗

 are the fuzzy sets whose membership 

functions are respectively 𝜇𝐴𝑖
𝑗

(𝑥𝑖), and 𝜇𝐵𝑖
𝑗

(𝑥𝑖). By means of 

singleton fuzzification strategy, defuzzification by center of 

gravity and product inference, the fuzzy system output is given 

as follows:  

 

𝑦 = ∑

𝑛

𝑖=1

𝜃𝑖
𝑇𝜉𝑖(𝐱𝑖) = 𝜃𝑇𝜉(𝐱) (6) 

 

where, 

 

𝜃 = [𝜃1
𝑇 , … , 𝜃𝑖

𝑇 , . . . , 𝜃𝑛
𝑇]𝑇 ∈ 𝐑𝑠  

 

𝜉(𝐱) = [𝜉1
𝑇(𝑥1), … , 𝜉𝑖

𝑇(𝑥𝑖), … , 𝜉𝑛
𝑇(𝑥𝑛)]𝑇 ∈ 𝐑𝑠  

 

are, sets of the adjustable parameters vector of 𝜃𝑖 and the fuzzy 

basis function vector 𝜉𝑖(𝑥𝑖), respectively, where: 

 

𝜃𝑖 = [𝜃𝑖1, … , 𝜃𝑖𝑗 , … , 𝜃𝑖𝑟]
𝑇 ∈ 𝐑𝑟  

 

𝜉𝑖(𝑥𝑖) = [𝜉𝑖1(𝑥𝑖), … , 𝜉𝑖𝑗(𝑥𝑖), … , 𝜉𝑖𝑟(𝑥𝑖)]
𝑇 ∈ 𝐑𝑟   

 

with the 𝑗 𝑡ℎ  column 𝜉𝑖𝑗(𝑥𝑖) of 𝜉𝑖(𝑥𝑖) given as follows:  

 

𝜉𝑖𝑗(𝑥𝑖) =
𝜇𝐴𝑖

𝑗
(𝑥𝑖)

∑𝑟
𝑗=1 𝜇𝐴𝑖

𝑗
(𝑥𝑖)

, 𝑗 = 1,2, … , 𝑟 (7) 

 

A fuzzy system is given by the Eq. (6) which approximate 

𝑦  as 𝜃𝑇𝜉(𝑥)  on a compact set 𝑈  based on the universal 

approximation theorem to an arbitrary precision [15]. 

 

3.3 Fuzzy inference approach based on extended single-

input rule modules 

 

Based on the extended single input rule modules, using the 

IF-THEN fuzzy rules, the modeling error 𝑚𝑖(𝐱𝑖) is estimated 

as �̂�𝑖(𝐱𝑖|𝛉𝐢) , where 𝐱𝑖(𝑘)  is the estimate of 𝐱𝑖(𝑘).  Let 

�̂�𝑙(𝑘), 𝑙 = 1,2, … , 𝑖, for the input and for the output �̂�𝑖(𝐱𝑖|𝛉𝐢), 

The fuzzy rules IF-THEN based on extended single input rule 

modules are given as follows:  

 

𝑅1
𝑗
: 𝐼𝐹�̂�1(𝑘)𝑖𝑠𝐴1

𝑗
𝑇𝐻𝐸𝑁�̂�𝑖(�̂̅�𝑖|𝜃𝑖1)𝑖𝑠𝐵1

𝑗
, 𝑗 = 1,2,… , 𝑟

        ⋮

𝑅𝑙
𝑗
: 𝐼𝐹�̂�𝑙(𝑘)𝑖𝑠𝐴𝑙

𝑗
𝑇𝐻𝐸𝑁�̂�𝑖(�̂̅�𝑖|𝜃𝑖𝑙)𝑖𝑠𝐵𝑙

𝑗
, 𝑗 = 1,2,… , 𝑟

        ⋮

𝑅𝑖
𝑗
: 𝐼𝐹�̂�𝑖(𝑘)𝑖𝑠𝐴𝑖

𝑗
𝑇𝐻𝐸𝑁�̂�𝑖(�̂̅�𝑖|𝜃𝑖𝑖)𝑖𝑠𝐵𝑖

𝑗
, 𝑗 = 1,2, … , 𝑟

 (8) 

 

where, 𝐴𝑙
𝑗
 and 𝐵𝑙

𝑗
 are a fuzzy sets with membership functions 

are, 𝜇𝐴𝑙
𝑗

[�̂�𝑙(𝑘)] and 𝜇𝐵𝑙
𝑗 [�̂�𝑖(𝑥𝑖|𝜃𝑖)], respectively. By means of 

the singleton fuzzification strategy, center of gravity 

defuzzification, and product inference, the output is given by:  

 

�̂�𝑖(�̂̅�𝑖|𝜃𝑖) = 𝜃𝑖
𝑇𝜉𝑖(�̂̅�𝑖) (9) 

 

where, 

 

𝜃𝑖 = [𝜃𝑖1
𝑇 , … , 𝜃𝑖𝑙

𝑇 , … , 𝜃𝑖𝑖
𝑇]𝑇 ∈ 𝐑(𝑖×𝑟)  

 

𝜉𝑖(�̂̅�𝑖) = [𝜉𝑖1
𝑇 (�̂�1), … , 𝜉𝑖𝑙

𝑇(�̂�𝑙), … , 𝜉𝑖𝑖
𝑇(�̂�𝑖)]

𝑇 ∈ 𝐑(𝑖×𝑟)  

 

are the sets of adjustable parameter vectors and fuzzy basis 

function vectors, respectively, with 𝜉𝑖𝑙𝑗(�̂�𝑙) of 𝜉𝑖𝑙(�̂�𝑙) given as 

[19]: 

 

𝜉𝑖𝑙𝑗(�̂�𝑙) =
𝜇𝐴𝑙

𝑗
(�̂�𝑙)

∑𝑟
𝑗=1 𝜇𝐴𝑙

𝑗
(�̂�𝑙)

, 𝑗 = 1,2, … , 𝑟 (10) 

 

Because the external unknown disturbance 𝑑𝑖(𝑘)  is 

supposed as a time function, we can include it in 𝜃𝑖  and 𝜉𝑖(�̂̅�𝑖), 

respectively, in the Eq. (9), then: 

 

𝜃𝑖 = [𝜃𝑖1
𝑇 , … , 𝜃𝑖𝑙

𝑇 , … , 𝜃𝑖𝑖
𝑇 , 𝜃𝑖𝑑]𝑇 ∈ 𝐑(𝑖×𝑟+1)  

 

𝜉𝑖(�̂̅�𝑖) = [𝜉𝑖1
𝑇 (�̂�1), … , 𝜉𝑖𝑙

𝑇(�̂�𝑙), … , 𝜉𝑖𝑖
𝑇(�̂�𝑖),1]𝑇

∈ 𝐑(𝑖×𝑟+1) 
 

 

where, 𝜃𝑖𝑑 and 1 denote 𝑑𝑖(𝑘) = 𝜃𝑖𝑑 × 1. Then the Eq. (9) is 

rewritten as: 

 

�̂�𝑖(�̂̅�𝑖 , 𝑘|𝜃𝑖) = 𝜃𝑖
𝑇𝜉𝑖(�̂̅�𝑖) (11) 

 

 

4. INTERVAL TYPE-2 FUZZY BACKSTEPPING 

DESIGN  

 

An adaptive fuzzy backstepping controller (AFBC) 

𝑢𝑎𝑓𝑏(𝑘) is designed, 𝜑𝑖(�̅�𝑖 , 𝑘)  is approximated based on 

�̂�𝑖(�̂̅�, 𝑘|𝜃𝑖
∗) using a type-2 fuzzy inference approach which is 

based on extended single-input rule modules, where 𝜃𝑖
∗ is the 

optimal parameter vector defined as follows [14, 20]. 

where, Ω𝑖 , 𝑈𝑖  and 𝑉𝑖  are respectively, suitable compact sets. 

Since 𝜃𝑖
∗  is an artificial quantity required for an analytical 

purpose, it is treated as an unknown vector, but it is designated 

as the reference of 𝜃𝑖. By defining the universal approximation 

error 𝜀𝑖(𝑘)  and the vector of estimation error �̃�𝑖(𝑘) , 

respectively, as [𝜑𝑖(�̅�𝑖 , 𝑘) − �̂�𝑖(�̂̅�𝑖 , 𝑘|𝜃𝑖
∗)]  and [𝑥𝑖(𝑘) −
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�̂�𝑖(𝑘)], the adaptive fuzzy backstepping control (AFBC) is 

proposed as follows [21, 22]: 

 

𝜃𝑖
∗ = argmin

𝜃𝑖∈Ω𝑖

[ sup
�̅�𝑖∈𝑈𝑖,�̅̂�𝑖∈𝑉𝑖

|𝜑𝑖(�̅�𝑖 , 𝑘) − �̂�𝑖(�̂̅�𝑖, 𝑘|𝜃𝑖)|],

𝑖 = 1,2, . . . , 𝑛
 (12) 

 

4.1 Step 1:(𝒊 = 𝟏) 

 

Let’s define 𝑒1(𝑘) = 𝑥1(𝑘) in Eq. (1) for 𝑖 = 1, 𝑥2𝑑(𝑘) is 

the virtual control given by: 

 

�̂�2𝑑(𝑘) =
1

𝑐1

[𝑘1�̂�1(𝑘) − �̂�1(�̂̅�1, 𝑘|𝜃1
∗)] (13) 

 

where, �̂�1(𝑘) is the estimate for 𝑒1(𝑘), and �̂�1𝑑(𝑘) = 0. By 

substituting the Eq. (13) in the Eq. (1) for 𝑖 = 1 becomes: 

 

𝑒1(𝑘 + 1) = 𝑘1𝑒1(𝑘) + 𝑐1𝑒2(𝑘) − 𝑘1�̃�1(𝑘) + 𝜀1(𝑘) (14) 

 

4.2 Step i: (𝟐 ≤ 𝒊 ≤ 𝒏 − 𝟏) 

 

Let’s define 𝑒𝑖(𝑘 + 1) = 𝑥𝑖(𝑘 + 1) − �̂�𝑖𝑑(𝑘 + 1)  and 

substituting it in (1) for (2 ≤ 𝑖 ≤ 𝑛 − 1) gives: 

 

𝑒𝑖(𝑘 + 1) = 𝑐𝑖𝑥𝑖+1(𝑘) + 𝜑𝑖(�̅�𝑖 , 𝑘) − �̂�𝑖𝑑(𝑘 + 1) (15) 

 

Then, the virtual control �̂�(𝑖+1)𝑑(𝑘) is  

 

�̂�(𝑖+1)𝑑(𝑘) =
1

𝑐𝑖

[𝑘𝑖�̂�𝑖(𝑘) − �̂�𝑖(�̂̅�𝑖 , 𝑘|𝜃𝑖
∗) + �̂�𝑖𝑑(𝑘

+ 1)] 
(16) 

 

where, �̂�𝑖(𝑘) is the estimate of 𝑒𝑖(𝑘). The substitution of the 

Eq. (16) in (15) provides  

 

𝑒𝑖(𝑘 + 1) = 𝑘𝑖𝑒𝑖(𝑘) + 𝑐𝑖𝑒𝑖+1(𝑘) 

−𝑘𝑖�̃�𝑖(𝑘) + 𝜀𝑖(𝑘) 
(17) 

 

4.3 Step n: 

 

Let’s define 𝑒𝑛(𝑘 + 1) = 𝑥𝑛(𝑘 + 1) − �̂�𝑛𝑑(𝑘 + 1) , The 

Eq. (1) for 𝑖 = 𝑛 is as follows:  

 

𝑒𝑛(𝑘 + 1) = 𝑐𝑛𝑢(𝑘) + 𝜑𝑛(𝐱, 𝑘) − �̂�𝑛𝑑(𝑘 + 1) (18) 

 

Then, the control 𝑢𝑎𝑓𝑏(𝑘) is: 

 

𝑢𝑎𝑓𝑏(𝑘) =
1

𝑐𝑛

[𝑘𝑛�̂�𝑛(𝑘) − �̂�𝑛(�̂�, 𝑘|𝜃𝑛
∗)

+ �̂�𝑛𝑑(𝑘 + 1)] 
(19) 

 

where, �̂�𝑛(𝑘) is the estimate of 𝑒𝑛(𝑘). The substitution of the 

Eq. (19) in the Eq. (18) provides: 

 

𝑒𝑛(𝑘 + 1) = 𝑘𝑛𝑒𝑛(𝑘) − 𝑘𝑛�̃�𝑛(𝑘) + 𝜀𝑛(𝑘) (20) 

 

Let’s define the state vector 𝐞(𝑘) =
[𝑒1(𝑘), 𝑒2(𝑘), … , 𝑒𝑛(𝑘)]𝑇 ∈ 𝐑𝑛 , the state equation is 

expressed as follows:  

 

𝐞(𝑘 + 1) = 𝐅𝑒𝐞(𝑘) − 𝐅𝑥�̃�(𝑘) + 𝛆(𝑘) (21) 

 

where, �̃�(𝑘) ∈ 𝐑𝑛 is the vector of the estimation error, 𝜀(𝑘) ∈
𝐑𝑛 is the vector of the universal approximation error, and 𝐅𝑒 ∈
𝐑𝑛×𝑛  and 𝐅𝑥 ∈ 𝐑𝑛×𝑛  are matrices which are constants, 

respectively, defined as: 

 

�̃�(𝑘) = [�̃�1(𝑘), �̃�2(𝑘), … , �̃�𝑛(𝑘)]𝑇  

 

𝜀(𝑘) = [𝜀1(𝑘), 𝜀2(𝑘), … , 𝜀𝑛(𝑘)]𝑇  

 

𝐅𝑒 =

[
 
 
 
 
𝑘1 𝑐1 0 … 0
0 𝑘2 𝑐2 0 ⋮
⋮ 0 ⋱ ⋱ 0
⋮ ⋮ ⋱ ⋱ 𝑐𝑛−1

0 0 𝑘𝑛 ]
 
 
 
 

,  

 

𝐅𝑥 =

[
 
 
 
 
𝑘1 0 … … 0
0 𝑘2 0 … ⋮
⋮ 0 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0
0 0 𝑘𝑛]

 
 
 
 

  

 

Theorem 1: Subject to the proposed control 𝑢𝑎𝑓𝑏(𝑘), 𝑒(𝑘) 

given in Eq. (21) is bounded, if 𝐅𝑒 is stable, and the terms in 

second and third of the second side of the Eq. (21) are bounded. 

Therefore, to obtain a simplified control �̅�𝑎𝑓𝑏(𝑘), an approach 

is presented as follows. Let’s Consider Eqns. (13) and (16), 

�̂�𝑖𝑑(𝑘 + 1)  and �̂�𝑛𝑑(𝑘 + 1)  in the Eqns. (16) and (19) are 

approximately given as: 

 

�̂�𝑖𝑑(𝑘 + 1) = (1 − 𝜆𝑖)�̂�𝑖𝑑(𝑘) + 𝜆𝑖[𝑘𝑖−1�̂�𝑖−1(𝑘)
− �̂�𝑖−1(�̂̅�𝑖−1, 𝑘|𝜃𝑖−1

∗ )] 
(22) 

 

�̂�𝑛𝑑(𝑘 + 1) = 1 − 𝜆𝑛)�̂�𝑛𝑑(𝑘) + 𝜆𝑛[𝑘𝑛−1�̂�𝑛−1(𝑘)
− �̂�𝑛−1(�̂̅�𝑛−1, 𝑘|𝜃𝑛−1

∗ )] 
(23) 

 

For the Eqns. (22) and (23), 𝜆𝑖 < 1, 𝑖 = 2,3, … , 𝑛 , is a 

positive constant. If we substitute the Eqns. (22) and (23) in 

the Eqns. (16) and (19), respectively, it provides: 

 

�̂�(𝑖+1)𝑑(𝑘) =
1

𝑐𝑖
[𝑘𝑖 �̂�𝑖(𝑘) − �̂�𝑖(�̂̅�𝑖 , 𝑘|𝜃𝑖

∗) + 𝜆𝑖𝑘𝑖−1�̂�𝑖−1(𝑘)

−𝜆𝑖�̂�𝑖−1(�̂̅�𝑖−1, 𝑘|𝜃𝑖−1
∗ ) + (1 − 𝜆𝑖)�̂�𝑖𝑑(𝑘)]

=
1

𝑐𝑖
[𝑘𝑖 �̂�𝑖(𝑘) + 𝜆𝑖𝑘𝑖−1�̂�𝑖−1(𝑘) − �̂�𝑖(�̂̅�𝑖 , 𝑘|𝜃𝑖

∗)

−𝜆𝑖�̂�𝑖−1(�̂̅�𝑖−1, 𝑘|𝜃𝑖−1
∗ ) − 𝜆𝑖𝑘𝑖−1�̂�(𝑖−1)𝑑(𝑘)

  +(1 − 𝑘𝑖 − 𝜆𝑖)�̂�𝑖𝑑(𝑘)]             

 (24) 

 

�̅�𝑎𝑓𝑏(𝑘) =
1

𝑐𝑛
[𝑘𝑛�̂�𝑛(𝑘) − �̂�𝑛(�̂�, 𝑘|𝜃𝑛

∗) + 𝜆𝑛𝑘𝑛−1�̂�𝑛−1(𝑘)

−𝜆𝑛�̂�𝑛−1(�̂̅�𝑛−1, 𝑘|𝜃𝑛−1
∗ ) + (1 − 𝜆𝑛)�̂�𝑛𝑑(𝑘)]

=
1

𝑐𝑛
[𝑘𝑛�̂�𝑛(𝑘) + 𝜆𝑛𝑘𝑛−1�̂�𝑛−1(𝑘) − �̂�𝑛(�̂�, 𝑘|𝜃𝑛

∗)

−𝜆𝑛�̂�𝑛−1(�̂̅�𝑛−1, 𝑘|𝜃𝑛−1
∗ ) − 𝜆𝑛𝑘𝑛−1�̂�(𝑛−1)𝑑(𝑘)

  +(1 − 𝑘𝑛 − 𝜆𝑛)�̂�𝑛𝑑(𝑘)]              

 (25) 

 

The repeated execution of the recursive relation (24), for 

𝑖 = 2,3, … , 𝑛 − 1 , �̂�(𝑛−1)𝑑(𝑘)  and �̂�𝑛𝑑(𝑘)  are obtained with 

the initial condition given by: 
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�̂�1𝑑(𝑘) = 0, �̂�2𝑑(𝑘) =
1

𝑐1

[𝑘1�̂�1(𝑘) − 𝛗𝑖(�̂̅�1, 𝑘|𝜃𝑖
∗)]  

 

By substituting �̂�(𝑛−1)𝑑(𝑘) and �̂�𝑛𝑑(𝑘) in the Eq. (25), we 

obtain �̅�𝑎𝑓𝑏(𝑘). 

 

4.4 Least squares estimators 

 

The state equation, based on the Eq. (1), is defined as: 

 

𝐱(𝑘 + 1) = 𝐅𝐱(𝑘) + �̂�(�̂�, 𝑘|𝜃∗) 

+𝐠�̅�𝑎𝑓𝑏(𝑘) + 𝛆(𝑘) 
(26) 

 

where, 𝐱(𝑘) ∈ 𝐑𝑛 , �̂�(�̂�, 𝑘|𝜃∗) ∈ 𝐑𝑛 , 𝐅 ∈ 𝐑𝑛×𝑛 , and 𝐠 ∈ 𝐑𝑛 

are, respectively, defined as: 

 

�̂�(�̂�, 𝑘|𝜃∗)
= [�̂�1(�̂�1, 𝑘|𝜃1

∗), �̂�2(�̂�2, 𝑘|𝜃2
∗), . . . , �̂�𝑛(�̂�, 𝑘|𝜃𝑛

∗)]𝑇 
 

 

𝐅 =

[
 
 
 
 
0 𝑐1 0 ⋯ 0
⋮ 0 𝑐2 0 ⋮
⋮ ⋮ 0 ⋱ 0
⋮ ⋮ ⋮ ⋱ 𝑐𝑛−1

0 ⋯ ⋯ ⋯ 0 ]
 
 
 
 

,  

 

𝐠 = [0, 0, ⋯ , 0, 𝑐𝑛]𝑇  

 

Using the Eq. (11), the Eq. (26) provides  

 

𝐱(𝑘 + 1) = 𝐅𝐱(𝑘) + 𝐅𝛗(�̂�, 𝑘)𝜃∗ 

+ 𝐠�̅�𝑎𝑓𝑏(𝑘) + 𝛆(𝑘) 
(27) 

 

where, 𝐅𝛗(�̂�, 𝑘) ∈ 𝐑𝑛×𝑠 and 𝜀(𝑘) are, respectively, expressed 

as: 

 

𝐅𝛗𝐅(�̂�, 𝑘) =

[
 
 
 
 
𝜉1(�̂̅�1) 0 ⋯ ⋯ 0

0 𝜉2(�̂̅�2) 0 ⋯ ⋮
⋮ 0 ⋱ ⋱ ⋮
⋮ ⋮ ⋮ ⋱ 0
0 ⋯ ⋯ 0 𝜉𝑛(�̂�)]

 
 
 
 

  

 

𝛆(𝑘) = 𝜑(𝐱, 𝑘) − 𝐅𝜑(�̂�, 𝑘)𝜃∗ (28) 

 

By designing the WLSE and SWLSE to involve estimates 

of non-measurable states and adjustable parameters, a set 

measurement of noises is used. We can see that under the idea 

that nonlinearity is negligible, the performance of the least 

squares estimator in estimating unmeasurable states and 

uncertainties has been improved, and nonlinearity can usually 

obtain sufficient information from the measurement equation. 

However, sometimes there will be such an impression that 

because the nonlinear high-order terms are not negligible, the 

estimation error will be greatly reduced or diverged. As a 

method to enhance the degradation and difference of 

estimation errors, WLSE [12, 18] is proposed, which is 

obtained by putting higher weight on newer output 

information. In the design of WLSE, the extended state 

equation is given by the following formula: 

 

𝐱𝑎(𝑘 + 1) = Φ(�̂�𝑎, 𝑘)𝐱𝑎(𝑘) + 𝐠𝑎�̅�𝑎𝑓𝑏(𝑘) + 𝛆𝑎(𝑘) (29) 

 

where, 𝐱𝑎(𝑘) ∈ 𝐑𝑛+𝑠  is the augmented state vector, 

Φ(�̂�𝑎 , 𝑘) ∈ 𝐑(𝑛+𝑠)×(𝑛+𝑠)  is the transition matrix, and 𝐠𝑎 ∈

𝐑𝑛+𝑠 is the driving matrix, defined as, respectively:  

 

𝐱𝑎(𝑘) = [
𝐱(𝑘)
𝜃∗ ] ,Φ(�̂�𝑎, 𝑘) = [

𝐅 𝐅𝛗(�̂�, 𝑘)

𝟎 𝐈
] 

g𝑎 = [
g
0
] , ε𝑎(𝑘) = [

𝜀(𝑘)
0

] 
 

 

While the augmented measurement equations come from 

Eq. (4) given by: 

 

𝐲(𝑘) = 𝐇𝑎𝐱𝑎(𝑘) + 𝐯(𝑘) (30) 

 

where, 𝐲(𝑘) ∈ 𝐑𝑛 , 𝐯(𝑘) ∈ 𝐑𝑛  and 𝐇𝑎 ∈ 𝐑𝑛×(𝑛+𝑠)  are, 

respectively, defined as:  

 

𝐲(𝑘) = [𝑦1(𝑘), 𝑦2(𝑘), … , 𝑦𝑛(𝑘)]𝑇  

 

𝐯(𝑘) = [𝑣1(𝑘), 𝑣2(𝑘), … , 𝑣𝑛(𝑘)]𝑇  

 

𝐇𝑎 = [𝐈𝟎]  

 

Assume that the measurement to require the estimate �̂�𝑎(𝑘) 

for 𝐱𝑎(𝑘),in the design of the WLSE is given by: 

 

𝐽𝑒 = ∑

𝑘+1

𝑖=1

[𝐲(𝑖) − 𝐇𝑎𝐱𝑎]
𝑇𝑒𝑥𝑝[−𝑐𝑣(𝑘 + 1 − 𝑖)]𝐑𝑣

−1

× [𝐲(𝑖) − 𝐇𝑎𝐱𝑎(𝑖)] + �̃�𝑎
𝑇𝐏𝑎

−1(0)�̃�𝑎(0)

 (31) 

 

under the Eq. (29), where 𝐑𝑣 ∈ 𝐑𝑛×𝑛  and 𝐏𝑎(0) ∈
𝐑(𝑛+𝑠)×(𝑛+𝑠) are positive definite matrices which correspond 

respectively, to the covariance for 𝐯(𝑖)  and �̃�𝑎(0) . In 

measuring, 𝐑𝑣  is changed to 𝑒𝑥𝑝[𝑐𝑣(𝑘 + 1 − 𝑖)]𝐑𝑣 , where 

𝑐𝑣may be a small positive constant, which means that in the 

derivation of WLSE, a newer output information is being 

forced to require �̂�𝑎(𝑘) . Neglect 𝜀𝑎(𝑘)within the Eq. (29), 

�̂�𝑎(𝑘) is derived as follows [12, 18]: 

 

�̂�𝑎(𝑘 + 1) = �̂�𝑎(𝑘 + 1|𝑘) + 𝐊𝑎(𝑘 + 1) × [𝐲(𝑘
+ 1) − �̂�(𝑘 + 1|𝑘)] 

(32) 

 

�̂�𝑎(𝑘 + 1|𝑘) = 𝚽(�̂�𝑎, 𝑘)�̂�𝑎(𝑘) + 𝐠𝑎𝑢𝑓𝑎𝑏(𝑘) (33) 

 

�̂�(𝑘 + 1|𝑘) = 𝐇𝑎�̂�𝑎(𝑘 + 1|𝑘) (34) 

 

𝐊𝑎(𝑘 + 1) = exp(𝑐𝑣) 𝐏𝑎(𝑘 + 1|𝑘)𝐇𝑎
𝑇

× [𝐇𝑎exp(𝑐𝑣)𝐏𝑎(𝑘 + 1|𝑘)𝐇𝑎
𝑇 + 𝐑𝑣]

−1 (35) 

 

𝐏𝑎(𝑘 + 1) = [𝐈 − 𝐊𝑎(𝑘 + 1)𝐇𝑎]𝑒𝑥𝑝(𝑐𝑣)𝐏𝑎(𝑘
+ 1|𝑘) 

(36) 

 

𝐏𝑎(𝑘 + 1|𝑘) = 𝚽(�̂�𝑎, 𝑘)𝐏𝑎(𝑘)𝚽𝑇(�̂�𝑎, 𝑘) (37) 

 

with the initial conditions given by �̂�𝑎(0) and 𝐏𝑎(0). Based 

on the WLSE, the vector of the estimation error �̃�𝑎(𝑘) ∈ 𝐑𝑛+𝑠 

defined as [𝐱𝑎(𝑘) − �̂�𝑎(𝑘)]  is derived. The Eq. (32) is 

subtracted from the Eq. (29), and the vector of error estimation 

�̃�𝑎(𝑘) is given by: 

 
�̃�𝑎(𝑘 + 1) = 𝚽𝑎(�̂�𝑎, 𝑘)�̃�𝑎(𝑘) + 𝜀𝑎(𝑘) − 𝐊𝑎(𝑘 + 1)

× [𝐇𝑎𝚽𝑎(�̂�𝑎 , 𝑘)�̃�𝑎(𝑘) + 𝐇𝑎𝜀𝑎(𝑘) + 𝐯(𝑘 + 1)]

= [𝐈 − 𝐊𝑎(𝑘 + 1)𝐇𝑎]�̃�𝑎(𝑘 + 1|𝑘)

−𝐊𝑎(𝑘 + 1)𝐯(𝑘 + 1)

 (38) 
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where, 

 

�̃�𝑎(𝑘 + 1|𝑘) = 𝚽𝑎(�̂�𝑎, 𝑘)�̃�𝑎(𝑘) + 𝜀𝑎(𝑘) (39) 

 

Theorem 2- The vector of the estimation error x̃a(k) in (38) 

and (39) will saty in the neighborhoud of zero, if 

εa(k)xa(k), and  x̂a(k) are bounded. 

The SWLSE is calculated by approximating the structure of 

the WLSE, to reduce the computational burden of the estimate. 

The estimates �̂�(𝑘) and 𝜃𝑖(𝑘), for 𝐱(𝑘) and 𝜃𝑖
∗ are given by: 

 

�̂�(𝑘 + 1) = 𝐅�̂�(𝑘) + 𝐅𝜑(�̂�, 𝑘)𝛉(𝑘) + 𝐠𝑢𝑓𝑎𝑏(𝑘)

+𝐊𝑥(𝑘 + 1)[𝐲(𝑘 + 1) − �̂�(𝑘 + 1|𝑘)]
 (40) 

 

𝛉𝑖(𝑘 + 1) = 𝛉𝑖(𝑘) +  𝑒𝑥𝑝(𝑐𝑣)𝐏𝜃𝑖(𝑘)𝛏𝑖(𝐱, 𝑘)Ω𝑖𝑖
−1(𝑘)

× [𝑦𝑖(𝑘 + 1) − �̂�𝑖(𝑘 + 1|𝑘)]

𝑖 = 1,2,… , 𝑛

 (41) 

 

𝐊𝑥(𝑘 + 1) = exp (𝑐𝑣)[𝐅𝐏𝑥(𝑘)𝐅𝑇

+𝐅𝜑(�̂�, 𝑘)𝐏𝜃(𝑘)𝐅𝜑
𝑇(�̂�, 𝑘)] × 𝛀−1(𝑘)

 (42) 

 

𝐏𝑥(𝑘 + 1) = [𝐈 − 𝐊𝑥(𝑘 + 1)]𝑒𝑥𝑝(𝑐𝑣)[𝐅𝐏𝑥(𝑘)𝐅𝑇

+𝐅𝜑(�̂�, 𝑘)𝐏𝜃(𝑘)𝐅𝜑
𝑇(�̂�, 𝑘)]

 (43) 

 

𝐏𝜃𝑖(𝑘 + 1) = [I − exp(𝑐𝑣) P𝜃𝑖(𝑘)ξ𝑖(x𝑖 , 𝑘)Ω𝑖𝑖
−1(𝑘)𝜉𝑖

𝑇(x𝑖 , 𝑘)]

× exp(𝑐𝑣)𝐏𝜃𝑖
(𝑘)

𝑖 = 1,2, … , 𝑛

 (44) 

 

𝛀(𝑘) = 𝑒𝑥𝑝(𝑐𝑣)[𝐅𝐏𝑥(𝑘)𝐅𝑇 + 

𝐅𝜑(�̂�, 𝑘)𝐏𝜃(𝑘)𝐅𝜑
𝑇(�̂�, 𝑘)] + 𝐑𝑣  

(45) 

 

𝛀𝑖𝑖(𝑘) = 𝑒𝑥𝑝(𝑐𝑣)[(𝐅𝐏𝑥(𝑘)𝐅𝑇)𝑖𝑖

+𝛏𝑖
𝑇(𝐱𝑖 , 𝑘)𝐏𝜃𝑖

(𝑘)𝜉𝑖(𝐱𝑖, 𝑘)] + 𝐑𝑣𝑖

𝑖 = 1,2, … , 𝑛

 (46) 

 

with �̂�(𝟎) and 𝐏𝒙(𝟎) and 𝛉𝒊(𝟎) and 𝐏𝜽𝒊
(𝟎), 𝒊 = 𝟏, 𝟐, … , 𝒏 as 

initial conditions. In the Eq. (41), 𝒚𝒊(𝒌 + 𝟏) and �̂�𝒊(𝒌 + 𝟏|𝒌) 

are respectively the 𝒊th columns of 𝐲(𝒌 + 𝟏) and �̂�(𝒌 + 𝟏|𝒌) 

given by the Eq. (34), and 𝐑𝒗  is supposed to be 

𝒅𝒊𝒂𝒈[𝑹𝒗𝟏𝑹𝒗𝟐 …𝑹𝒗𝒏]. 
 

 

5. SIMULATION EXAMPLES 

 

A discrete-time uncertain nonlinear system is given as 

follows:  

 
𝑥1(𝑘 + 1) = 𝑐1𝑥2(𝑘) + 𝜑1(𝑥1, 𝑘)
𝑥2(𝑘 + 1) = 𝑢(𝑘) + 𝜑2(𝑥1, 𝑥2, 𝑘)

 (47) 

 

where 

 
𝐏𝜃𝑖(𝑘 + 1) = [𝐈 − exp(𝑐𝑣)𝐏𝜃𝑖(𝑘)𝛏𝑖(𝐱𝑖, 𝑘)Ω𝑖𝑖

−1(𝑘)𝜉𝑖
𝑇(𝐱𝑖 , 𝑘)]

× exp(𝑐𝑣) 𝐏𝜃𝑖
(𝑘)

𝑖 = 1,2, … , 𝑛

 (48) 

 

The state measurement is carried out as follows:  

 

𝑦𝑖(𝑘) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘)𝑖 = 1,2 (49) 

 

Using the Eqns. (24) and (25), the AFBC control laws 

�̅�𝑎𝑓𝑏(𝑘) yields. 

�̅�𝑎𝑓𝑏(𝑘) = −𝑘1[
1 − 𝑘2 − 𝜆2

𝑐1

+ 𝜆2]�̂�1(𝑘) + 𝑘2�̂�2(𝑘)

+[
1 − 𝑘2 − 𝜆2

𝑐1

+ 𝜆2]𝜽1
𝑇𝝃1(�̂�1)

−𝜽2
𝑇𝜉2(�̂�1, �̂�2)

 (50) 

 

The IF-THEN fuzzy rules based on the SIRM for 

�̂�1(�̂�1|𝜽1)are given by: 

 

𝑅1
𝑗
: 𝐼𝐹�̂�1(𝑘) 𝑖𝑠 𝐴11

𝑗
 𝑇𝐻𝐸𝑁 �̂�1(�̂�1|𝜃1) 𝑖𝑠 𝐵11

𝑗
, 𝑗

= 1,2,3 
(51) 

 

where, 𝐴11
𝑗

, 𝑗 = 1,2,3 , are fuzzy sets with membership 

functions given in the following Table 1: 

 

Table 1. Type-2 fuzzy membership functions for �̂�1 

 

 
Variance 𝝈 Mean(m) 

 𝑚1 𝑚2 

𝝁𝑨𝟏𝟏
𝟏 (�̂�𝟏) 𝜋/20 −𝜋/6 −𝜋/12 

𝝁𝑨𝟏𝟏
𝟐 (�̂�𝟏) 𝜋/20 −𝜋/12 −𝜋/6 

𝝁𝑨𝟏𝟏
𝟑 (�̂�𝟏) 𝜋/20 𝜋/6 0 

 

The IF - THEN fuzzy rules for �̂�2(�̂�1, �̂�2|𝜽2), based on the 

SIRMs are given by: 

 

𝑅1
𝑗
: 𝐼𝐹 �̂�1(𝑘) 𝑖𝑠 𝐴21

𝑗
 𝑇𝐻𝐸𝑁 �̂�2(�̂�1, �̂�2|𝜃21) 𝑖𝑠 𝐵21

𝑗
, 𝑗

= 1,2,3 

𝑅2
𝑗
: 𝐼𝐹�̂�2(𝑘) 𝑖𝑠 𝐴22

𝑗
𝑇𝐻𝐸𝑁 �̂�2(�̂�1, �̂�2|𝜃22)𝑖𝑠 𝐵22

𝑗
, 

𝑗 = 1,2,3 

(52) 

 

where, 𝐴2𝑖
𝑗

, 𝑖 = 1,2, 𝑗 = 1,2,3 , are the fuzzy sets whose 

membership functions are given in the following Table 2: 

 

Table 2. Type-2 fuzzy membership functions for �̂�i, i= 1,2 

 

 
Variance𝝈 Mean (m) 

 𝒎𝟏 𝒎𝟐 

𝛍𝐀𝟐𝟏
𝟏 (�̂�𝟏) 𝜋/20 −𝜋/6 −𝜋/12 

𝛍𝐀𝟐𝟏
𝟐 (�̂�𝟏) 𝜋/20 −𝜋/12 0 

𝛍𝐀𝟐𝟏
𝟑 (�̂�𝟏) 𝜋/20 0 𝜋/6 

𝛍𝐀𝟐𝟐
𝟏 (�̂�𝟐) 𝜋/20 −𝜋/6 −𝜋/12 

𝛍𝐀𝟐𝟐
𝟐 (�̂�𝟐) 𝜋/20 −𝜋/12 0 

𝛍𝐀𝟐𝟐
𝟑 (�̂�𝟐) 𝜋/20 0 𝜋/6 

 

The state estimates, �̂�1(𝑘)and �̂�2(𝑘) , and the adjustable 

parameters, 𝜽1(𝑘) and 𝜽2(𝑘), are obtained using the SWLSE 

given by the Eqns. (40)-(46). 

Then the universal approximation errors are given as 

follows [23]:  

 

𝜀1(𝑘) = 𝜑1(𝑥1, 𝑘) − 𝜃1
𝑇(𝑘)𝜉1(�̂�1) 

𝜀2(𝑘) = 𝜑2(𝑥1, 𝑥2, 𝑘) − 𝜃2
𝑇(𝑘)𝜉2(�̂�1, �̂�2) 

(53) 

 

On the basis of the estimates, the control signal given by the 

Eq. (50) is determined. 

Using the control signal with the SWLSE, the simulation is 

performed where the initial conditions are given as follows:  

 

𝐱(0) = [0.1 0.1]𝑇 , �̂�(0) = [0 0]𝑇 ,  

 

𝜃1(0) = [0 0 0 0]𝑇  
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𝜃2(0) = [0 0 0 0 0 0 0]𝑇  

 

𝐏𝑥(0) =  𝑑𝑖𝑎𝑔 [1 1]𝑇𝐏𝜃1
(0) =  𝑑𝑖𝑎𝑔 [1 1 1 1]𝑇  

 

𝐏𝜃2
(0) =  𝑑𝑖𝑎𝑔 [1 1 1 1 1 1 1]𝑇  

 

The parameter 𝑐1 in the Eq. (47) is given by −0.5, and the 

vector of the measurement noise 𝐯(𝑘)  is a zero mean 

independent random with variances, 𝑅𝑣1  and 𝑅𝑣2 , fixed as 

10−5. By running the simulation, 𝑘1, 𝑘2 and 𝜆2 for the control 

�̅�𝑎𝑓𝑏(𝑘)and 𝑐𝑣  for the SWLSE are chosen to provide better 

performances. The choice of the parameters values is as 

follows: 𝑘1 = 0.3, 𝑘2 = 0.4, 𝜆2 = 0.25 and 𝑐𝑣 = 0.01 . The 

state variables evolutions of 𝑥1(𝑘) and 𝑥2(𝑘) , and their 

estimates, �̂�1(𝑘)  and �̂�2(𝑘) , the nonlinear uncertainties, 

𝜑1(𝑥1, 𝑘)  and 𝜑2(𝑥1, 𝑥2, 𝑘) , and their estimates, and the 

proposed control are, shown, respectively, in the Figures 1-5. 

Figures 1 and 2 show the evolutions of 𝑥1(𝑘), �̂�1(𝑘), 𝑥2(𝑘) 

and �̂�2(𝑘) which are bounded, and �̂�1(𝑘) and �̂�2(𝑘 , 

approximate,𝑥1(𝑘)  and 𝑥2(𝑘) respectively. Figures 3 and 4 

show that 𝜃1
𝑇(𝑘)𝜉1(�̂�1) and 𝜃2

𝑇(𝑘)𝜉2(�̂�1, �̂�2) respectively, are 

close to 𝜑1(𝑥1, 𝑘) and𝜑2(𝑥1, 𝑥2, 𝑘). In Figure 5, we show that 

the evolution of the control signal is smooth and bounded. The 

effectiveness of the approach is shown by comparing the root 

mean squares obtained by the �̅�𝑎𝑓𝑏(𝑘) controller with those in 

[12] is given in the following Table 3: 
 

 
 

Figure 1. Evolutions of 𝑥1(𝑘) (black line) and its estimate 

�̂�1(𝑘)(red line) 

 

 
 

Figure 2. Evolutions of 𝑥2(𝑘) (black line) and its estimate 

�̂�2(𝑘)(red line) 

 
 

Figure 3. Evolutions of 𝜑1(𝑘) (black line) and its estimate 

𝜑1(𝑘)(red line) 

 

 
 

Figure 4. Evolutions of 𝜑2(𝑘) (black line) and its estimate 

𝜑2(𝑘)(red line) 

 

 
 

Figure 5. Evolutions of the control signal 

 

Table 3. Root mean squares of the variables 

 

 𝒙𝟏 𝒙𝟐 𝜺𝟏(�̃�𝟏) 𝜺𝟐(�̃�𝟐) �̅�𝒂𝒇𝒃 

Results in 

[12] 
0.0113 0.0086 0.0023 0.0019 0.0128 

Our 

results 
0.0100 

0.0044 

 
0.0080 1.68𝑥10−8 0.0033 

 

The root mean squares of some signals are evaluated. 

comparing our results with those of [12], we can see that better 
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tracking performance is obtained in this paper without 

chattering in the states and their estimates. as a conclusion, we 

can say from simulation, that the controller �̅�𝒂𝒇𝒃(𝒌) guarantee 

better performance without chattering, andthat the estimation 

errors, approach zero as time increases. 

 

 

6. CONCLUSIONS 

 

In this work, a novel hybrid interval type-2 fuzzy 

backstepping controller for a class of discrete-time nonlinear 

systems is proposed. A discrete-tile nonlinear equation with 

uncertainties describes the systems for which no mathematical 

model is available and some states are observed with 

measurement noises. The controller is calculated by taking out 

the issue of the complexity of computational burden. 

Estimation of the non-measurable states and adjustable 

parameters was performed. It has been proven that the 

boundedness of states under the controller action, and that the 

errors of estimation of the nonlinear functions remain around 

zero. The efficiency of the proposed controller has been 

demonstrated by performing the simulation results. We have 

applied the controller to discrete-time single input uncertain 

nonlinear systems. For future work, this controller will be 

extended to a class of uncertain discrete-time multi-input-

multi-output nonlinear systems. Moreover, the controller 

based on the interval type-2 fuzzy systems discussed in 

Section 3will be studied in future work by combining this 

approach with neural network approach. 
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