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In this paper, we propose a novel hybrid algorithm based on MAX-MIN Ant System 

version of ant colony optimization coupled with quadratic programming (MMAS-QP). 

Quadratic programming is used to optimize the Economic Dispatching process and 

MMAS for planning the switching schedule of a set of production units. The algorithm is 

implemented in MATLAB software environment for two systems, one is 4 generating 

units running for 8 hours, and the other is 10 generating units running for 24 hours. The 

impact of heuristic parameters on the behavior of the algorithm is highlighted through the 

parameters setting. Results obtained shows improved solution compared to several 

methods such as Modified Ant Colony Optimization (MACO), particle Swarm 

Optimization combined with Lagrange Relaxation (PSO-LR), Swarm and Evolutionary 

Computation (SEC), Particle Swarm Optimization combined with Genetic Algorithm 

(PSO-GA). The proposed method improves sufficiently the quality of the solution as well 

as the execution time. 
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1. INTRODUCTION

Unit commitment problem (UCP) is a combinatorial 

optimization problem that consists of planning the switching 

schedule of a set of production units [1-3]. Moreover, UCP 

allows us to determine over a precise planning period the 

power that each unit should produce in order to meet energy 

demand while respecting the economic or environmental 

constraints imposed [4]. UCP is therefore a complex problem 

that involves both binary variables and continuous variables 

and for which several solutions are proposed in the literature. 

UCP was proposed for the first time by Lowery in 1966. The 

dynamic programming method was used to overcome the 

major difficulty of enumerative methods. Indeed, the 

enumerative methods consists in testing all possible 

combinations of supply with the units considered in order to 

choose the optimal solution. This procedure may require 

significant resources for a large number of units. 

Nevertheless, various methods have been used to solve the 

UCP. Amongst these methods are the Lagrangian method [5], 

Tabu search [6], Neural network [7], Fuzzy logic [8], 

Corridors of observations method [9], Particle swarm 

optimization [10], Artificial bee colony algorithm [11], and 

Ant colony algorithm [12]. Ant Colony optimization algorithm 

is a metaheuristic method which was introduced by Dorigo et 

al. in 1991 [13]. This method is inspired by the behavior of ant 

when searching their food. This algorithm is focused on 

artificial ants building their solutions in a given optimization 

problem and exchanging the quality of their solutions by a 

mechanism inspired from the behavior of real ants [14]. Even 

if their major drawback its slowness of convergence, in 

particular when solving large scale problems, Ant Colony 

algorithms is widely used for their great flexibility due to their 

distributed and adaptive nature [1]. This nature gives them 

average performance in the static case, but seem more suited 

for dynamic problems. 

The first and original version of ACO called Ant system 

(AS) was applied for the first time to solve the traveler 

salesman problem [13, 15]. Unfortunately, the results obtained 

while using the original version of the AS were not 

competitive compared to those solutions from other 

algorithms such as GA, PSO [1]. As matter of fact, several 

improved versions were developed such as the ACS (Ant 

Colony System) version [16], MMAS (MAX-MIN Ant 

System) version [17]. In fact, AS algorithm follows 

proportional random transition rule [18]; the pheromone is 

deposited and evaporated in each path proportionally to the 

length of the path. Ant colony System (ACS) [16] version use 

a pseudo-random transition rule and the pheromone are 

deposited and evaporated only on best solutions [18]. MAX-

MIN Ant System (MMAS) [19] is an improved version of AS 

developed by Stützle and applied to solve few optimization 
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problem [19, 20]. 

Several studies have proposed MMAS approaches to solve 

some problems. Stützle et al. [20] proposes an extension of 

MAX-MIN Ant System and apply it to Traveling Salesman 

Problems and Quadratic Assignment Problems. He made two 

main changes, namely the modification of the transition rule 

and the addition of a local search method. The proposed 

version presents better results than the ACS and MMAS 

algorithms. Otherwise, the obtained results show that this 

algorithm can be used to efficiently find near-optimal 

solutions to hard combinatorial optimization problems and 

that it is one of the best methods for solving structured 

quadratic assignment problems.  

Zecchin et al. proposes in 2003 [21] a method for optimizing 

a water distribution system using the MMAS algorithm. The 

proposed algorithm was tested on two systems of different 

sizes and the results were compared with those obtained with 

Ant System and the Genetic Algorithm. For the first system, 

the developed MMAS algorithm produced better results in 

terms of costs and computation time than the AS and GA 

algorithms [21]. For the second system, even if the proposed 

algorithm could not lead to the optimal solution, there is 

however a significant reduction in the computation time 

compared to the GA algorithms which provided a better cost. 

Bai et al. in 2009 implements a parallel version of the 

MMAS algorithm on GPUs with a CUDA architecture [22]. 

The algorithm was tested on the traveling salesman problem 

and the results were compared to a sequential version of 

MMAS. The results show that the parallel version reduces 

solution costs and improves computational speed by a factor 

greater than 2 for different size of problem. 

Santos et al. in 2016 applied the MMAS algorithm to the 

path planning problem for a mobile autonomous robot [23]. 

The compared results pointed that the MMAS algorithm was 

more efficient for this task than GA. Moreover, MMAS was 

able to find the optimal solution for all the topological maps 

tested. 

Al-Shihabi et al. propose in 2017 a method of solving the 

financial planning problem based on the MMAS algorithm 

[24]. Three versions of MMAS using different heuristic 

functions during solution generation have been implemented 

and tested on 60 sample problems. The results obtained have 

been compared with those produced with Branch and Bound 

approaches (BB) and show that MMAS allows the lowest 

computation time. 

Yu et al. developed in 2010 a hybrid approach for solving 

the unit commitment problem based on the MMAS version of 

ACO and the lambda iteration method [25]. Here, the lambda 

iteration method is used to determine economic dispatching 

and MMAS to determine the on/off schedule for the units over 

the planning period. This method was simulated in the 

MATLAB environment on 4 systems of different sizes. In 

order to improve the computation efficiency, the solution of 

unit commitment is coded into unit operation sequence, 

making the space complexity fall. The results obtained 

demonstrated the efficiency of this method and that its more 

suitable than the Genetic Algorithm (GA), Evolutionary 

Programming (EP) and Priorty List (PL) algorithms. 

Lai et al. in 2012 [26] implements an MMAS version of 

ACO and an improved version by adding a local update 

process suitable for the UCP. Both versions were tested on a 

10-unit system over a running period of 24-hour horizon and 

the results obtained are better than those obtained by the 

Hybrid Particle Swarm Optimization (HPSO), GA, Here-And-

Now (HN) approach and the classic version of the ACO. 

Taking into consideration the advantages of the MMAS 

algorithm previously highlighted, several authors have 

exploited this method for solving optimization problems such 

as Traveling Salesman [22], optimization of water distribution 

system [21], path planning [23], financial planning [24], and 

unit commitment [26]. MMAS (Max-Min Ant System) has the 

capacity of avoiding stagnation while others versions fail to it. 

Furthermore, the pheromone is bounded between a minimal 

value 𝜏𝑚𝑖𝑛 and a maximal value 𝜏𝑚𝑎𝑥. With the MMAS, only 

best ants are allowed to update the pheromone in their path, 

thus this yield to best solutions found in each iteration of 

algorithm. The drawbacks of Ant colony algorithm in general 

are that probability distribution change by iteration, time to 

convergence is uncertain (but convergence is guaranteed), 

research is experimental rather than theorical [1, 27]. These 

weaknesses of the MMAS could be strengthen by combining 

it with quadratic programming. 

Quadratic programming is one of the most successful 

approaches for solving nonlinearly constrained optimization 

problems since its popularization in the late 1970s.This 

method has been used sole or combined with others algorithms 

(hybridization) in the literature by several authors and has 

produced satisfactory and very encouraging results for a wide 

variety of problems. Among these problems, we have 

electrical power management problems as the economic load 

dispatch [28], optimal power flow [29] and unit commitment 

[30].  

This paper proposes of course a new hybrid Ant Colony 

algorithm for solving the unit commitment problem 

combining MMAS algorithm and Quadratic programming.  

In this hybridization Quadratic programming method is 

used to optimize economic load dispatch (ELD) and the on/off 

switching program of units is ensured by MMAS algorithm. 

The rest of the paper is organized as follows: Following the 

introduction, section 2 presents the mathematical formulation 

of unit commitment problem. Section 3 describe the keys steps 

of MMAS algorithm. Section 4 focusses on the proposed 

hybrid method for solving UCP. MAX-MIN Ant system 

algorithm and Quadratic programming method are developed. 

Section 5 clarify the setting of the initial heuristic parameters. 

Then section 6 is devoted to the presentation of the results and 

section 7 offers a conclusion. 

 

 

2. MATHEMATICAL FORMULATION OF UNIT 

COMMITMENT PROBLEM 

 

Unit commitment problem is an optimization problem 

whose aim is to minimize the production cost by committing 

available units within their constraints taken over a period. The 

total production cost is the sum of the production cost, the 

startup cost and shut down cost of all the committed units. 

Thus, the formulation of UCP involves the objective function 

and various constraints. In this study, we consider a Thermal 

formulation approach by considering the production cost as 

the only optimization criterion. The production cost therefore 

comprises three terms: the fuel cost, the start-up cost and the 

shutdown cost. 

 

2.1 Objective function 

 

The objective function unit commitment problem is 

expressed as: 

700



 

𝑚𝑖𝑛 ( ∑∑(𝐹𝑖(𝑃𝑖(𝑡))𝑈𝑖(𝑡) + 𝑆𝑇𝑖(𝑡)𝑈𝑖(𝑡) + 𝑆𝐷𝑖(1

𝑇

𝑡=1

𝑁

𝑖=1

− 𝑈𝑖(𝑡))𝑈𝑖(𝑡 − 1))) 

(1) 

 

where, 

 

𝐹𝑖(𝑃𝑖(𝑡)) = 𝑎𝑖 + 𝑏𝑖 . 𝑃𝑖(𝑡) + 𝑐𝑖 . 𝑃𝑖(𝑡)
2 (2) 

 

𝑆𝑇𝑖(𝑡) = {
𝐻𝑆𝐶𝑖  , 𝑠𝑖 𝑇𝑚𝑖𝑛,𝑖

𝑜𝑓𝑓
≤ 𝑇𝑖

𝑜𝑓𝑓
≤ 𝑇𝑚𝑖𝑛,𝑖

𝑜𝑓𝑓
+ 𝑆𝐶𝑖

𝐶𝑆𝐶𝑖 , 𝑠𝑖 𝑇𝑖
𝑜𝑓𝑓

> 𝑇𝑚𝑖𝑛,𝑖
𝑜𝑓𝑓

+ 𝑆𝐶𝑖            
  (3) 

 

𝑖 is the unit identification number; N is the total number of 

units; T denotes the period of scheduling; 𝐹𝑖(𝑃𝑖(𝑡)) is the fuel 

cost of the unit 𝑖 at the time t when the unit generates a power 

𝑃𝑖(𝑡) ; 𝑈𝑖(𝑡)  represent the status of unit i at the time t; 

𝑆𝑇𝑖(𝑡) 𝑒𝑡 𝑆𝐷𝑖(1 − 𝑈𝑖(𝑡)) are respectively the startup and shut 

down cost of unit i at the time t; 𝑎𝑖 , 𝑏𝑖  and 𝑐𝑖  are fuel costs 

coefficient of unit i.  

𝑇𝑚𝑖𝑛,𝑖
𝑜𝑓𝑓

 is the minimum down time of unit i; 𝑆𝐶𝑖  is the 

number of cold-start hours of unit i;  

𝐻𝑆𝐶𝑖  and 𝐶𝑆𝐶𝑖 are respectively the hot startup cost and cold 

startup cost of unit i. 

 

2.2 Constraints 

 

We present here the four constraints which accompany the 

minimization of the objective function. These four constraints 

are: the load demand constraints, the constraints related to 

spinning reserve, the constraints relating to the production 

limits of each unit, and the constraints relating to minimum up 

and minimum down time of each unit. 

 

2.2.1 Load demand constraints 

In an electrical energy supply system, production must 

constantly balance demand. If we consider that losses energy 

is not involved here, we have: 

 

∑𝑈𝑖(𝑡)𝑝𝑖(𝑡) = 𝐷𝑡

𝑁

𝑖=1

 , 𝑡 ∈ {1, …… , 𝑇} (4) 

 

𝐷𝑡  represents the load demand at the time t. 

 

2.2.2 Constraints related to spinning reserve 

Any sudden drops in production can be observed while 

supplying the load. This can happen by prediction deviation in 

a real-time supply or even during a failure of one or more 

production units in operation [31]. Besides, a way to minimize 

such effects and to balance the losses quickly, it is necessary 

to provide spinning reserve for the demand load at that time. 

This can be achieved by taking into account the spinning 

reserve 𝑅𝑡 in the balance equation of load demand constraints. 

 

∑𝑈𝑖(𝑡)𝑝𝑖(𝑡)

𝑁

𝑖=1

≥ 𝑅𝑡 + 𝐷𝑡  , 𝑡 ∈ {1, …… , 𝑇} (5) 

 

2.2.3 Constraints relating to the production limits of each unit 

Due to the characteristics of each generating unit 𝑖  the 

generated power is bounded by two limits, the lower limits 

denoted 𝑃𝑚𝑖𝑛𝑖  and the upper limit 𝑃𝑚𝑎𝑥𝑖 . Thus, we have: 

 

𝑃𝑚𝑖𝑛𝑖 ≤ 𝑝𝑖(𝑡) ≤ 𝑃𝑚𝑎𝑥𝑖 . 𝑈𝑖(𝑡), 𝑡 ∈ {1, …… , 𝑇} (6) 

 

2.2.4 Constraints relating to minimum up and minimum down 

time of each unit  

The minimum start-up time is the time after which a unit 

can be stopped after it has been started. Likewise, the 

minimum shutdown time is the time after which a unit can 

reliably be considered shutdown and stable for a possible 

restart. These conditions are achieved by: 

 

𝑇𝑖
𝑜𝑛 ≥ 𝑇𝑖

𝑢𝑝
 and 𝑇𝑖

𝑜𝑓𝑓
≥ 𝑇𝑖

𝑑𝑜𝑤𝑛 (7) 

 

where, 𝑇𝑖
𝑢𝑝

 and 𝑇𝑖
𝑑𝑜𝑤𝑛 are respectively the minimum up time 

and the minimum down time of the unit i. 

 

 

3. MAX-MIN ANT SYSTEM (MMAS) ALGORITHM 

 

MAX-MIN Ant System algorithm has been defined and 

used by some authors for solving a number of problems. This 

is the case in the ref. [24] for financial planning problem and 

for path planning problem in the ref. [23]. In this work, MAX-

MIN Ant system is used to solve the unit commitment problem. 

The approach adopted is that the trials limits values are 

calculated for each period and we use a pheromone matrix for 

each time transition. This means that we are using N 

pheromone matrices for a horizon of N hours. Let us recall 

here the transition rule and the pheromone update rule of 

MMAS. 

 

3.1 MMAS state transition rule  

 

In the MMAS algorithm, ants build a solution in a 

probabilistic way step by step by using information related to 

pheromone and specifics heuristics information of the given 

problem. Thus, the probability for an ant k to moves from state 

i to the state j, is given by Eq. (8). 

 

𝑃𝑖,𝑗
𝑘 =

𝜏𝑖,𝑗
𝛼 . 𝜂𝑖,𝑗

𝛽

∑ 𝜏𝑖,𝑘
𝛼 . 𝜂𝑖,𝑘

𝛽𝑐
𝑘=1

 (8) 

 

with α, β: are respectively the relative importance of intensity 

and visibility. 

𝜂𝑖,𝑗: Visibility of the solution. 

τ𝑖𝑗: Pheromone intensity of the path. 

 

3.2 MMAS pheromone updating rule 

 

The pheromone update is done after each iteration. The 

update rule in each path is given by Eq. (9). 

 

{

𝜏𝑖,𝑗 ← (1 − 𝜌). 𝜏𝑖,𝑗 + ∆𝜏𝑖,𝑗
𝑏𝑒𝑠𝑡  if 𝜏𝑚𝑖𝑛 < 𝜏𝑖,𝑗 < 𝜏𝑚𝑎𝑥

𝜏𝑖,𝑗 ← 𝜏𝑚𝑎𝑥  if 𝜏𝑖,𝑗 > 𝜏
𝑚𝑎𝑥

𝜏𝑖,𝑗 ← 𝜏𝑚𝑖𝑛  if 𝜏𝑖,𝑗 < 𝜏
𝑚𝑖𝑛

 (9) 

 

∆𝜏𝑖,𝑗
𝑏𝑒𝑠𝑡 is defined by the Eq. (10): 

 

∆𝜏𝑖,𝑗
𝑏𝑒𝑠𝑡 =

{
 
 

 
 

1

𝐿𝑏𝑒𝑠𝑡 
if the path (𝑖, 𝑗) is the best 

amongst the solution 
      

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.    

 (10) 
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where: 

ρ: pheromone evaporation coefficient. 

𝐿𝑏𝑒𝑠𝑡: best solution cost. 

 

 

4. HYBRID OPTIMIZATION ALGORITHM 

 

Quadratic programming is used to optimize the Economic 

load Dispatching (ELD) process and MMAS for planning the 

switching schedule of a set of production units. This section 

describes clearly the procedure of the proposed hybrid 

optimization algorithm. 

 

4.1 Quadratic programming for economic dispatching 

 

Once the search space is established, the ELD is carried out 

for each state and each hour of the planning period, taking into 

account the characteristics of the units and that of the demand. 

ELD is a sub-problem of unit commitment, which consists 

of production cost minimizing for each given operating 

moment in order to achieve the power economic dispatching 

between operational units. 

The objective function to be minimized is expressed as 

follows: 

 

𝑚𝑖𝑛(∑∑𝐹𝑖(𝑃𝑖(𝑡))

𝑇

𝑡=1

𝑁

𝑖=1

) (11) 

 

where, 𝐹𝑖(𝑃𝑖(𝑡)) is the expression of the fuel cost function of 

unit i in time t and given in Eq. (2). 

In this paper, to solve the economic dispatching problem, 

quadratic programming is used. It is an optimization method 

for solving optimization problems whose objective function is 

a quadratic function with linear constraints [28, 32]. 

The goal of quadratic programming is to find the vector x 

that minimizes the quadratic function 
1

2
𝑥𝑇𝐻𝑥 + 𝑓𝑇𝑥. 

Hence the expression of the following objective function: 

 

min(
1

2
𝑥𝑇𝐻𝑥 + 𝑓T𝑥) (12) 

 

The minimization of this function is subject to various 

constraints: 

− Inequality constraints 

 

𝐴𝑥 ≤ 𝑏 (13) 

 

− Equality constraints 

 

𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞  (14) 

 

− Boundary constraints 

 

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 (15) 

 

H, A and 𝐴𝑒𝑞  are matrices, and f, b, 𝑏𝑒𝑞 , lb, and x are vectors. 

Note that, the quadratic programming algorithm requires 

equality constraints, all-inequality constraints must be 

converted to equalities by introducing slack variables. Thus, 

each quantity that is bounded by upper and lower limits 

introduces two constraints and two new variables [32]. 

However, nowadays, most solvers used for this purpose take 

care of this conversion. 

In order to adapt the problem of economic load dispatching 

to the quadratic programming method, the variables of the 

objective function have been redefined as follows: 

 

𝑥 = [𝑝1 𝑝2…………… . 𝑝𝑛]
𝑇 (16) 

 

𝐻 = 2 ∗ ⌈
𝐶1 0 0
0 ⋱ 0
0 0 𝐶𝑛

⌉ (17) 

 

𝑓 = [𝑏1⋯⋯⋯⋯𝑏𝑛] (18) 

 

In order to satisfy the equality constraint (2.17), 𝑏𝑒𝑞  have 

been set such that:  
 

𝑏𝑒𝑞 = 𝐷𝑡 and 𝐴𝑒𝑞 = [𝑢1 𝑢2⋯⋯𝑢n] (19) 

 

Production ranges constraints of units are imposed on the 

quadratic programming solver on the form: 

 

− 𝑙𝑏 = [𝑃1𝑚𝑖𝑛 𝑃2𝑚𝑖𝑛 … 𝑃𝑛𝑚𝑖𝑛] (20) 

 

− 𝑢𝑏 = [𝑃1𝑚𝑎𝑥 𝑃2𝑚𝑎𝑥 … 𝑃𝑛𝑚𝑎𝑥] (21) 

 

In order to solve the problem of economic dispatching by 

quadratic programming, the following steps have been 

followed: 

− Steps 1: initialize the procedure and assign the 

smallest value to each generator. 

− Step 2: bring back H, f, Aeq, beq, lb, ub in their matrix 

form using expressions (16)-(21). 

− Step 3: replace the quantities from step 2 in a 

quadratic programming solver in order to determine 

the optimal power to be allocated to each generator. 

− Step 4: check the convergence using the relation. 

 

|𝐷𝑡 −∑𝑃𝑖𝑈𝑖(𝑡)

𝑛

𝑖=1

| ≤ 𝜀 (22) 

 

where, ε is the tolerance for violation of the balance between 

generated power and the load demand. 

By considering spinning reserve capacity.  

 

∑𝑃𝑖𝑈𝑖(𝑡)

𝑛

𝑖=1

= 𝐷𝑡 + 𝑅𝑡 

1 ≤ 𝑡 ≤ 𝑇 𝑖𝜖 ∈ ℕ* 

(23) 

 

Steps 1 to 4 are repeated until there is convergence of the 

algorithm. 

Once the ELD is completed, at each state of each hour of 

the search space is now associated a combination of 

active/inactive units and an optimal output power. 

 

4.2 MAX-MIN ant system-quadratic programming 

for unit commitment problem 

 

The algorithm can be divided in 6 keys steps: the 

initialization of the all parameters of power units, definition of 

search space, economic dispatching of power by using 

quadratic programming, initialization of heuristic parameters, 

exploration of search space and pheromones update. 
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4.2.1 Initialization of the all parameters of power units 

Firstly, the parameters of the power units are initialized with 

the characteristics of different units for given data set. It is 

specified for each unit the power range, fuel cost coefficients, 

hot startup cost and cold startup cost, minimum up time and 

the minimum down time. In this part the forecasted load 

demands are also initialised.  
 

4.2.2 Search space definition 

After the first step, all combinations of the UCP are found 

in the form of binary variables by using exhaustive 

enumeration. Thus, for a system of 𝑛 units we will have 2𝑛 

combinations. Furthermore, for each period, all state that their 

power cannot satisfy load and spinning reserve are eliminated; 

as matter of fact, the reminding state are used to build our ant 

search space.  

Assuming that for a system of 𝑛 units, over a horizon of 𝑇 

hours, if 𝑘𝑖 is the number of eliminated states for 𝑖 hour and 

𝑛𝑖 = 2𝑛 − 𝑘𝑖  number of states remaining, each ant 

examines ∏ (2𝑛 − 𝑘𝑖)
𝑇
𝑖=1  cases to find the minimum cost path. 

For high values of 𝑛 and 𝑇, this number of cases can become 

very important and thus lead to unsuitable computational time. 

In this article in order to reduce the number of states and 

reduce the computational time, especially for the 10 units in 

24 hours system, a priority order has been set for each hour. 

This priority order is based on the frequency of operation of 

each unit at full load and on minimization of transition cost. It 

should be noted that for the case of 4-unit system, no reduction 

in the number of cases was made. 
 

4.2.3 Economic load dispatch  

Once the search space is established, quadratic 

programming is used to realize the ELD for each state in each 

period of scheduling. This is done by taking into account the 

characteristics of each unit, the load demand and the spinning 

reserve. 

After the realization of ELD, for each state at any time on 

the search space, an optimal combination of actives/inactives 

of units is associated. 

For a T horizon, to move from hour i to hour i+1 we form a 

pheromone matrix of dimension 𝑛𝑖 × 𝑛𝑖+1. where 𝑛𝑖 and 𝑛𝑖+1 

are the number of states for hour i and i+1 respectively. 

 

4.2.4 Initialisation of algorithm parameters 

Appropriate parameters for the algorithm are well defined 

in initialization step. Out of them, we have: the number of ants 

(m), the relative importance of pheromone (α), the relative 

importance of visibility (β), the evaporation coefficient (ρ), as 

well as the initial, maximum and minimum quantities of 

pheromones on each arc respectively τ0, τmax and τmin. 

The quantity of deposit pheromone is given by the following 

relationships [19, 26]: 

 

𝜏0 =
1

∑ 𝑚𝑖𝑛𝐹(𝐷𝑡)
𝑇
𝑡=1

 (24) 

 

where, ∑ 𝑚𝑖𝑛𝐹(𝐷𝑡)
𝑇
𝑡=1  is the sum of points with the smallest 

generating cost in each period. 
 

𝜏𝑚𝑎𝑥 =
1

1 − ρ
𝜏0 (25) 

  

𝜏𝑚𝑖𝑛 =
𝜏max (1− √𝑃𝑏𝑒𝑠𝑡)

𝑛

(avg − 1)√𝑃𝑏𝑒𝑠𝑡
𝑛

 (26) 

 

where, 𝑃𝑏𝑒𝑠𝑡 is the probability of finding the optimal solution 

when the MMAS algorithm converges, which is generally 0.05 

[33]. 

 

4.2.5 Exploration of search space  

In this step, each ant explores the search space looking for 

the best solution as possible. Every ant starts with a minimal 

cost in the first hour till the last hour; the transition rule is 

given by Eq. (8). 

In each transition, constraints related to minimum up time 

and minimum down time are set. If these constraints are 

fulfilled, then startup cost are calculated, if they are not 

fulfilled startup cost are set to infinity. 

At the last hour, the total production cost of the solution 

found is calculated and saved. The solution is added in the total 

cost matrix which the size depends on the number of units as 

well as the planning horizon. The total production cost takes 

into account the fuel costs and the startup costs. We repeat the 

procedure to all the ants after comparison and only the best 

solution is saved. 

 

4.2.6 Pheromones update rule  

This operation consists of reinforcing the pheromone tracks 

associated with promising solutions and, on the contrary, 

degrading by “evaporation” that associated with bad solutions. 

The pheromone update rule is given by Eq. (9). 

 

4.2.7 MMAS-QP algorithm for solving the UCP  

UCP is solved by using MMAS algorithm through the 

following steps: 

Step 1: Initialize the all parameters of power units. 

Step 2: search all state combinations on/off able to satisfy 

the load demand and spinning reserve. 

Step 3: for each state found in step 2, find the optimal power 

able to satisfy load demand constraints through quadratic 

programming process.  

Step 4: initialization of algorithm parameters. 

Step 5: Exploration of search space. 

(a) ants are released randomly at an initial state in the first 

hour. 

(b) from the first hour till the last hour, each ant builds his 

solution by choosing the next state in aid of the 

transition rule (law of pseudo-probabilities). 

(c) When the tour is completed, we introduce the minimum 

up and down time constraints to check if the 

corresponding path fulfills the unit constraints: two 

case are studied: 

- If the found path fulfills those unit constraints, we 

compute the total cost and save it. 

- If it does not satisfy the constraints, then cost is set to 

infinity (∞). 

(d) We calculate the total production cost.  

Step 6: Save the minimal cost and apply update pheromone 

rule to each path. 

If the end of criterion is achieved then print unit 

commitment schedule, else returned to step 5. 

The Figure 1 present a flowchart that summarizes all these 

steps. 
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Figure 1. Flowchart of MMAS algorithm for UCP  

 

 

5. PARAMETERS SETTING 

 

The setting of initial heuristic parameters of an algorithm 

can have direct consequences on convergence behaviour. It is 

therefore necessary in this work to set heuristic parameters 

through criteria such as cost and speed. 2. Thus we have done 

manual adjustment of heuristic parameters with emphasis on 

the impact of each heuristic parameters on algorithm 

behaviour as the total generation cost and the execution time. 

This is one of the main contributions of this work. The settings 

are done on numerical for 4-unit system and 10-unit system 

whose generator characteristics and load demand are given in 

Appendix. 

Apart from the 𝑃𝑏𝑒𝑠𝑡 and Q parameters whose values were 

respectively adjusted to 0.05 and 0.9 by considering the results 

produced in literature [33, 34] and the verification tests carried 

out, the other parameters are adjusted here. The parameters are 

adjusted by sampling and interpreting several measurements. 

The idea is to maintain the values of the other parameters and 

vary the one that the best value must be determined within the 

defined interval. The advantage of this method is to extract the 

best values of the parameters at the same time as we study their 

impact on the performance of the algorithm. 

For each parameter, the simulations were repeated 30 times. 

The desired parameters  𝛼 , β, ρ, m and maxIter have been 

bounded as follows: 0≤α≤5; 0≤β≤87; 0<ρ<1; 0<m≤1100; 

0<maxIter≤1000 for 10-unit system and 0≤α≤5; 0≤β≤25; 

0<ρ<1; 0<m≤1100; 0<maxIter≤1000 for 4-unit system. 

where: 

α: relative importance of the pheromone trail. 

β: relative importance of the visibility. 

ρ: pheromone evaporation coefficient. 

m: number of ants. 

maxIter: maximum number of iterations. 

 

This section records some measurements that can justify the 

choice made for the values of heuristic parameters respectively 

for 4-unit system and 10-unit system. 

Even if all the statistics do not appear, it should be noted 

that the choice of the values of the parameters takes into 

account a compromise between the values of the Total average 

generation cost, the best costs, the worst costs and the 

execution time for a given number of iterations.  

 

5.1 Choice of the ρ parameter 

 

This part deals with choosing an optimal value for the ρ 

parameter. The fixed initial parameters are m=50; α=0.8; β=30; 

maxIter=70 for 10-unit system and m=200; α=0.3; β=0; 

maxIter=100 for 4-unit system. 

Figure 2 shows the evolution of average total generation 

cost as function of 𝜌 for 𝛼 values ranging from 0.5 to 5. It 

appears that the production cost function diverges for values 

of rho greater than 0.9. For this reason, only the values of rho 

lower than 0.9 will be considered in the rest of this paper. 

As shown in Table 1 and Table 2, a statistical treatment of 

the different values makes it possible to choose as the optimal 

value of ρ=0.3 for 4-unit system, and ρ=0.7 for 10-unit system. 

It should be noted that this parameter does not have significant 

influence on the execution time.  

 

 
 

Figure 2. Average total generation cost as function of ρ 

parameter for some values of α  
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Table 1. Impact of the ρ parameter for 4-unit system 

 
ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

TGC($) 

Best 73444.68 73444.68 73513.87 73444.68 73444.68 73444.68 73444.68 73513.87 73444.68 73444.68 

Average 73869.94 73834.38 73869.18 73823.09 73889.04 73905.04 73860.19 73885.97 73876.67 73866.76 

Worst 74173.59 74249.13 74296.14 74166.94 74242.60 74242.72 74189.82 74184.34 74240.84 74183.12 

Std. Deviation 208.0237 214.4459 221.4563 211.7181 240.2445 227.1776 213.6921 193.7333 228.8980 218.4678 

CV (%) 0.2816 0.2904 0.2998 0.2868 0.3251 0.3074 0.2893 0.2622 0.3098 0.2958 

Time (s) 8.2953 8.2718 7.9408 7.8890 7.8047 8.1670 8.3258 8.1307 7.7551 8.3309 

 

Table 2. Impact of the ρ parameter for 10-unit system 

 
ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

TGC($) 

Best 83522.40 83508.47 83586.62 83598.49 83664.19 83529.86 83508.47 83578.45 83578.45 

Average 83723.71 83706.96 83757.78 83702.63 83735.58 83702.45 83692.28 83737.57 83717.04 

Worst 83952.55 83860.32 83978.32 83814.48 83862.25 83926.08 83801.77 83814.48 83878.43 

Std. Deviation 121.70 94.49 127.38 88.19 59.93 150.22 95.86 73.03 94.26 

CV(%) 0.1454 0.1129 0.1521 0.1054 0.0716 0.1795 0.1145 0.0872 0.1126 

Mean Time (s) 6.69057 6.37258 6.3853 6.1576 6.1986 6.2872 6.3239 6.4200 6.3834 

Std. Deviation 0.0842 0.0925 0.0653 0.0577 0.0775 0,0796 0.1250 0,3304 0,1166 

CV(%) 1.26 1.45 1.02 0.94 1.25 1.26 1.98 5.15 1.83 
TGC: Total Generation Cost 

 
5.2 Choice of the α parameter 

 
For this part, the fixed initial parameters are:  

ρ=0.3; m=100; β=5; maxIter=50 for 4-unit system and ρ=0.7; 

m=50; β=30; maxIter=70 for 10-unit system and 4-unit system. 

Table 3 and Table 4 shows the influence of the 𝛼 parameter on 

Mean total generation cost and mean execution time 

respectively for 4-unit system and 10-unit system. Table 3 

shows an increasing of average total generation cost with a 

relatively constant execution time. It appears that α=0 present 

the best results for 4-unit system. Table 4 shows that for 10-

unit system, the best value for α is 1.5 with a best total 

generation cost and good coefficients of variation for cost and 

execution time. It should be noted, as in the case of ρ, that the 

α parameter do not have a significant influence on the 

computation time. 

 

Table 3. Impact of α parameter for 4-unit system 

 
 Total generation Cost ($) Mean Execution Time (s) 

α Best Average Worst Std. Deviation CV(%) Best average  Worst  Std. Deviation CV(%) 

0 73444.68 73837.86 74180.31 215.77 0.29 6.52 6.66 7.80 0.57 8.62 

0.1 73513.87 73845.68 73958.81 188.82 0.25 6.69 7.40 7.46 0.35 4.70 

0.2 73513.87 73897.22 74171.65 269.76 0.36 7.36 8.14 8.30 0.41 5.01 

0.3 73444.68 73861.06 74160.43 293.50 0.40 7.32 7.74 8.38 0.44 5.66 

0.4 73794.08 73962.99 74160.43 149.71 0.20 7.31 7.78 8.12 0.33 4.25 

0.5 73444.68 73856.84 74196.62 235.10 0.32 6.67 6.72 7.69 0.39 5.53 

1 73513.87 73850.20 74210.34 215.69 0.29 6.37 6.61 7.73 0.37 5.67 

1.5 73444.68 73859.25 74212.64 255.78 0.35 6.67 6.98 7.87 0.34 4.91 

2 73513.87 73882.02 74242.72 220.69 0.30 6.51 7.01 7.70 0.41 5.85 

2.5 73513.87 73884.74 74183.13 211.88 0.29 6.73 7.18 7.72 0.32 4.52 

3 73444.68 73922.80 74240.84 218.24 0.29 6.77 7.30 7.95 0.38 5.26 

3.5 73444.68 73849.36 74249.14 230.55 0.31 6.96 7.39 8.00 0.27 3.67 

4 73444.68 73843.15 74184.34 230.31 0.31 7.04 7.82 8.69 0.66 8.40 

4.5 73444.68 73902.53 74296.14 238.18 0.32 7.00 7.93 9.25 0.81 10.23 

5 73444.68 73852.09 74191.56 243.59 0.33 7.05 7.32 8.31 0.42 5.71 

 

Table 4. Impact of α parameter for 10-unit system 

 
  Total generation Cost ($) Mean Execution Time (s) 

α Best Average Worst Std. Deviation CV(%) Best average Worst Std. Deviation CV(%) 

0.5 83544.81 83583.60 83608.68 19.34 0.00023 3.35 3.45 3.57 0.08 0.024 

1 83535.25 83572.85 83628.61 27.90 0.00033 3.32 3.42 3.56 0.07 0.020 

1.5 83523.92 83574.53 83600.10 23.10 0.00028 3.42 3.50 3.61 0.05 0.015 

2 83560.88 83595.36 83640.87 25.05 0.00030 3.30 3.41 3.60 0.09 0.028 

2.5 83530.30 83586.44 83626.59 32.24 0.00038 3.41 3.54 3.72 0.13 0.037 

3 83586.34 83610.28 83653.27 21.10 0.00025 3.40 3.47 3.65 0.09 0.025 

3.5 83580.14 83611.65 83665.33 22.80 0.00028 3.43 3.51 3.71 0.08 0.024 

4 83571.24 83618.81 83664.08 29.92 0.00036 3.37 3.47 3.66 0.10 0.028 

4.5 83590.25 83623.72 83664.17 21.63 0.00026 3.39 3.52 3.70 0.10 0.030 

5 83595.61 83643.85 83713.91 29.67 0.00035 3.39 3.50 3.72 0.12 0.033 
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5.3 Choice of the β parameter 

 

For this part, the fixed initial parameters are ρ=0.3 α=0; 

m=100; maxIter=50 for 4-unit system and ρ=0.7; α=1.5; 

m=100; maxIter=20 for 10-unit system. 

Figure 3 and Figure 4, and Tables 5 and 6 shows the total 

generation cost as well as the average execution time as a 

function of β parameters. 

For ρ varying from 0.1 to 0.9, we obtain in figure 3 and 

figure 4 the curves that shows the evolution of the average total 

generation cost as a function of β. For the 4-unit system, β 

values are considered in the interval 0 to 25 and for 10-unit 

system are considered in the interval 5 to 87. Figure 3 shows 

for 4-unit system that the total generation cost increases 

significantly with increasing of β. For 10-unit system, as show 

in Figure 4, the total generation cost decreases with increasing 

of β and converge. The details given by the associated 

statistical study are recorded in the Tables 5 and 6. It therefore 

appears that the increase and decrease in β respectively for 4-

unit system and 10-unit system improves the Total generation 

cost without degradation of time. The chosen β value is 0 for 

4-unit system and 86 for 10-unit system, given the fact that 

they present best results.  
 

5.4 Choice of the number of ants 

 

The fixed initial parameters are ρ=0.3; α=0; β=0; 

maxIter=50 for 4-unit system and ρ=0.7; α=1.5; β=86; 

maxIter=20 for 10-unit system. 

Tables 7 and 8 give the total generation cost and iteration 

time according to the number of ants. By varying the number 

of ants from 50 to 1100 for 4-unit system and from 10 to 1100 

for 10-unit system, it appears that this parameter significantly 

improves the total generation cost. However, the major 

drawback remains the increase of execution time. It is 

therefore appropriate, depending on the needs, to make a good 

choice of 𝑚. In this paper, the choice of m is made so that we 

have a reduced cost and a short time as far as possible. Taking 

this into account the values of m chosen are 200 for 4-unit 

system and 300 for 10-unit system. 

 

 
 

Figure 3. Average total generation cost as function of β parameter for 4-unit system 
 

 
 

Figure 4. Average total generation cost as a function of β parameter 
 

Table 5. Impact of 𝛽 parameter on Total Generation cost and mean iteration time for 4-unit system 

 

β 0 0.1 0.2 0.3 0.4 0.5 0.6 

TGC($) 

Best 73444.68 73444.68 73444.68 73444.68 73534.46 73444.68 73816,98 

Average 73458.52 73836.75 73790.09 73728.81 73998.83 73833.31 73951.51 

Worst 73513.87 74184.55 73958.81 73959.63 74204.93 74160.43 74160.07 

Std. Deviation 27.67 233.93 130.29 203.27 215.00 200.09 126.35 

CV (%) 0.04 0.32 0.18 0.27 0.29 0.27 0.17 

Time (s) 7.23 7.41 7.44 7.37 7.37 7.14 7.26 

β 5 10 15 20 25 

TGC($) 

Best 73444.68 73886.38 74086.69 74610.76 74794.31 

Average 73638.07 74090.02 74534.65 74746.22 75057.12 

Worst 73842.16 74242.60 74715.36 74796.93 75165.09 

Std. Deviation 146.15 129.59 169.97 51.14 114.23 

CV (%) 0.20 0.17 0.23 0.07 0.15 

Time (s) 7.33 7.34 7.38 7.32 7.32 
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Table 6. Impact of β parameter on Total Generation cost and mean execution time 

 
β 5 10 15 20 25 30 35 40 

TGC($) 

Best 84157.57 84039.45 83873.90 83791.23 83708.33 83594.83 83514.36 83486.53 

Average 84218.05 84107.07 83987.79 83860.38 83785.94 83653.15 83570.96 83503.67 

Worst 84268.64 84202.36 84051.36 83968.87 83835.47 83682.97 83614.78 83542.30 

Std. Deviation 36.40 51.33 48.62 50.81 42.09 29.26 36.40 17.22 

CV (%) 0.043 0.061 0.058 0.060 0.050 0.035 0.043 0.021 

Time (s) 8.11 8.29 8.16 8.30 8.13 8.20 8.56 8.16 

β 45 50 55 60 65 70 75 80 

TGC ($) 

Best 83438.04 83425.99 83421.55 83407.51 83410.24 83406.24 83393.03 83393,03 

Average 83463.90 83437.52 83428.58 83419.78 83421.16 83415.43 83410.84 83411,52 

Worst 83493.70 83447.16 83440.15 83431.50 83430.66 83426.76 83420.30 83421,19 

Std. Deviation 16.73 5.85 5.64 6.38 5.67 7.29 7.30 7.59 

CV (%) 0.020 7.01E-03 6.76E-03 7.64E-03 6.80E-03 8.74E-03 8.76E-03 9.10E-03 

Time (s) 8.21 7.99 8.06 8.07 8.05 8.00 8.02 8.06 

β 85 86 87 

TGC ($) 

Best 83393.03 83393.03 83393.03 

Average 83412.77 83408.11 83410.16 

Worst 83420.97 83416.16 83417.19 

Std. Deviation 7.894089 6.94 6.82 

CV (%) 9.46E-03 8.32E-03 8.17E-03 

Time (s) 8.16 8.43 8.09 

 

Table 7. Total generation cost and mean execution time depending of the number of ants for 4-unit system 

 
Ants Number 50 100 150 200 250 300 400 

TGC($) 

Best 74003.21 73794.08 73444.68 73444.68 73513.87 73444.68 73534.46 

Average 74317.70 74078.36 73828.17 73733.85 73824.16 73861.77 73782.78 

Worst 74729.33 74251.64 74080.39 74013.05 74011.61 74156.83 73958.81 

Std. Deviation 218.93 190.21 138.06 191.13 153.55 258.76 153.62 

CV(%) 0.29 0.26 0.19 0.26 0.21 0.35 0.21 

Time (s) 

Best 2.23 3.89 5.71 7.29 9.01 10.58 17.38 

Average 2.49 4.02 5.95 7.58 9.33 12.58 18.54 

Worst 3.20 4.26 6.38 7.95 10.71 15.84 20.63 

Std. Deviation 0.26 0.10 0.24 0.22 0.49 2.28 1.15 

CV(%) 10.59 2.62 4.03 2.89 5.26 18.15 6.21 

Ants Number 500 600 700 800 900 1000 1100 

TGC ($) 

Best 73444.68 73444.68 73513.87 73444.68 73444.68 73444.68 73444.68 

Average 73724.12 73599.94 73675.17 73619.36 73701.97 73563.86 73610.68 

Worst 73868.33 73868.33 73817.54 73879.13 73865.79 73799.14 73817.19 

Std. Deviation 148.50 170.57 146.27 169.25 155.96 125.48 173.77 

CV(%) 0.20 0.23 0.20 0.23 0.21 0.17 0.24 

Time (s) 

Best 21.89 25.72 28.83 29.35 30.24 33.53 38.26 

Average 24.06 28.32 32.70 34.34 33.09 35.57 43.31 

Worst 26.83 31.82 38.30 38.83 41.95 42.51 47.76 

Std. Deviation 1,49 2.00 3.05 2.72 4.14 2.80 3.43 

CV(%) 6,18 7.07 9.32 7.91 12.51 7.88 7.91 

 

Table 8. Total generation cost and mean execution time depending of the number of ants for 10-unit system 

 
Ants Number 10 50 100 200 300 400 500 

TGC ($) 

Best 83450.47 83437.78 83382.93 83375.32 83371.21 83371.21 83371,21 

Average 83644.01 83579.68 83504.95 83489.02 83441.69 83448.74 83440,42 

Worst 83730.27 83686.39 83598.99 83536.31 83475.57 83499.70 83486,49 

Std. Deviation 42.83 73.34 51.749 52.85 29.16 32.90 30.67 

CV(%) 0.00051 0.00088 0.00062 0.00063 0.00035 0.00039 0.00037 

Time (s) 1.24 2.33 3.54 4.68 6.42 8.16 10.06 

Ants Number 600 700 800 900 1000 1100  

TGC ($) 

Best 83371.21 83371.21 83375.32 83371.21 83371.21 83371.21 

Average 83432.58 83439.07 83429.15 83422.72 83432.58 83418.03 

Worst 83459.18 83477.25 83460.32 83460.32 83455.08 83469.90 

Std. Deviation 25.82 30.88 23.54 25.74 24.29 25.17 

CV(%) 0.030 0.037 0.028 0.031 0.029 0.030 

Time (s) 11.61 13.90 15.32 17.38 19.10 20.47 
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Taking into account all the previous considerations, the 

values retained for the parameters for 4-unit system and 10-

unit system are given in Table 9. 

 

Table 9. Optimal parameters retained 

 
Parameters 4-unit system 10-unit system 

β 0 86 

ρ 0.3 0.7 

α 0 1.5 

m 200 300 

 

 

6. RESULTS AND DISCUSSIONS 

 

In this section, we present the results that come out of our 

various simulations of proposed MAX-MIN Ant System-

Quadratic programming algorithm (MMAS-QP). 

 Programming and simulation have been done in Matlab 

software environment version 9.2.0.538062 (R2017a) on a 

computer Intel(R) Core (TM) i5-3340M CPU @ 2.70GHz (4 

CPUs), ~2.7GHz, and 8192MB of RAM. The operating 

system installed is Windows 10 professional 64 bits (10.0, 

version 19041). 

The aim here is to show the performances of the algorithm.  

Two different systems of data are chosen to solve unit 

commitment problem because they are constantly used for 

validating the results of this kind of problem [35–38]. We have 

tested system 1 composed by 4 units over a running period of 

8 hours and tested the system 2 composed by 10 units over a 

running period of 24 hours [34, 39]. The initial parameters 

used are m=200, α=0, β=0, ρ=0.3, Q=0.9, 𝑃𝑏𝑒𝑠𝑡 = 0.05 for 4-

unit system and m=300, α=1.5, β=86, ρ=0.7, Q=0.9, 𝑃𝑏𝑒𝑠𝑡 =
0.05 for the 10-unit system. 

Tables 10 and 11 show the results of the units switching 

on/off programs, the powers generated by each generator over 

the planning period as well as the cumulative costs, 

respectively for the systems of 4 units and 10 units. We can 

extract from these tables the best total generation cost obtained 

on test system 1 for the 8 hours of the planning horizon, 

namely $ 73,444.69. For test system 2 the total generation cost 

including the running cost of the generators and their start-up 

costs over the 24 hours period is $ 83,371.2087. Answer 

convergence graphs are presented in Figure 5 and Figure 6 for 

respectively 4-unit system and 10-unit system. Three 

convergence graphs are given as solutions for each units 

system. Note that the best times to find the best solutions are 

3.0155 seconds and 4.0641seconds respectively for 4 unit 

system and 10 unit system. 

 

6.1 Comparison of results 

 

Table 12 establish a comparison between the total 

generation costs and the computational time obtained with the 

proposed MMAS-QP algorithm and those obtained in the 

literature by other algorithms using the same system of 4-unit 

on 8 hours [34, 39]. The results allow to assert that the 

proposed algorithm significantly improves the quality of the 

solution with a cost difference ranging from $488.4 to $1787.2 

(change from 0.661 to 2.376%) on 8 hours. Table 13 also 

compare the results of our algorithm and some others 

algorithms found in the literature for the 10-unit system on 24 

hours. We also note that for this dataset, the algorithm shows 

better results than some existing algorithms for the same 

dataset. Thus, the difference in cost between the proposed 

algorithm and some others varies from $104.05 to $281.2 on 

24 hours. However, [35] was able to produce a better cost 

generation than us. This can be justified by the fact that the 

reduction of the number of states to improve the computational 

time impacts the quality of our solution. In both Tables 12 and 

13, we have recorded the different computational times despite 

the difference of computer specifications. This allows us to 

affirm that, for 4-unit system and 10-unit system our algorithm 

provides the best solution cost in a reasonable timeframe with 

one of the best times. This is certainly due to the reduction of 

the number of states during the economic dispatching 

operation and also above all to the adjustment of heuristic 

parameters. 
 

Table 10. UCP Results with MMAS for 4-units system 
 

Hour 
Demand 

(MW) 

Status of Units 
Power generated for each unit (MW) 

Power generations of Units (MW) 
Total Power Generated 

(MW) 

Fuel 

Cost ($) 

Transition 

Cost ($) 
Total cumulative 

Cost ($) 
1 2 3 4 1 2 3 4 

1 450 1 1 0 0 300 150 0 0 450 9109.36 0 9109.36 

2 530 1 1 0 0 300 230 0 0 530 10593.04 0 19702.40 

3 600 1 1 0 1 300 250 0 50 600 12412.86 0.02 32115.28 

4 540 1 1 0 0 300 240 0 0 540 10782.28 0 42897.56 

5 400 1 1 0 0 276.19 123.81 0 0 400 8205.79 0 51103.35 

6 280 1 1 0 0 196.19 83.81 0 0 280 6067.15 0 57170.50 

7 290 1 1 0 0 202.86 87.15 0 0 290 6243.83 0 63414.33 

8 500 1 1 0 0 300 200 0 0 500 10030.36 0 73444.69 
 

     
     Figure 5. Answer convergence graph for 4-unit system           Figure 6. Answer convergence graph for 10-unit system 
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Table 11. Results provided by MMAS for UCP for 10-Units system 

 

Hour 
Demand 

(MW) 

Power generated for each unit (MW) 

Power generations of Units (MW) 

Total Power 

Generated 

(MW) 

Fuel  

Cost ($) 

Transition 

Cost ($) 

Total 

cumulative 

Cost ($) 1 2 3 4 5 6 7 8 9 10 

1 1170 
20
0 

125.4
1 

15
0 

250 
122.4

5 
105.9

4 
77.12 81.32 0 

57.76
3 

1170 2443.52 274 2717.52 

2 1250 
20

0 

128.3

2 

15

0 
250 

125.6

7 

109.9

1 
79.32 83.46 

63.8

9 

59.41

4 
1250 2612.70 101 5431.23 

3 1380 
20

0 

145.7

7 

15

0 

280.1

0 

144.9

9 

133.6

9 
92.52 96.29 

76.6

2 
60 1380 2880.38 0 8311.61 

4 1570 
20
0 

176.2
4 

15
0 

349.4
5 

178.7
3 

150 
115.5

7 
110 80 60 1570 3295.82 0 11607.43 

5 1690 
20

0 

202.6

1 

15

0 

409.4

5 

207.9

3 
150 120 110 80 60 1690 3578.66 0 15186.10 

6 1820 
20

0 

232.2

7 

15

0 

476.9

5 

240.7

8 
150 120 110 80 60 1820 3906.41 0 19092.51 

7 1910 
20
0 

254.5
5 

15
0 

520 
265.4

4 
150 120 110 80 60 1910 4146.40 0 23238.92 

8 1940 
20

0 

270.0

0 

15

0 
520 280 150 120 110 80 60 1940 4229.72 0 27468.63 

9 1990 
20

0 

320.0

0 

15

0 
520 280 150 120 110 80 60 1990 4378.19 0 31846.82 

10 1990 
20
0 

320.0
0 

15
0 

520 280 150 120 110 80 60 1990 4378.19 0 36225.01 

11 1970 
20
0 

300.0
0 

15
0 

520 280 150 120 110 80 60 1970 4317.06 0 40542.07 

12 1940 
20

0 

270.0

0 

15

0 
520 280 150 120 110 80 60 1940 4229.72 0 44771.79 

13 1910 
20

0 

254.5

5 

15

0 
520 

265.4

4 
150 120 110 80 60 1910 4146.40 0 48918.20 

14 1830 
20
0 

234.5
5 

15
0 

482.1
4 

243.3
0 

150 120 110 80 60 1830 3932.55 0 52850.74 

15 1870 
20

0 

243.6

8 

15

0 

502.9

1 

253.4

1 
150 120 110 80 60 1870 4038.40 0 56889.15 

16 1830 
20

0 

234.5

6 

15

0 

482.1

4 

243.3

0 
150 120 110 80 60 1830 3932.55 0 60821.69 

17 1690 
20
0 

202.6
1 

15
0 

409.4
5 

207.9
3 

150 120 110 80 60 1690 3578.66 0 64400.36 

18 1510 
20

0 

164.5

7 

15

0 

322.8

8 

165.8

1 
150 

106.7

4 
110 80 60 1510 3160.87 0 67561.23 

19 1420 
20

0 

150.8

3 

15

0 

291.6

2 

150.6

0 

140.5

9 
96.35 

100.0

1 
80 60 1420 2965.24 0 70526.46 

20 1310 
20
0 

136.9
9 

15
0 

260.1
1 

135.2
6 

121.7
2 

85.87 89.83 
70.2

1 
60 1310 2734.68 0 73261.14 

21 1260 
20

0 

149.5

4 
0 

288.6

7 

149.1

6 

138.8

3 
95.37 99.06 

79.3

7 
60 1260 2614.26 30 75905.40 

22 1210 
20

0 

143.2

6 
0 

274.3

9 

142.2

1 

130.2

7 
90.62 94.45 

74.7

9 
60 1210 2508.74 0 78414.14 

23 1250 
20
0 

148.2
8 

0 
285.8

5 
147.7

7 
137.1

2 
94.42 98.14 

78.4
6 

60 1250 2593.01 0 81007.16 

24 1140 
20

0 

134.4

8 
0 

254.4

0 

132.4

8 

118.3

0 
83.98 87.99 

68.3

8 
60 1140 2364.05 0 83371.21 

 

Table 12. Comparison of total cost of production with other methods for 4-unit systems 

 

Hours 

ILR [37] LR-PSO [37] MACO [35]  

Hybrid HS and 

Random Search 

Algorithm [36] 

IBCS [38] BGWO [40] 
Proposed 

MMAS-QP 

Units Units Units Units Units Units Units 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

2 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 
3 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 

4 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 

5 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 
6 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0 

7 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0 

8 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

Total cost ($) 75231.9 74808 74520.3 74476.0 74240.7 73933.1 73444.7 

Difference ($) 1787.2 1363.3 1075.6 1031.3 796.0 488.4 0 

Change (%) 2.376 1.822 1.443 1.385 1.072 0.661 0 
Best time (s) - - - 20.68 1.91 3.455 3.015 

Computer 

specifications 
/ / / 

Intel Core 

i5-3470S 
CPU@2.90 

GHz, 

4.00 GB RAM 

Intel Core i5-

6200U 
CPU@2.3 

GHZ 

4GB RAM 

i5 

INTEL 

processor, 

16 GB RAM 

Intel Core i5-

3340M 

CPU @ 2.70GHz 

8GB of RAM 

/: Means that it is not necessary -: Means that it is not reported in the referred literature. 
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Table 13. Comparison of total cost of production with other methods for 10-unit systems 

 

 

Hours 

Proposed  

MMAS-QP 

BRANCH AND 

BOUND [34]  

Ant colony 

system [34] 

Dynamic 

programming [34] 
MACO [35] EACO [41] 

Units Units Units Units Units Units 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 
1 2 3 4 5 6 7 8 9 

10 
1 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 
9 10 

1 2 3 4 5 6 7 8 
9 10 

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 
1 1 1 1 1 1 1 1 

1 1 

1 1 1 1 1 1 1 1 

0 1 

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 
1 1 1 1 1 1 1 0 

1 1 
1 1 1 1 1 1 1 1 

0 1 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 
1 1 1 1 1 1 1 0 

1 1 

1 1 1 1 1 1 1 1 

1 1 

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 
1 1 1 1 1 1 1 1 

1 1 

1 1 1 1 1 1 1 1 

1 1 

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 
1 1 1 1 1 1 1 1 

1 1 
1 1 1 1 1 1 1 1 

1 1 

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 
1 1 1 1 1 1 1 1 

1 1 

1 1 1 1 1 1 1 1 

1 1 

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 

1 1 1 1 1 1 1 1 

1 1 

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 

1 1 1 1 1 1 1 1 

1 1 

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 
1 1 1 1 1 1 1 1 

1 1 

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 

1 1 1 1 1 1 1 1 

1 1 

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 

1 1 1 1 1 1 1 1 

1 1 

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 
1 1 1 1 1 1 1 1 

1 1 

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 

1 1 1 1 1 1 1 1 

1 1 

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 

1 1 1 1 1 1 1 1 

1 1 

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 
1 1 1 1 1 1 1 1 

1 1 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 

1 1 1 1 1 1 1 1 

1 1 

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 

1 1 1 1 1 1 1 1 

1 1 

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 
1 1 1 1 1 1 1 1 

1 1 

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 

1 1 1 1 1 1 1 1 

1 1 

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 0 

1 1 

1 1 1 1 0 1 1 1 

1 1 

21 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 0 

1 1 
1 1 1 1 0 1 1 1 

1 1 

22 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 0 

1 1 

1 1 0 1 0 1 1 1 

1 1 

23 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 0 

1 1 

1 1 0 1 0 1 1 1 

1 1 

24 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 0 

1 1 
1 1 0 1 0 1 1 1 

1 1 

Total cost ($) 83371.2 83475.25 83491.42 83652.4 83051.1033 83240.17 

Difference ($) 0 104.05 120.22 281.2 - - 

Change (%) 0 0.125 0.144 0.336 - - 

Best Time (s) 4.06 383.56 112.54 13.05 - - 

Computer 

specifications 

Intel Core i5-3340M  
CPU @2.70GHz 8 

GB of RAM 

Pentium IV 3 GHz, 500 MB of RAM / / 

 

 

7. CONCLUSION 

 

In this article, a new hybrid algorithm for solving the 

thermal unit commitment problem was proposed and 

performed. 

This new approach is based on the MMAS (MAX-MIN Ant 

System) algorithm coupled with Quadratic Programming. The 

implementation on MATLAB environment. 

Several repetitive and consecutive tests of our algorithm 

were carried out on two datasets, namely a set of 4 thermal 

units and one of 10 thermal units. Considering the 4-unit 

system, we got a best total generation cost of $73,444.69 with 

an execution time of 3.0155s and for the 10-unit system a best 

total generation cost of $83,371.2087 with an execution time 

of 4.0641s. In both cases, the results obtained were compared 

with those existing in the literature.  

Comparisons show that for the majority of cases, the 

proposed algorithm significantly improves the quality of the 

solution in terms of cost while improving execution time. 
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