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This document traces the development of a new cryptosystem using two circuits ensured 

by a deep Vigenere classical technique improvement. This new technique employs several 

dynamic substitutions matrices attached to chaotic replacement functions; whose 

construction will be detailed. The first round will start by modifying the seed pixels based 

on the initial values calculated from the original image, and will be infected through the 

chaotic map used to overcome the uniform image problem, followed by the injection of 

Vigenere technology improvements. The output vector will be subdivided into three sized 

blocks for future application of deeply improved genetic mutations to better adapt to 

medicine and color image encryption. The second round will increase the complexity of 

the attack and improve the installed systems. Simulations performed on a large number of 

images of different sizes and formats ensure that our approach is not exposed to known 

attacks.  
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1. INTRODUCTION

The rapid development of chaos theory in mathematics 

provides researchers with opportunities to further improve 

some classic encryption systems. In front of this great security 

focus, many techniques for color image encryption have 

flooded the digital world, mostly exploiting number theory and 

chaos [1, 2]. Others are attempting to update their policies by 

improving some classical techniques, such as Hill [3, 4], Cesar, 

Vignere [5, 6], Feistel [7, 8]. 

1.1 Vigenere's classical technique 

This technology is based on static (𝑉)matrix defined by the 

following algorithm. Despite the knowledge of the substitution 

matrix, this method has been able to withstand more than three 

centuries. 

Algorithm 1. Classical Vigenere 

{

𝐹𝑖𝑠𝑡 𝑅𝑜𝑤
𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 26
𝑉(1, 𝑖) = 𝑖
𝑁𝑒𝑥𝑡 𝑖

𝑓𝑜𝑙𝑙𝑜𝑦𝑖𝑛𝑔 𝑅𝑜𝑤𝑠
𝐹𝑜𝑟 𝑖 = 2 𝑡𝑜 26
𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 26

𝑉(𝑖, 𝑗) = 𝑉(𝑖 − 1, (𝑗 + 1), 26)

𝑁𝑒𝑥𝑡 𝑗, 𝑖

Let (𝑃): plain text, (𝐶): cypher text; (𝐾): Encryption key, 

(𝑉) Vigenere matrix and (𝑙): length of clear text. So 

{
𝐶𝑖 = 𝑉(𝑃𝑖 , 𝐾𝑖) = ( 𝑃𝑖 + 𝐾𝑖)      𝑚𝑜𝑑 26

𝑃𝑖 = 𝑉(𝐶𝑖 , 𝐾𝑖) = ( 𝑃𝑖 − 𝐾𝑖)     𝑚𝑜𝑑 26
(1) 

Even though Vigenere's matrix was known, the encryption 

was able to withstand several centuries. But, Babagh's 

cryptanalysis is not efficient in not knowing the size of the 

encryption key. Several attempts to improve Vigenere's 

technique have invaded the digital world we quote [9, 10]. In 

this work, the new structure of the substitution matrix and its 

attached replacement function will be described in detail. 

1.2 Problematic 

In the conventional Vigenere system, the recognition 

problem of the private size key, exposes the algorithm to 

statistical attacks. discovered and detailed by Babagh. The 

knowledge of the substitution matrix is an opportunity to 

expose the conventional system to brute force attacks. 

Moreover, in the absence of the broadcast operation and the 

chaining facility, all classical systems remain exposed to 

differential attacks. In addition, block ciphering independently 

facilitates the implementation of dictionary and statistical 

attacks. 

1.3 Our contribution 

Our contribution is to improve the encryption structure and 

function for replace the substitution matrix. To this end, two 

improved encryption functions will be constructed and two S-

Boxes will be generated in different ways from the two most 

widely used chaotic graphs in the world of cryptography [11, 

12]. In addition, the principle of double encryption will be 

applied to all pixels of the original image, and a chaotic 

broadcast will be installed in each tower, which will increase 

the impact of the avalanche effect and protect the system from 

differential attacks. Contrary to the classic method, our system 

will use different S-Boxes for decoding, and different 
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encryption functions will be used. 

Article Highlights 

This new algorithm offers two tricks ensured by a deep 

improvement of Vigenere. We mention the most important 

changes made. 

➢ Chaotic Sequences Development 

➢ Prepare the image to be encrypted 

➢ Vigenere upgrade 

o First Vigenere’s rotation  

o Genetic mutation applied 

➢ Second Vigenere’s lap 

➢ Chaotic permutation application 

 

 

2. THE PROPOSED METHOD 

 

Based on chaos [13, 14], this new technology which acts at 

the pixel level by two Vigenere rotations provided by a large 

dynamic substitution’s matrices and replacement functions 

[15-17], is based on many steps 

Step 1: Chaotic Sequences Development  

In order to build a new symmetric encryption algorithm 

using a large secret key, we will set up three chaotic sequences 

most used in the field of cryptography. Such a choice is due to 

the simplicity of their elaboration and integration in the 

encryption system, as well as to their great sensitivity to the 

initial parameters. 

 

2.1 The logistics map 

 

The logistic map (un) [18, 19] is a recurrent sequence 

described by a simple polynomial of second degree defined by 

the following equation  

 
𝑢0 ∈ ]0,5 1[, 𝜇 ∈ [3,75    4]

𝑢𝑛+1 = 𝜇𝑢𝑛(1 − 𝑢𝑛)
 (2) 

 

This logistic card is widely used in the field of cryptography. 

This is due to its simplicity and its high sensitivity to initial 

conditions 

 

2.2 Piecewise Linear Chaotic Map (PWLCM) 

 

It is a real linear (wn) sequence [20] by pieces defined by the 

equation below  

 
{𝑤𝑛 = 𝑓(𝑤𝑛−1)

=

{
 
 

 
 

         

𝑤𝑛−1    

𝑑
              𝑖𝑓   0 ≤ 𝑤𝑛−1 ≤ 𝑑

𝑤𝑛−1 − 𝑑

0.5 − 𝑑
          𝑖𝑓 𝑑 ≤ 𝑤𝑛−1 ≤ 0.5

𝐸𝑙𝑠𝑒
𝑓(1 − 𝑤𝑛−1)    

 
(3) 

 

2.3 The Skew Tent Map (SKTM) 

 

The Skew tent [21] map (vn) will be redefined as the next 

equation  

 

{
 
 

 
 
v0 ∈ ]0 1[ p ∈ ]0,5 1[

vn+1 = 

{
 

 
vn
p
 if 0 ≺ vn ≺ p

1 − vn
1 − p

 if p ≺ vn≺1  

 (4) 

The combination of these three chaotic maps will be used to 

generate all the sub keys necessary for the proper functioning 

and operation of our new technology. 

Step 2: Chaotic used Vector design 

Our work requires the construction of three chaotic vectors 

(CL), (KL) and (ML), with a coefficient of (G256), and (CR), 

(RC) and (BC) are three binary vectors regarded as the control 

vector. We use the Xor operator defined by the following table. 

 

⨁ 0 1 

0 0 1 

1 1 0 

 

This operator has the following properties 

 

⨁𝑃𝑟𝑜𝑝𝑟𝑡𝑦𝑠: 
∀ 𝑥 ∈ ℕ 𝑥⨁𝑥 = 0 

𝐼𝑓 

𝑧 = 𝑥⨁𝑦 

𝑇ℎ𝑒𝑛 

𝑥 = 𝑧⨁𝑦 

(5) 

 

In this work, three chaotic vectors with coefficients in (g) 

will be constructed for the generation of random images for 

confusion with the original image and the construction of 

encryption function of both rounds, and on the other hand for 

the generation of the encryption keys. 

This construct is seen by the following algorithm 

 

Algorithm 2. Generating chaotic vectors 

{
 
 
 
 
 

 
 
 
 
 

 
𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 3𝑛𝑚

𝐶𝐿(𝑖) = 

𝑚𝑜𝑑 (𝐸 (
𝑆𝑢𝑝(𝑢(𝑖), 𝑣(𝑖)) + 𝑤(𝑖)

2
∗ 1011, 253) + 2)

𝐾𝐿(𝑖) = 

𝑚𝑜𝑑 (𝐸 (
𝑢(𝑖) + 𝑣(𝑖) + 𝑤(𝑖)

3
∗ 1011, 252) + 3)

𝑀𝐿(𝑖) = 𝐸 (
𝐺𝐿(𝑖) + 𝑀𝑅(𝑖)

2
)

     𝑁𝑒𝑥𝑡 𝑖          

 

 

The binary chaotic control vectors design 

 

Algorithm 3. Binary vector generation 

{
 
 
 
 

 
 
 
 

𝑓𝑜𝑟  𝑖 = 1 𝑡𝑜 3𝑛𝑚

𝑖𝑓 𝑢(𝑖) ≥ 𝑣(𝑖) 𝑡ℎ𝑒𝑛

𝑅𝐶(𝑖) = 0 𝑒𝑙𝑠𝑒 𝑅𝐶(𝑖) = 1

𝑖𝑓 𝑣(𝑖) ≥ 𝐼𝑛𝑓(𝑢(𝑖), 𝑤(𝑖))𝑡ℎ𝑒𝑛

𝐵𝐶(𝑖) = 0 𝑒𝑙𝑠𝑒 𝐵𝐶(𝑖) = 1

𝑖𝑓 𝐶𝐿(𝑖) ≥ 𝐾𝐿(𝑖)𝑡ℎ𝑒𝑛

𝐶𝑅(𝑖) = 0 𝑒𝑙𝑠𝑒 𝐶𝑅(𝑖) = 1
𝐸𝑛𝑑 𝑖𝑓
𝑁𝑒𝑥𝑡 𝑖  

 

 

The binary vectors will be used to control the construction 

of the S-Boxes and the application of the encryption function. 

Step 3: Prepare the image to be encrypted 

Before transmitting the original image to the encryption 

center, it should be prepared in advance, for this it should 

include the following activities. 
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2.4 Original image vectoring  

 

After the three (𝑅𝐺𝐵) color channels extraction and their 

conversion into size vectors (𝑽𝒓), (𝑽𝒈), (𝑽𝒃) (𝟏, 𝒏𝒎) each, 

a concatenation is established to generate a vector 

 𝑿(𝒙𝟏, 𝒙𝟐, . . . . . . . . , 𝒙𝟑𝒏𝒎) of size (1,3𝑛𝑚), by the following 

algorithm: 

 

Algorithm 3.1 Original image vectorization 

{
 
 

 
 

 
𝑓𝑜𝑟  𝑖 = 1 𝑡𝑜 𝑛𝑚

𝑋(3𝑖 − 2) = 𝑉𝑟(𝑖)

𝑋(3𝑖 − 1) = 𝑉𝑔(𝑖)

𝑋(3𝑖) = 𝑉𝑏(𝑖)
𝑁𝑒𝑥𝑡 𝑖

 

 

This is the first decrease in the correlation of the original 

image. 

 

2.5 First initialization value design 

 

First, the(𝐼𝑉1) initialization value must be recalculated to 

change the value of the starting pixel. Ultimately, the (𝑰𝑽𝟏) 
value is provided by the next algorithm. 

 

Algorithm 4. 1st initialization value computing. 

{
  
 

  
 

 
𝑓𝑜𝑟 𝑖 = 2 𝑡𝑜 3𝑛𝑚

𝐼𝑓 𝐶𝑅(𝑖) = 0 𝑇ℎ𝑒𝑛

𝐼𝑉1 = 𝐼𝑉1⨁  𝑋(𝑖)⨁  𝐶𝐿(𝑖)

𝐸𝑙𝑠𝑒
𝐼𝑉1 = 𝐼𝑉1⨁ 𝑋(𝑖)⨁ 𝐾𝐿(𝑖) 

𝑁𝑒𝑥𝑡 𝑖

 

 

We notice, that the computation of this initialization value 

is entirely controlled by the chaotic vector (𝐶𝑅). This value 

will only be used to change the value of the start pixel and then 

start the encryption process. 

Step4: Vigenere upgrade  

This new technique requires the generation of two dynamic 

substitution matrices (𝑆𝐵1) 𝑎𝑛𝑑 (𝑆𝐵2) of size (256,256) for 

the first round, and another matrix (𝑀𝐵) of size (256,3nm), 

for the second round. These two rounds will be provided by 

two substitution functions (𝑉1)and (𝑉2). 
 

2.6 Matrices construction (𝐕𝐆𝟏) 𝐚𝐧𝐝 (𝐕𝐃𝟏) 
 

In a first step, two permutations (𝑃1) and (𝑃2) are generated 

by the following process: 

➢ permutation (𝑃1) obtained by descending ordering the 

first 256 𝑣𝑎𝑙𝑢𝑒𝑠 of the sequence (u)  
➢ permutation (𝑃2) obtained by increasing the ordering 

the first 256 𝑣𝑎𝑙𝑢𝑒𝑠 of the sequence (𝑣), 
with the following restrictions 

 

{
𝑖𝑓(𝑃1(𝑖))  = 256 𝑡ℎ𝑒 (𝑃1(𝑖)) = 0

𝑖𝑓(𝑃2(𝑖)) = 256 𝑡ℎ𝑒 (𝑃2(𝑖)) = 0
 (6) 

 

We note that the construction of the two matrices is 

completely determined by the (𝐶𝑅) decision vector. 

 

Example: in (𝑮𝟖) 
 

This is a chaotic displacement, which is applied to the level 

of the previous row of the chaotic vector value selection. 

 
 

The generation of the two matrices (VG1) and (VD1) is 

determined by the following algorithm 

 

Algorithm 5. Dynamic S-Box Building 

𝐹𝑖𝑠𝑡 𝑙𝑖𝑛𝑒
𝐹𝑜𝑟  𝑖 = 1 𝑡𝑜 256
𝑉𝐺1(1, 𝑖) = (𝑃1(𝑖))

𝑉𝐷1(1, 𝑖) = (𝑃2(𝑖))

𝑁𝑒𝑥𝑡 𝑖

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑁𝑒𝑥𝑡 𝑙𝑖𝑛𝑒𝑠
𝐹𝑜𝑟 𝑖 = 2  𝑡𝑜 256
𝐹𝑜𝑟 𝑗 = 1  𝑡𝑜 256

𝐼𝑓 𝐶𝑅(𝑖) = 0 𝑡ℎ𝑒𝑛

𝑉𝐺1(𝑖, 𝑗) = 𝑉𝐺1(𝑖 − 1, 𝑃1(𝑗))

𝑉𝐷1(𝑖, 𝑗) = 𝑉𝐷1(𝑖 − 1, 𝑃2(𝑗))

𝐸𝑙𝑠𝑒
𝑉𝐺1(𝑖, 𝑗) = 𝑉𝐺1(𝑖 − 1, 𝑃2(𝑗))

𝑉𝐷1(𝑖, 𝑗) = 𝑉𝐷1(𝑖 − 1, 𝑃1(𝑗))

𝐸𝑛𝑑 𝑖𝑓
𝑛𝑒𝑥𝑡 𝑗, 𝑖

 

 

2.7 Classic Vigenere function expression 

 

These two matrices will be used together in the encryption 

process and will be completely under vector control (𝑉𝐶). We 

remember to pass Vigenere's classic replacement function 

through the following formula 

 

{𝑌(𝑖)   = 𝑉𝐺1(𝐾, 𝑋(𝑖)) (7) 

 

(𝐾) key duplicated to the size of the text to be encrypted. 

 

2.8 New Vigenere’s mathematica expression 

 

The following equation illustrates the effective expression 

of the 𝑌(𝑖)  image of the pixel 𝑋(𝑖)  through the new Hill 

technology. 

 

Algorithm 6. Replacement functions construction 

𝑉1(𝑋(𝑖))= 

{
 
 

 
 

 
𝑖𝑓 RC(𝑖) = 0 𝑡ℎ𝑒𝑛

𝑌(𝑖)  = 𝑉𝐺1(𝐶𝐿(𝑖), 𝑉𝐷1(𝐾𝐿(𝑖), X(𝑖)) ⊕ ML(𝑖) )

𝑒𝑙𝑠𝑒
𝑌(𝑖) = 𝑉𝐷1(𝐾𝐿(𝑖), 𝑉𝐺1(𝑀𝐿(𝑖), X(𝑖)) ⊕ C𝐿(𝑖) )

 

 

We notice that the replacement function of the first round is 

supervised by the control binary vector (𝑅𝐶).  This ensures 

that when a single bit in the vector (𝑅𝐶) is modified, a new 

replacement function will be generated. 

 

2.9 First-round spread function expression 

 

The first round will be equipped with a powerful diffusion 

function to connect encrypted pixels with subsequent 

transparent pixels to increase the impact of the avalanche 

effect and protect the system from any differential attacks. The 

expression of this new diffusion function is given by the 

formula below 

 

∀ i > 1 Φ(𝑋(𝑖)) = 𝑉𝐷1(𝑀𝐿(𝑖), 𝑋′(𝑖 − 1)⨁𝑋(𝑖)) (8) 
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2.10 The first-round analysis 

 

This first round is defined by the following algorithm,  

 

𝑊𝑒 𝑛𝑜𝑡𝑒: 𝑉1(𝑋(i)) = 𝑌(𝑖) (9) 

 

So 

 

Algorithm 7. 2st initialization value computing 

{
 
 

 
 
𝑋′(1) = 𝐼𝑉1⨁𝑋(1)

𝑌(1) = 𝑉1(𝑋′(1))

𝐹𝑜𝑟 𝑖 = 2 𝑡𝑜 3𝑛𝑚
𝛼 = Φ(𝑋(𝑖))

𝑌(𝑖) = 𝑉1(𝛼) ⊕ 𝐾𝑅(𝑖)
𝑁𝑒𝑥𝑡 𝑖

 

 

Figure 1 below shows the first round 

 

 
 

Figure 1. First round 

 

At the end of the first round, the output vector (𝑌) will be 

treated as a clear image to be applied to the second round of 

encryption. The output vector is subdivided into three blocks 

of size (1, nm) for future gene mutations. 

Step5: Genetic Mutation  

The output vector is subdivided into (𝑚) blocks of (3n) 

pixels each as well as the chaotic vector (𝐶𝐿) , for future 

chaotic mutation between the two vectors. This operation will 

be supervised by the (𝑃𝐻) permutation vector obtained by a 

broad ascending sort on the binary vector (𝐵𝐶) and generate 

by the following process:  

 

Algorithm 8. (PH) computing 
ℎ = 1

𝐹𝑜𝑟 𝑖 = m 𝑡𝑜 1
𝐼𝑓 𝐶𝑅(𝑖) = 0 𝑡ℎ𝑒𝑛

𝑃𝐻(𝑖) = ℎ
ℎ = ℎ + 1
𝑒𝑛𝑑 𝑖𝑓
𝑁𝑒𝑥𝑡 𝑖

 

𝐹𝑜𝑟 𝑖 = m 𝑡𝑜  1
𝐼𝑓 𝐶𝑅(𝑖) = 1 𝑡ℎ𝑒𝑛

𝑃𝐻(𝑖) = ℎ
ℎ = ℎ + 1
𝑒𝑛𝑑 𝑖𝑓
𝑁𝑒𝑥𝑡 𝑖

 

 

Example (Over 14 bits) 

 

 
 

The mutation function is the confusion of the original sub-

block with the chaotic sub-block only in the case where the bit 

of the vector (CR) is not zero. This operation is defined by the 

following algorithm 

 

Algorithm 9. Mutation's new expression 

𝑌 = (𝑌_1 𝑌_2, 𝑌_3, …𝑌_𝑚, ) 
𝐶𝐿 = (𝐶_1, 𝐶_2, 𝐶_3…𝐶_𝑚, ) 

𝑀𝑡(𝑌, 𝐶𝐿) = 𝑍 = (𝑍_1, 𝑍_2, 𝑍_3…𝑍_𝑚, ) 
𝑊𝑖𝑡ℎ ∀ 𝑖 ∈ [1 𝑚] 
𝐼𝑓 𝐶𝑅(𝑖) = 0 𝑇ℎ𝑒𝑛 
𝑍_𝑖 = 𝑌_𝑖⨁𝐶_(𝑃𝐻(𝑖)) 

Else 𝑍𝑖 = 𝑍𝑖 
 

Example: 

 

 
 

Step6: Second Vigenere round 

At the end of the first round, the new (IV2) initialization 

value will be calculated according to the following algorithm. 

 

Algorithm 10. Second initialization value 

{

 
𝑓𝑜𝑟  𝑖 = 2 𝑡𝑜 3𝑛𝑚
𝐼𝑉2 = 𝐼𝑉2⨁ 𝑌(𝑖)

𝑁𝑒𝑥𝑡 𝑖 

 

 

In the second round, by simply replacing the position of the 

replacement matrix, the output vector will be treated as a new 

image to be encrypted by the same method as the first round. 

 

2.11 Second round analysis  

 

The second round can also be ensured by using a different 

same matrix in the first round. 

 

Algorithm 11. Vigenere's second function 

𝑉2(𝑋(𝑖)) = 

{
 
 

 
 

 
𝑖𝑓 𝑉𝐶(𝑖) = 0 𝑡ℎ𝑒𝑛

𝑌(𝑖) = 𝑉𝐷1(𝐺𝐿(𝑖), 𝑉𝐺1(𝑀𝑅(𝑖); 𝑋(𝑖)) ) ⊕ 𝑀𝐿(𝑖)
𝑒𝑙𝑠𝑒

𝑌(𝑖) = 𝑉𝐺1(𝑀𝐿(𝑖), 𝑉𝐷1(𝐺𝐿(𝑖), 𝑋(𝑖))) ⊕𝑀𝑅(𝑖)

 

 

The same mold will be used in the second round, but in a 

different way. 

 

2.11.1 Second-round spread function expression  

The second round will be equipped with the diffusion ( Ω) 
ensured by the replacement matrix generated. The expression 

of this function is defined by the following notation: 
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Algorithm 12. Second function of diffusion 

∀ i > 1 Ω(𝑋(𝑖)) = 𝑉𝐷1(𝑀𝐿(𝑖), 𝑋′(𝑖 − 1)⨁𝑋(𝑖)) 

 

2.11.2 The second-round analysis 

This second round is defined by the following algorithm: 

 

Algorithm 13. 2° round function 

{
 
 

 
 
𝑌′(1) = 𝐼𝑉2⨁𝑌(1)

𝑍(1) = 𝑉2(𝑌′(1))

𝐹𝑜𝑟 𝑖 = 2 𝑡𝑜 3𝑛𝑚
𝛼 = Ω(𝑌(𝑖))

𝑍(𝑖) = 𝑉2(𝛼)
𝑁𝑒𝑥𝑡 𝑖

 

 

Figure 1.1 below shows the first round. 
 

 
 

Figure 1.1. Second round 

 

The output vector (𝑍) will be subjected to a permutation 

(𝑅𝐻)  obtained by sorting on the vector (𝐶𝑅)  by the same 

process). This permutation is applied to increase the 

complexity of our system It is defined by the following 

algorithm: 

 

Algorithm 14. Permutation application 

{
𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 3𝑛𝑚
𝑍𝐶(𝑖) = 𝑃𝐻(𝑍(𝑖))

𝑁𝑒𝑥𝑡 𝑖
 

 

The vector (𝑍𝐶)  constitutes the image encrypted by our 

algorithm. 

Step7: Decryption of encrypted images 

In the literature, the classic Vigenere method uses the same 

matrix in both processes. Our contribution in this work is that 

the matrix used in encryption is different from the matrix used 

in decryption. Therefore, the calculation of the decryption 

matrix is necessary. 

 

2.12 Decryption matrix structure 

 

Each row of the encrypted S-box is a permutation in (𝐺256), 
so the decryption matrix will consist of reverse permutations. 

For this reason, two decrypted 𝑆 − 𝐵𝑜𝑥 generations are given 

by the following algorithm: 

 

Algorithm 15. Vigenere inverse matrices 

{
 
 

 
 

𝑓𝑜𝑟  𝑖 = 1  𝑡𝑜  256

𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜  256

𝑉𝐺2(𝑖, 𝑉𝐺1(𝑖, 𝑗)) = 𝑗  

𝑉𝐷2(𝑖, 𝑉𝐺2(𝑖, 𝑗)) = 𝑗    

𝑁𝑒𝑥𝑡 𝑗, 𝑖

 

2.12.1 Decryption matrix structure 

Each row of the encrypted S-box is a permutation in (𝐺256), 
so the decryption matrix will consist of reverse permutations. 

For this reason, two decrypted 𝑆 − 𝐵𝑜𝑥 generations are given 

by the following algorithm: 

 

Algorithm 16. Inverse Matrices 

{
 
 

 
 

𝑓𝑜𝑟  𝑖 = 1  𝑡𝑜  256

𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜  256

𝑉𝐺2(𝑖, 𝑉𝐺1(𝑖, 𝑗)) = 𝑗  

𝑉𝐷2(𝑖, 𝑉𝐺2(𝑖, 𝑗)) = 𝑗    

𝑁𝑒𝑥𝑡 𝑗, 𝑖

 

 

Example 

 

 
 

The decryption process will follow the following reverse 

steps 

✓ Application of the inverse permutation (𝐻𝑃) of (𝑃𝐻) 
✓ Application of the reverse of the second round 

✓ Application of the inverse of the mutation 

✓ Application of the reverse of the first round 

 

2.12.2 Reverse permutation 

The inverse permutation (𝐻𝑃)  of (𝑃𝐻)  is given by the 

following algorithm: 

 

Algorithm 17. Inverse permutation 

{
𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 3𝑛𝑚
𝐻𝑃(𝑃𝐻(𝑖)) = 𝑖

𝑁𝑒𝑥𝑡 𝑖

 

 

After vectorization of the image encrypted in vector (𝑍𝐶), 
an intervention of the permutation (𝐻𝑃) to recover the vector 

(𝑍).  
This operation is determined by the following algorithm: 

 

Algorithm 18. Inverse permutation application 

{
𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 3𝑛𝑚
𝑍(𝑖) = 𝐻𝑃(𝑍𝐶(𝑖))

𝑁𝑒𝑥𝑡 𝑖

 

 

2.12.3 The reciprocal of the Second lap function 

This step is given by the algorithm below: 

 

Algorithm 19. Second lap Invers 

{
𝐹𝑜𝑟 𝑖 = 3𝑛𝑚 𝑡𝑜 1

𝑌(𝑖) = 𝑉2
−1(𝑍(𝑖)) ⊕ 𝑍(𝑖 − 1)

𝑁𝐸𝑥𝑡 𝑖

 

 

A recalculation of the initialization value will make it 

possible to retrieve the exact value of pixel 𝑌 (1). 
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2.12.4 The reverse mutation 

In general, mutation is an involutive operation, therefore we 

have 

 

Algorithm 20. Reverse mutation 

(𝑀𝑡)−1 = 𝑀𝑡 
 

 

3. EXAMPLES AND SIMULATIONS 

 

In order to measure the performance of our encryption 

system, we randomly select a large number of reference 

images, and then use our method to test them. In this part, all 

experiments are performed under the Matlab software running 

under Windows 7, on a basic i7 personal computer, 16 GB 

RAM, and 500 GB hard disk. 

 

3.1 Key-space analysis 

 

The chaotic sequence used in our method ensures strong 

sensitivity to initial conditions and can protect it from any 

brutal attacks. The secret key to our system consists of 

 

Key size 

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑚𝑎𝑝 

𝑢0 = 0,7655412001, 𝜇 = 3.89231541 

𝑃𝑊𝐿𝐶𝑀 

  𝑣0 = 1,3561 p = 0.623 

𝑆𝐾𝑇𝑀  

𝑤0 = 1,3561 d = 0.752 

 

If we use single-precision real numbers 𝟏𝟎−𝟏𝟎 to operate, 

the total size of the key will greatly exceed ≈ 𝟏𝟎−𝟔𝟎 ≫
𝟐𝟏𝟖𝟎 ≫ 𝟐𝟏𝟏𝟎, which is enough to avoid any brutal attacks. 

 

3.2 Secret key’s sensitivity analysis 

 

Our encryption key has a high sensitivity, which means that 

a small degradation of a single parameter used will 

automatically cause a large difference from the original image. 

The image below illustrates this confirmation: 

 

 
 

We notice that a tiny perturbation on a single element of the 

secret key, will generate a random decrypted image that is 

clearly different from the original image. This ensures a high 

sensitivity to the secret key, and therefore, in the absence of 

the real encryption key, the original image cannot be restored. 

3.3 Statistics attack security 

 

3.3.1 Entropy analysis 

The entropy of an image of size (𝑛,𝑚 ) is given by the 

equation below 

 

𝐻(𝑀𝐶) =
1

𝑡
∑−𝑝(𝑖) 𝑙𝑜𝑔2(𝑝(𝑖))

𝑡

𝑖=1

 (10) 

 

𝑝(𝑖)  is the probability of occurrence of level (𝑖)  in the 

original image attendance.  

 

Table 1. Entropy of some tested images 

 

 
 

We noticed that the entropy of all images tested by our 

algorithm is close to 8, which is the maximum value. These 

values ensure that our system is protected from entropy attacks 

(Table 1). 

 

3.3.2 Correlation analysis  

The correlation of an image of size (𝑛,𝑚 )is given by the 

equation below 

 

𝑟 =
𝑐𝑜𝑣( 𝑥, 𝑦)

√𝑉(𝑥)√𝑉(𝑦)
 (11) 

 

Table 2. Correlation of some tested images 

 

 

610



 

Pixel correlation measures the independence of neighboring 

pixels. All the correlation measures of the images tested by our 

system are very close to zero. This can protect our methods 

from statistical attacks (Table 2). 

 

3.3.3 Histogram analysis 

All images tested by our algorithm have a uniformly 

distributed histogram. This reflects that the entropy of the 

encrypted images is around 8, which makes the system 

immune to histogram attacks (Table 3). 

 

Table 3. Encrypted image histogram 

 

 
 

3.4 Differential analysis 

 

In cryptography, differential attacks are managed by the 

following constants. 

 

3.4.1 The NPCR constant  

It is determined by the equation below 

 

𝑁𝑃𝐶𝑅 = (
1

𝑛𝑚
∑ 𝐷(𝑖, 𝑗)

𝑛𝑚

𝑖,𝑗=1

) ∗ 100 

𝐷(𝑖, 𝑗) = {
1    𝑖𝑓      𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗)

0    𝑖𝑓       𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗)
 

(12) 

 

3.4.2 The UACI constant  

The 𝑈𝐴𝐶𝐼 mathematical analysis of an image is given by 

the next equation 

 

𝑈𝐴𝐶𝐼 = (
1

𝑛𝑚
∑ 𝐴𝑏𝑠(𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗))

𝑛𝑚

𝑖,𝑗=1

) ∗ 100 (13) 

 

3.4.3 Signal-To-Peak Noise Ratio (PSNR) 

(1) MSE 

The 𝑀𝑆𝐸 mathematical analysis of an image is given by the 

next equation 

 

𝑀𝑆𝐸 =∑(𝑃(𝑖, 𝑗) − 𝐶(𝑖, 𝑗)2

𝑖,𝑗

 (14) 

 

✓ (𝑃(𝑖, 𝑗)) ; pixel of the clear image 

✓ (𝐶(𝑖, 𝑗)): pixel of the cypher image 

(2) PSNR 

The 𝑃𝑆𝑁𝑅 mathematical analysis of an image (Table 4) is 

given by the next equation 

 

𝑃𝑆𝑁𝑅 = 20𝐿𝑜𝑔10 (
𝐼𝑚𝑎𝑥

√𝑀𝑆𝐸
) (15) 

 

Table 4. Differential parameters 

 

 
 

3.4.4 Avalanche effect 

 

Table 5. Avalanche effect 
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Our algorithm uses a strong link between encrypted pixels 

and subsequent clear pixels in the strategy. This leads to a 

gradual change in the value, which becomes more and more 

important as the data spreads through the structure of the 

algorithm. The avalanche effect is the number of bits that have 

been changed if a single bit of the original image is changed 

(Table 5). The mathematical expression of this avalanche 

effect is given by 

 

𝐴𝐸 = (
∑ 𝑏𝑖𝑡 𝑐ℎ𝑎𝑛𝑔𝑒𝑖

∑ 𝑏𝑖𝑡 𝑡𝑜𝑡𝑎𝑙𝑖

) ∗ 100 (16) 

 

3.4.5 Performance time 

In our technique, the encryption and decryption times 

(Table 6) are very similar and vary in the 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [0,05 0,1].  
 

Table 6. Encryption time 

 

 
 

 

4. MATH SECURITY 

 

Our encryption keys are large, which can ensure that the 

new system is protected from brute force attacks. At the same 

time, the randomness of the operators described in the system 

makes it difficult to unlock any encrypted images, which 

increases the difficulty of statistical attacks. In addition, due to 

the high sensitivity to the initial parameters of our three 

chaotic cards, and the broadcast installed in each tower 

confirmed the robustness of our encryption system. 

 

 

5. CONCLUSION 

 

Due to their high sensitivity to initial conditions, chaotic 

systems are widely used in color image encryption. with an 

improvement of the Vigenere matrices, we have, in our 

strategy, developed two alternative matrices based on two 

chaotic maps for the execution of two Vigenere towers. Two 

start-up settings were computed to initiate the process of 

diffusing confusion between the encrypted block and the next 

clear block, to significantly augment the avalanche action and 

to prevent the system from known differential attacks. All the 

statistical constant values derived from our analysis can ensure 

that our software is not exposed to known attacks. 
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NOMENCLATURE 

 

Notation 

 

 

{
 
 

 
 𝐺𝑡 =

𝑍
𝑡𝑍⁄  𝑟𝑖𝑛𝑔

𝐺𝑡
∗ =  𝑆𝑒𝑡 𝑜𝑓  𝐺𝑡  𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑟𝑠
⨁ 𝐵𝑖𝑛𝑎𝑟𝑦 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛

𝐴(𝑗: ): 𝐿𝑖𝑛𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑗 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴

𝐴(: 𝑗): 𝑐𝑜𝑙𝑢𝑛𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑗 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴
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