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 This paper develops a Bayesian analysis in the context of progressive first failure 

censoring from the two-parameter Kumaraswamy distribution. The Bayesian and E-

Bayesian estimations based on progressive first failure censoring are derived for the 

unknown parameters and some survival time parameters (reliability and hazard 

functions). The estimates are obtained based on Al-Bayyati loss, general entropy loss 

and LINEX loss functions. The properties of E-Bayesian estimation are given. The 

Bayesian and E-Bayesian estimations are compared via a Monte Carlo simulation study. 

Finally, a numerical example is established to clear the theoretical procedures.  
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1. INTRODUCTION 

 

Nowadays, due to highly competitive market reliability of 

products is of great interest. Hence life-testing and reliability 

experiments are carried out before and during the products are 

put on the market. In these life-tests, it is not always possible 

to observe the failure times of all units subjected to the test due 

to time limits and other restrictions, so censored sample 

schemes are of great importance. The progressive type-II right 

censoring scheme is one of the most common censoring 

schemes where the experimenters have experiences with 

situations where the removal of units prior to failure is 

preplanned. This scheme allows us to tackle analyzing 

Kumaraswamy (KW) progressive data in medical studies, 

reliability and survival where some of the experimental units 

are removed during the experiment. For some applications on 

XLPE-insulated cable models under combined 

thermalelectrical stresses [1]. Recently, a considerable body of 

literature has been devoted to the inference problems based on 

progressive censored samples, as demonstrated in Refs. [2-8]. 

If the life distribution of the product tested is not known, 

different methods were introduced to deal with testing product 

data [9, 10] derived empirical Bayes estimators of reliability 

performances using progressive type-II censoring from Lomax 

model. In the last two decades, several authors have used the 

different losses for Bayesian parameter estimation of some 

distributions. Further details are explained in Ref. [11-13].  

Among various censoring schemes, the progressively first-

failure censoring scheme arose as one of the most popular 

censoring schemes during the last decade. Suppose that 𝑛 

independent groups with k items within each group are put on 

a life test. The sampling process of these censored samples is 

described as follows. After the time of the first failure, 𝑅1 

groups and the group is observed are randomly removed from 

the test as soon as the first failure 𝑋1:𝑚:𝑛,𝑘
(𝑅1,𝑅2,...,𝑅𝑚) has occurred, 

𝑅2  groups and the group in which the second failure is 

observed are randomly removed from the test as soon as the 

second failure occurred 𝑋2:𝑚:𝑛,𝑘
(𝑅1,𝑅2,...,𝑅𝑚) and finally when the m-

th failure 𝑋𝑚:𝑚:𝑛,𝑘
(𝑅1,𝑅2,...,𝑅𝑚) is observed, the remaining groups 𝑅𝑚 

are removed from the test. Then 𝑋1:𝑚:𝑛,𝑘
(𝑅1,𝑅2,...,𝑅𝑚) < ⋯ <

𝑋𝑚:𝑚:𝑛,𝑘
(𝑅1,𝑅2,…,𝑅𝑚)  are called progressively first-failure censored 

order statistics with the progressive censored scheme, where 

𝑛 = 𝑚 +∑ 𝑅𝑖
𝑚
𝑖=1 . 

Embracing the assumption that the lifetimes of the above 

units have the Kumaraswamy distribution [14] with 

probability density function (pdf) and cumulative distribution 

function (cdf) respectively: 

 

𝑓(𝑥) = 𝛼 𝛽 𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1 , 0 < 𝑥 < 1,

𝐹(𝑥) = 1 − (1 − 𝑥𝛼)𝛽 , 0 < 𝑥 < 1,

} (1) 

 

where, 𝛼 > 0  and 𝛽 > 0  are positive shape parameters. 

Therefore, the reliability and hazard functions at an arbitrary 

time t for the KW distribution are given by: 
 

𝑅(𝑡) = (1 − 𝑥𝛼)𝛽 and 𝐻(𝑡) =  
𝛼 𝛽 𝑡𝛼−1

1 − 𝑡𝛼
, 0 < 𝑡 < 1. (2) 

 

This model was originally conceived to model hydrological 

phenomena and has been effectively used for this and also for 

other purposes. For a detailed discussion on the importance 

and structural properties of KW distribution, one may refer to 

[15-20]. Recently, a considerable body of literature has been 

devoted to the inference problems based on KW distribution 

[21-23]. 

The main aim of this paper is to consider the E-Bayesian 

estimation (E-BE) problem based on progressive first failure 

censored KW data. A number of authors [24-26] have 

considered E-BE problems for some distributions using 

different types of censoring data.  
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The rest of this paper is organized as follows: Section 2, 

contains some model details of the different loss functions 

used in our paper. In Section 3, the Bayesian estimators (BEs) 

for the parameter, the reliability and hazard functions of the 

KW distribution based on progressive first failure censored 

order statistics are developed. In Section 4, the E-BEs of the 

parameters, the reliability and hazard functions are derived, 

and the properties of E-BE are also discussed. The sample- 

based estimators using Bayesian approach under Al-Bayyati 

loss, general entropy loss and LINEX loss functions are 

developed. Intensive Monte Carlo simulation study is 

performed to clear and compare among all estimation methods 

in Section 5. Finally, we conclude the paper in Section 6. 

 

 

2. LOSS FUNCTION 

 

For most statisticians, the error loss functions play 

important role used for obtaining the BEs and corresponding 

risk functions. In this paper, we consider BEs under three 

different losses: the Al-Bayyati loss (AL), the general entropy 

loss and the asymmetric LINEX loss functions. Al-Bayyati 

[27] introduced the AL function, and many other authors [28, 

29] have used AL function different estimation problems. This 

loss function is of the form:  

 

𝐿𝐵(𝛽, 𝛽) = 𝛽
𝑞(𝛽 − 𝛽)

2
, 𝑞 ∈ ℝ.  

 

By using the posterior 𝜋(𝛽|𝐱), we have the following risk 

function: 

 

𝑅∗(𝛽) = ∫ 𝛽𝑞(𝛽 − 𝛽)
2

∞

0

𝜋(𝛽|𝐱) d𝛽.  

 

Under the AL function, the BE of the parameter is given by 

solving the following equation 𝜕𝑅∗(𝛽)/𝜕𝛽 = 0. This in turn 

implies that the BE of β is given by: 

 

𝛽𝐴𝐿 = 
𝐸(𝛽𝑞+1|𝐱)

𝐸(𝛽𝑞|𝐱)
. (3) 

 

Calabria and Pulcini [30] proposed the general entropy loss 

(GEL) function, which is one of the most popular asymmetric 

loss functions. The BE for the parameter β based on the GEL 

function may be defined as: 

 

𝛽𝐺𝐸 = [𝐸(𝛽
−𝜆|𝐱)]

−1/𝜆
, (4) 

 

provided that 𝐸(𝛽−𝜆|𝐱) exists and is finite. For 𝜆 = −2, the 

GEL function is referred to as the precautionary loss function 

which is an asymmetric loss function. For 𝜆 = −1, the GEL 

function is square error loss (SEL) function, while the 

weighted SEL function obtained by setting 𝜆 =1 and therefore, 

almost symmetric. For 𝜆 > 0 , a positive error has a more 

serious effect than a negative error and for 𝜆 < 0, a negative 

error has a more serious effect than a positive error. 

Finally, Varian [31] introduced the most popular 

asymmetric loss function which is the LINEX loss function. 

The LINEX loss function has been used widely in the 

literatures [32, 33]. The LINEX loss function for β can be 

expressed from the assumption that the minimal loss occurs at 

𝛽 = 𝛽 as: 

𝐿(𝜗) ∝ exp[𝑐 𝜗] − 𝑐 𝜗 − 1, 𝑐 ≠ 0, 𝜗 = 𝛽 − 𝛽, 
 

where, 𝛽 is an estimate of β. The sign of the shape parameter 

c represents the direction and its magnitude represents the 

degree of symmetry. For c close to zero, the LINEX loss 

function is approximately the almost symmetric (SEL 

function). The posterior expectation 𝐸𝛽(𝐿(𝜗)) of the LINEX 

function with respect to the posterior density of β is given by: 

 

𝐸(𝐿(𝜗)) ∝ exp[𝑐𝛽]𝐸𝛽(exp[−𝑐𝛽]) − 𝑐 (𝛽 − 𝐸𝛽(𝛽))

− 1. 
(5) 

 

Under the LINEX loss function, the BE 𝛽𝐿𝐼  of β which 

minimizes (5) is given by: 

 

𝛽𝐿𝐼 = −
1

𝑐
ln[𝐸𝛽(exp[−𝑐𝛽])], (6) 

 

provided that 𝐸𝛽(exp[−𝑐𝛽])  exists and is finite. For more 

details on choosing the value of the constant c see the Refs. 

[30-34]. 

 

 

3. BAYES ESTIMATION 

 

Here, we consider the estimation problem when the 

observed failure data are progressive first failure censored. 

The different BEs of the model parameter β, 𝑅(𝑡) and 𝐻(𝑡) 
are provided. If the failure times of the 𝑛 × 𝑘 items originally 

in the test are from a continuous population, whose pdf and cdf 

are given in (1), with the censoring scheme (CS) 𝑹 =
(𝑅1, 𝑅2, … , 𝑅𝑚) , the likelihood function of α and β is 

accordingly given by: 

 

𝐿(𝛼, 𝛽|𝐱) ∝ 𝛼𝑚𝛽𝑚 (∏
𝑥𝑖
𝛼−1

1 − 𝑥𝑖
𝛼

𝑚

𝑖=1

) 

× exp [𝛽𝑘∑(𝑅𝑖 + 1) ln(1 − 𝑥𝑖
𝛼)

𝑚

𝑖=1

], 

(7) 

 

where, 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑚) and 0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 < ∞. 

Here, we use gamma distribution as informative prior. Under 

the assumption that the shape parameter α is known and to 

develop the estimate of 𝛽, we consider prior of β has gamma 

distribution (denoted as 𝐺(𝜂, 𝛾)), because gamma distribution 

is very flexible, with the following density: 

 

𝜋(𝛽) =
𝛾𝜂

𝛤(𝜂)
𝛽𝜂−1exp[−𝛾𝛽], 𝜂, 𝛾 > 0. (8) 

 

The Jeffreys prior (𝜂 = 0, 𝛾 = 0) is a special case of 𝐺(𝜂, 𝛾), 
where the Jeffreys prior can be used if prior information about 

β is scanty. The parameters 𝛾 and 𝜂 can be chosen such that 

the experimenter’s prior beliefs of location and precision of 

the true value of 𝛽  are fulfilled, through 𝐸(𝛽) = 𝜂/𝛾  and 

𝑉𝑎𝑟(𝛽) = 𝜂/𝛾2 . By combining (7) and (8), the posterior 

density of β is obtained to be: 

 

𝜋(𝛽|𝐱) = 𝜋(𝛽)𝐿(𝛼, 𝛽|𝐱)

= 𝜙−1(𝜂, 𝛾) 𝛽𝑚+𝜂−1exp[−𝛽(𝛾

− 𝜓𝑚,𝑘)], 

(9) 
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where, 

 

𝜙(𝜂, 𝛾) =
𝛤(𝑚 + 𝜂)

(𝛾 − 𝜓𝑚,𝑘)
𝑚+𝜂

,

 

𝜓𝑚,𝑘 = 𝑘∑(𝑅𝑖 + 1) ln(1 − 𝑥𝑖
𝛼)

𝑚

𝑖=1

.
}
 
 

 
 

 (10) 

 

Under the AL function, the BEs of 𝛽 can be shown by using 

Eq. (3) to be, 

 

𝛽𝐴𝐿 = 
𝜙(𝜂 + 𝑞 + 1, 𝛾)

𝜙(𝜂 + 𝑞, 𝛾)
=
𝑚 + 𝜂 + 𝑞

𝛾 − 𝜓𝑚,𝑘
. (11) 

 

Similarly, in making use of (2) and (9), the BEs for the 

reliability function 𝑅(𝑡) and 𝐻(𝑡) based on AL function are 

given respectively by: 

 

�̃�𝐴𝐿 = (
𝛾 − 𝜓𝑚,𝑘 − 𝑞 ln(1 − 𝑡

𝛼)

𝛾 − 𝜓𝑚,𝑘 − (𝑞 + 1) ln(1 − 𝑡
𝛼)
)

𝑚+𝜂

,

 

𝐻𝐴𝐿 = (
𝑚 + 𝜂 + 𝑞

𝛾 − 𝜓𝑚,𝑘
)(

𝛼𝑡𝛼−1

1 − 𝑡𝛼
) .

}
 
 

 
 

 (12) 

 

The BE of β, under the GEL function is obtained using (4) 

and the posterior density (9) as: 
 

 𝛽𝐺𝐸 = (
𝜙(𝜂 − 𝜆, 𝛾)

𝜙(𝜂, 𝛾)
)

−
1
𝜆

 

 = (
𝛤(𝑚 + 𝜂 − 𝜆)

𝛤(𝑚 + 𝜂)
)

−1/𝜆 1

𝛾 − 𝜓𝑚,𝑘
. 

(13) 

 

Under the GEL function, the BEs for the reliability and 

hazard functions are given respectively by: 

 

�̃�𝐺𝐸 = (1 +
𝜆 ln(1 − 𝑡𝛼)

𝛾 − 𝜓𝑚,𝑘
)

(𝑚+𝜂)/𝜆

,

 

𝐻𝐺𝐸 =
𝛼𝑡𝛼−1

(𝛾 − 𝜓𝑚,𝑘)(1 − 𝑡
𝛼)
(
𝛤(𝑚 + 𝜂)

𝛤(𝑚 + 𝜂 − 𝜆)
)

1/𝜆

.
}
 
 

 
 

 (14) 

 

It can be observed from the above equation that the BE 𝛽𝑆𝐿 

of the parameter β under the SEL function is a special case 

(𝜆 = −1 ). Using Eq. (6), the BE of β under the LINEX 

function is given by: 

 

𝛽𝐿𝐼 = −
1

𝑐
ln (

𝜙(𝜂, 𝛾 + 𝑐)

𝜙(𝜂, 𝛾)
) 

 =
𝑚 + 𝜂

𝑐
ln (1 +

𝑐

𝛾 − 𝜓𝑚,𝑘
), 

(15) 

 

where, 𝑐 ≠ 0. Similarly, the BEs for the reliability and hazard 

functions are given respectively by: 

 

�̃�𝐿𝐼 = −
1

𝑐
ln (∑

(−𝑐)𝑖

𝑖!

∞

𝑖=0

(1

−
𝑖 ln(1 − 𝑡𝛼)

𝛾 − 𝜓𝑚,𝑘
)

−(𝑚+𝜂)

), 

(16) 

 

and 

 

𝐻𝐿𝐼 =
𝑚 + 𝜂

𝑐
ln (1 +

𝑐𝛼𝑡𝛼−1

(𝛾 − 𝜓𝑚,𝑘)(1 − 𝑡
𝛼)
). (17) 

 

 

4. E-BAYESIAN ESTIMATION  

 

The prior parameters 𝜂  and 𝛾  should be selected to 

guarantee that 𝜋(𝛽) is a decreasing function of β, as presented 

in Ref. [24]. The derivative of 𝜋(𝛽) with respect to β is: 

 
d 𝜋(𝛽)

d 𝛽
=

𝛾𝜂

𝛤(𝜂)
𝛽𝜂−2(𝜂 − 𝛾𝛽 − 1)exp[−𝛾𝛽]. (18) 

 

It is well known that 𝜂 > 0, 𝛾 > 0 and 𝛽 > 0, it follows 

0 < 𝜂 < 1, 𝛾 > 0 due to d 𝜋(𝛽)/d 𝛽 < 0 and therefore 𝜋(𝛽) 
is a decreasing function of 𝛽 . Assuming that 𝜂  and 𝛾  are 

independent with bivariate density function 𝜋(𝜂, 𝛾) =
𝜋1(𝜂)𝜋2(𝛾). Then, the E-BE of 𝛽 (expectation of the BE of 𝛽) 

can be written as: 

 

𝛽𝐸−𝐵 =∬𝛽𝐵(𝜂, 𝛾)
 

𝐷

𝜋(𝜂, 𝛾)d𝛾d𝜂, (19) 

 

where, D be the set of all the possible values of 𝛾  and 𝜂 , 

𝛽𝐵(𝜂, 𝛾)  is the BE of β under AL, GEL and LINEX loss 

functions E-BE based on three different distributions of the 

hyper-parameters 𝜂  and 𝛾  is obtained in this subsection, to 

investigate the influence of different prior distributions on the 

E-BE of β. The following prior density functions, suggested 

by Okasha and Wang [26], of 𝜂 and 𝛾 may be used: 

 

𝜋1(𝜂, 𝛾) =
1

(𝜖 − 1)𝐵(𝑎, 𝑏)
𝜂𝑎−1(1 − 𝜂)𝑏−1, (20) 

 

𝜋2(𝜂, 𝛾) =
2(𝜖 − 𝛾)

(𝜖 − 1)2𝐵(𝑎, 𝑏)
𝜂𝑎−1(1 − 𝜂)𝑏−1, (21) 

 

𝜋3(𝜂, 𝛾) =
2𝛾

(𝜖2 − 1)𝐵(𝑎, 𝑏)
𝜂𝑎−1(1 − 𝜂)𝑏−1, (22) 

 

where, 0 < 𝜂 < 1, 1 < 𝛾 < 𝜖 and 𝐵(𝑎, 𝑏) is the beta function. 

For the prior density functions (20-22) and using Eqns. (11) 

and (19), the corresponding E-BEs of β based on AL function 

are respectively: 

 

𝛽𝐴𝐿1 =
1

(𝜖 − 1)𝐵(𝑎, 𝑏)
∫ ∫

𝑚 + 𝜂 + 𝑞

𝛾 − 𝜓𝑚,𝑘

𝜖

1

1

0

  

× 𝜂𝑎−1(1 − 𝜂)𝑏−1d𝛾 d𝜂  

=
1

(𝜖 − 1)
(𝑚 + 𝑞 +

𝑎

𝑎 + 𝑏
) ln (

𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

) , 

 

 

(23) 

 

𝛽𝐴𝐿2 =
2

(𝜖 − 1)2
(𝑚 + 𝑞 +

𝑎

𝑎 + 𝑏
)  

 × {1 − 𝜖 + (𝜖 − 𝜓𝑚,𝑘) ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)}, 
(24) 

 

𝛽𝐴𝐿3 =
2

𝜖2 − 1
(𝑚 + 𝑞 +

𝑎

𝑎 + 𝑏
) (25) 
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× {𝜖 − 1 + 𝜓𝑚,𝑘 ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)}. 

 

Similarly, by using Eqns. (13), (19), (20)-(22), the E-BEs of 

β based on GEL function can be expressed respectively as: 

 

𝛽𝐺𝐸1 =
𝐺(𝜆)

(𝜖 − 1)𝐵(𝑎, 𝑏)
ln (

𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

) , (26) 

 

𝛽𝐺𝐸2 =
2𝐺(𝜆)

(𝜖 − 1)𝐵(𝑎, 𝑏)
  

× {−1 + (
𝜖 − 𝜓𝑚,𝑘
𝜖 − 1

) ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)}, 

(27) 

 

𝛽𝐺𝐸3 =
2𝐺(𝜆)

(𝜖 + 1)𝐵(𝑎, 𝑏)
{1 +

𝜓𝑚,𝑘
𝜖 − 1

ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)}, (28) 

 

where, 

 

𝐺(𝜆) = ∫ 𝜂𝑎−1(1 − 𝜂)𝑏−1
1

0

(
𝛤(𝑚 + 𝜂 − 𝜆)

𝛤(𝑚 + 𝜂)
)

−1/𝜆

d𝜂. (29) 

 

It is obvious that the exact form of the integration in (29) 

will not be tractable and then its direct computation will not be 

an easy task. Therefore, numerical integration methods can be 

implemented to compute the E-BEs of β based on GEL 

function. 

 

Lemma 4.1. For 𝜆 < 𝑚 + 𝜂  and 0 < 𝜂 < 1,  we have 

𝐺(𝜆) > 0. 

Proof. Since 𝜂 and (
𝛤(𝑚+𝜂−𝜆)

𝛤(𝑚+𝜂)
)
−1/𝜆

 are continuous on [0,1], 

according to the extended case of mean value theorem for 

definite integrals, there is at least one number 𝜂0 between 0 

and 1 such that: 

 

∫ 𝜂𝑎−1(1 − 𝜂)𝑏−1
1

0

(
𝛤(𝑚 + 𝜂 − 𝜆)

𝛤(𝑚 + 𝜂)
)

−1/𝜆

d𝜂 

= (
𝛤(𝑚 + 𝜂0 − 𝜆)

𝛤(𝑚 + 𝜂0)
)

−1/𝜆

∫ 𝜂𝑎−1(1 − 𝜂)𝑏−1
1

0

d𝜂

= (
𝛤(𝑚 + 𝜂0 − 𝜆)

𝛤(𝑚 + 𝜂0)
)

−1/𝜆

𝐵(𝑎, 𝑏) > 0. 
 

(30) 

 

Thus, the proof is completed. 

In the same manner, using Eqns. (15) and (19), the E-BEs 

of β based on LINEX loss function are respectively: 

 

�̃�𝐿𝐼1 =
1

(𝜖 − 1)𝐵(𝑎, 𝑏)
∫ ∫

𝑚 + 𝜂

𝑐
 ln (1 +

𝑐

𝛾 − 𝜓𝑚,𝑘
)

𝜖

1

1

0

× 𝜂𝑎−1(1 − 𝜂)𝑏−1d𝛾 d𝜂  

=
1

𝑐(𝜖 − 1)
(𝑚 +

𝑎

𝑎 + 𝑏
) {c ln (

𝑐 + 𝜖 − 𝜓𝑚,𝑘
1 + c − 𝜓𝑚,𝑘

)  

−(1 − 𝜓𝑚,𝑘)  ln (1 +
𝑐

1 − 𝜓𝑚,𝑘
)

+ (𝜖 − 𝜓𝑚,𝑘) × ln (1 +
𝑐

𝜖 − 𝜓𝑚,𝑘
)}, 

(31) 

 

𝛽𝐿𝐼2 =
1

𝑐(𝜖 − 1)2
(𝑚 +

𝑎

𝑎 + 𝑏
) {c(1 − 𝜖)  

+ (1 − 2𝜖�̅�𝑚,𝑘

− 𝜓𝑚,𝑘
2 )  ln (1 +

𝑐

1 − 𝜓𝑚,𝑘
)

+ 𝑐(𝑐 + 2𝜖

− 2𝜓𝑚,𝑘) ln (
𝑐 + 𝜖 − 𝜓𝑚,𝑘
1 + c − 𝜓𝑚,𝑘

)

+ (𝜖

− 𝜓𝑚,𝑘)
2
 ln (1 +

𝑐

𝜖 − 𝜓𝑚,𝑘
)},  

(32) 

 

𝛽𝐿𝐼3 =
1

𝑐(𝜖2 − 1)
(𝑚 +

𝑎

𝑎 + 𝑏
) {c(𝜖 − 1)

− ln (1 +
𝑐

1 − 𝜓𝑚,𝑘
)

+ 𝜖2  ln (1 +
𝑐

𝜖 − 𝜓𝑚,𝑘
)

+ 𝜓𝑚,𝑘
2  ln (

𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

) 

− (𝑐 − 𝜓𝑚,𝑘)
2

× ln (
𝑐 + 𝜖 − 𝜓𝑚,𝑘
1 + c − 𝜓𝑚,𝑘

)}, 

(33) 

 

where, �̅� = 1 − 𝜓. 
 

4.1 Property of E-BE of β 

 

Here, we shall discuss property of the E-BE relations 

between the 𝛽𝐴𝐿𝑗(𝑗 = 1,2,3), as well as the relations between 

𝛽𝐺𝐸𝑗(𝑗 = 1,2,3) and also relations among 𝛽𝐿𝐼𝑗(𝑗 = 1,2,3). 

 

Theorem 4.2. Let 𝜖 > 1  and let 𝛽𝐴𝐿𝑗 , 𝛽𝐺𝐸𝑗  and 𝛽𝐿𝐼𝑗 , 𝑗 =

1,2,3 be given by (23 − 28, 31 − 33). Then 

1. 𝛽𝐴𝐿3 < 𝛽𝐴𝐿1 < 𝛽𝐴𝐿2 , 

2. 𝛽𝐺𝐸3 < 𝛽𝐺𝐸1 < 𝛽𝐺𝐸2 , 

3. 𝛽𝐿𝐼3 < 𝛽𝐿𝐼1 < 𝛽𝐿𝐼2 . 

Proof. See Appendix A. 

 

Theorem 4.3. Let 𝜖 > 1  and let 𝛽𝐴𝐿𝑗 , 𝛽𝐺𝐸𝑗  and 𝛽𝐿𝐼𝑗 , 𝑗 =

1,2,3 be given by (23 − 28, 31 − 33). Then 

1. lim
𝜓→−∞

𝛽𝐴𝐿1 = lim
𝜓→−∞

𝛽𝐴𝐿2 = lim
𝜓→−∞

𝛽𝐴𝐿3 , 

2. lim
𝜓→−∞

𝛽𝐺𝐸1 = lim
𝜓→−∞

𝛽𝐺𝐸2 = lim
𝜓→−∞

𝛽𝐺𝐸3 , 

3. lim
𝜓→−∞

𝛽𝐿𝐼1 = lim
𝜓→−∞

𝛽𝐿𝐼2 = lim
𝜓→−∞

𝛽𝐿𝐼3. 

Proof. See Appendix A. 

 

4.2 E-BE for the reliability and hazard functions 

 

Under the AL function, the E-BE of 𝑅(𝑡) is obtained for the 

prior density functions given by Eqns. (20)-(22) as: 

 

�̃�𝐴𝐿1 =∬�̃�𝐴𝐿

 

𝐷

𝜋1(𝜂, 𝛾)d𝛾d𝜂

=
1

𝜖 − 1
∫ (𝜉𝑞(𝛾))

−𝑚𝜖

1

𝐹1(𝑎, 𝑎 + 𝑏,− ln 𝜉𝑞(𝛾))1
 d𝛾, 
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�̃�𝐴𝐿2 =
2

(𝜖 − 1)2
∫ (𝜖 − 𝛾) (𝜉𝑞(𝛾))

−𝑚𝜖

1

× 𝐹1(𝑎, 𝑎 + 𝑏,− ln 𝜉𝑞(𝛾))1
 d𝛾, 

 

�̃�𝐴𝐿3

=
2

𝜖2 − 1
∫ 𝛾 (𝜉𝑞(𝛾))

−𝑚𝜖

1

𝐹1(𝑎, 𝑎 + 𝑏,− ln 𝜉𝑞(𝛾))1
 d𝛾, 

 

 

where, 𝐹1(𝑎, 𝑏, 𝑧)1
  is the Kummer confluent hypergeometric 

function defined and available in MATHEMATICA and, 

 

𝜉𝑞(𝛾) = 1 −
ln(1 − 𝑡𝛼)

𝛾 − 𝜓𝑚,𝑘 − 𝑞 ln(1 − 𝑡
𝛼)
.  

 

It is obvious that the form of above equations will not be 

tractable and then its direct computation will be impossible. 

Therefore, numerical computations must be used to compute 

this parametric function. Using Eqns. (20)-(22), it follows that 

the E-BE of 𝐻(𝑡) based on AL function are given, respectively, 

as: 

 

�̃�𝐴𝐿1 =∬𝐻𝐴𝐿

 

𝐷

𝜋1(𝜂, 𝛾)d𝛾d𝜂 

 =
𝛼 𝑡𝛼−1

(𝜖 − 1)(1 − 𝑡𝛼)
(𝑚 + 𝑞 +

𝑎

𝑎 + 𝑏
) 

× ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

) , 

(34) 

 

𝐻𝐴𝐿2 =
2𝛼 𝑡𝛼−1

(𝜖 − 1)2(1 − 𝑡𝛼)
(𝑚 + 𝑞 +

𝑎

𝑎 + 𝑏
) 

× {1 − 𝜖 + (𝜖 − 𝜓𝑚,𝑘) ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)}, 

(35) 

 

𝐻𝐴𝐿3 =
2𝛼 𝑡𝛼−1

(𝜖2 − 1)(1 − 𝑡𝛼)
(𝑚 + 𝑞 +

𝑎

𝑎 + 𝑏
) 

× {𝜖 − 1 + 𝜓𝑚,𝑘 ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)}. 

(36) 

 

Under the GEL function, and by using Eqns. (20)-(22), the 

E-BEs of 𝑅(𝑡) and 𝐻(𝑡) are given by: 

 

�̃�𝐺𝐸1

=
1

𝜖 − 1
∫ (𝑇𝜆(𝛾))

𝑚/𝜆
𝜖

1

𝐹1 (𝑎, 𝑎 + 𝑏,
ln 𝑇𝜆(𝛾)

𝜆
)1

 𝑑𝛾, 
(37) 

 

�̃�𝐺𝐸2 =
2

(𝜖 − 1)2
∫ (𝜖 − 𝛾)(𝑇𝜆(𝛾))

𝑚/𝜆
𝜖

1

× 𝐹1 (𝑎, 𝑎 + 𝑏,
ln 𝑇𝜆(𝛾)

𝜆
)1

 𝑑𝛾, 

(38) 

 

�̃�𝐺𝐸3 =
2

𝜖2 − 1
∫ 𝛾(𝑇𝜆(𝛾))

𝑚
𝜆

𝜖

1

× 𝐹1 (𝑎, 𝑎 + 𝑏,
ln 𝑇𝜆(𝛾)

𝜆
)1

 𝑑𝛾, 

(39) 

 

where, 

 

𝑇𝜆(𝛾) = 1 +
𝜆 ln(1 − 𝑡𝛼)

𝛾 − 𝜓𝑚,𝑘
.  

 

It does not seem possible to obtain the E-BEs in Eqns. (37)-

(39) in an explicit form and would of course require numerical 

integration. Similarly, in making use of (2) and (9), the E-BEs 

of 𝐻(𝑡) based on GEL function are given respectively by: 

 

�̃�𝐺𝐸1 =
𝛼 𝑡𝛼−1𝐺(𝜆)

(𝜖 − 1)(1 − 𝑡𝛼)𝐵(𝑎, 𝑏)
ln (

𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

), (40) 

 

𝐻𝐺𝐸2 =
2𝛼 𝑡𝛼−1𝐺(𝜆)

(𝜖 − 1)(1 − 𝑡𝛼)𝐵(𝑎, 𝑏)
 

× {1 −
𝜖 − 𝜓𝑚,𝑘
𝜖 − 1

ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)}, 

(41) 

 

𝐻𝐺𝐸3 =
2𝛼 𝑡𝛼−1𝐺(𝜆)

(𝜖 + 1)(1 − 𝑡𝛼)𝐵(𝑎, 𝑏)
 

× {1 +
𝜓𝑚,𝑘
𝜖 − 1

ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)},  

(42) 

 

where, 𝐺(𝜆) is given by (29). Under the LINEX loss function, 

and by using Eqns. (20)-(22), the E-BEs of 𝑅(𝑡) and 𝐻(𝑡) are 

given by: 

 

�̃�𝐿𝐼𝑗 = −
1

c
∫ ∫ ln [∑

(−𝑐)𝑖

𝑖!

∞

𝑖=1

(1
𝜖

1

1

0

−
𝑖 ln(1 − 𝑡𝛼)

𝛾 − 𝜓𝑚,𝑘
)

−(𝑚+𝜂)

]

× 𝜋𝑗(𝜂, 𝛾)d𝛾d𝜂, 𝑗 = 1,2,3, 

(43) 

 

and, 

 

�̃�𝑮𝑬𝟏

=
𝜶 𝒕𝜶−𝟏𝑮(𝝀)

(𝝐 − 𝟏)(𝟏 − 𝒕𝜶)𝑩(𝒂, 𝒃)
𝐥𝐧 (

𝝐 − 𝝍𝒎,𝒌

𝟏 − 𝝍𝒎,𝒌

) 

− (𝟏 − 𝝍𝒎,𝒌) 𝐥𝐧 (
𝜻(𝟏)

(𝟏 − 𝝍𝒎,𝒌)(𝟏 − 𝒕
𝜶)
)

+ (𝝐 − 𝝍𝒎,𝒌)× 𝐥𝐧 (
𝜻(𝝐)

(𝝐 − 𝝍𝒎,𝒌)(𝟏 − 𝒕
𝜶)
)}, 

(44) 

 

𝐻𝐿𝐼2

=
1

c(𝜖 − 1)2
(𝑚 +

𝑎

𝑎 + 𝑏
) {
𝑐𝛼 𝑡𝛼−1

1 − 𝑡𝛼
(1 − 𝜖)

+ (1 − 2𝜖�̅�𝑚,𝑘 − 𝜓𝑚,𝑘
2 ) ln (

𝜁(1)

(1 − 𝜓𝑚,𝑘)(1 − 𝑡
𝛼)
)

+
𝑐𝛼 𝑡𝛼−1

1 − 𝑡𝛼
(
𝑐𝛼 𝑡𝛼−1

1 − 𝑡𝛼
+ 2𝜖

− 2𝜓𝑚,𝑘) ln (
𝜁(𝜖)

𝜁(1)
)+(𝜖

− 𝜓𝑚,𝑘)
2
ln (

𝜁(𝜖)

(𝜖 − 𝜓𝑚,𝑘)(1 − 𝑡
𝛼)
)}, 

(45) 

 

𝐻𝐿𝐼3 =
1

c(𝜖2 − 1)
(𝑚 +

𝑎

𝑎 + 𝑏
) {
𝑐𝛼 𝑡𝛼−1

1 − 𝑡𝛼
(𝜖 − 1)  

 − (
𝑐𝛼 𝑡𝛼−1

1 − 𝑡𝛼
− 𝜓𝑚,𝑘)

2

ln (
𝜁(𝜖)

𝜁(1)
) + 𝜓𝑚,𝑘

2  

(46) 
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× ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

) − ln (
𝜁(1)

(1 − 𝜓𝑚,𝑘)(1 − 𝑡
𝛼)
) 

+𝜖2 ln (
𝜁(𝜖)

(𝜖 − 𝜓𝑚,𝑘)(1 − 𝑡
𝛼)
)}, 

 

where, 𝜁(𝜖) = 𝑐𝛼 𝑡𝛼−1 + (𝜖 − 𝜓𝑚,𝑘)(1 − 𝑡
𝛼). 

 

4.3 Property of E-BE of H(t)  

 

Now, we shall discuss the property of the E-BE relations 

between the 𝐻𝐴𝐿𝑗 (𝑗 = 1,2,3) , as well as relations among 

𝐻𝐺𝐸𝑗 (𝑗 = 1,2,3) and 𝐻𝐿𝐼𝑗 (𝑗 = 1,2,3). 

 

Theorem 4.4. Let 𝜖 > 1  and let 𝐻𝐴𝐿𝑗 , 𝐻𝐺𝐸𝑗  and 𝐻𝐿𝐼𝑗 , 𝑗 =

1,2,3 be given by (34 − 36, 40 − 42, 44 − 46). Then, 
 

1. 𝐻𝐴𝐿3 < �̃�𝐴𝐿1 < 𝐻𝐴𝐿2 , 

2. 𝐻𝐺𝐸3 < 𝐻𝐺𝐸1 < 𝐻𝐺𝐸2 , 

3. 𝐻𝐿𝐼3 < 𝐻𝐿𝐼1 < 𝐻𝐿𝐼2. 

Proof. See Appendix B, for the proof. 

 

Theorem 4.5. Let 𝜖 > 1  and let 𝐻𝐴𝐿𝑗 , 𝐻𝐺𝐸𝑗  and 𝐻𝐿𝐼𝑗 , 𝑗 =

1,2,3 be given by (34 − 36, 40 − 42, 44 − 46). Then 

1. lim
𝜓→−∞

𝐻𝐴𝐿1 = lim
𝜓→−∞

𝐻𝐴𝐿2 = lim
𝜓→−∞

𝐻𝐴𝐿3 , 

2. lim
𝜓→−∞

𝐻𝐺𝐸1 = lim
𝜓→−∞

�̃�𝐺𝐸2 = lim
𝜓→−∞

𝐻𝐺𝐸3 , 

3. lim
𝜓→−∞

𝐻𝐿𝐼1 = lim
𝜓→−∞

𝐻𝐿𝐼2 = lim
𝜓→−∞

𝐻𝐿𝐼3. 

Proof. By using the same lines as in theorem 4.3, it is easy 

to get the stated result. 

 

 

5. NUMERICAL COMPUTATIONS 

 

In this section, we conduct a Monte Carlo (MC) simulation 

study to illustrate our previous theoretical results and we 

consider a simulated data set and another real data set. All the 

computations are conducted using Mathematica software. 

 

5.1 Simulation study  

 

In this section, we conduct a comprehensive simulation 

study to illustrate the inferential procedures for estimating the 

model parameters and some survival time parameters of the 

removed units in the progressively first failure censored KW 

data. Here, a MC simulation is used for a comparison between 

the performances of the E-BEs and the BEs for different CSs. 

The following steps describe our methodology: 

 

1. For given values of the hyper-parameters (𝑎, 𝑏) , 

generate 𝜂  and 𝛾  from the beta and uniform priors, 

respectively. 

2. Based on that generated values of (𝜂, 𝛾) in step 1, we 

generate β from 𝐺(𝜂, 𝛾) given by (8). 

3. For given values the generated value of β, with 

𝛼 (known) = 0.5, 0.7 , the algorithm of Balakrishnan and 

Aggarwala [4] has been used to generate the progressive first-

failure samples under the censoring schemes described in 

Table 1. See also [35]. 

4. The different BEs and E-BEs of 𝛽, 𝑅(𝑡) and 𝐻(𝑡) are 

computed through Section 4. 

5. The above steps are repeated 10,000 times to evaluate 

the mean square error (MSE) for each method, the MSE of 

𝜗 = (𝛽, 𝑅(𝑡), 𝐻(𝑡)) is given by: 

 

𝑀𝑆𝐸(�̃�𝑗) =
1

10000
∑ (�̃�𝑗,𝑖 − �̃�𝑗

̅)
2

10000

𝑖=1

, 𝑗 = 1,2,3,  

 

where, �̃�1 = 𝛽, �̃�2 = �̃�(𝑡), �̃�3 = 𝐻(𝑡) and,  

 

�̃�𝑗
̅ =

1

10000
∑ �̃�𝑗,𝑖 .

10000

𝑖=1

  

 

The results are displayed in Tables 4-9, for different choices 

of 𝑘. 

 

Table 1. CSs 

 

Scheme (n,m) CS 

R1 (50,35) (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,20*0) 

R2 (50,35) (10*0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,10*0) 

R3 (50,35) (20*0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 

R4 (25,15) (10,14*0) 

R5 (25,15) (7*0,10,7*0) 

R6 (25,15) (14*0,10) 

 

5.2 Data analysis (Tensile strength) 

 

Here in this section, we discuss the analyses of the censored 

data produced from practical experiments with KW fitting 

distribution. Table 2, the data on the measurements on the 

tensile strength of polyester fibers to see if they were 

consistent with the lognormal distribution, was given by 

Quesenberry and Hales [36]. We first check whether the 

Kumaraswamy model is appropriate for this data set by using 

the Kaplan-Meier [37] estimator (KME) and Kolmogorov-

Smirnov (KS) distance. Based on the data set in Table 2, the 

maximum likelihood estimator of β with α(known)=0.5, 0.7 is 

obtained to be 𝛽 = 0.9672 . To test the null 

hypothesis 𝐻0: 𝐹(𝑥) = KW distribution vs. 𝐻1: 𝐹(𝑥) ≠
KW distribution. 
 

Table 2. Measurements on the tensile strength of polyester 

fibers 

 
Real Data Set 

0.023 0.032 0.054 0.069 0.081 0.094 

0.105 0.127 0.148 0.169 0.188 0.216 

0.255 0.277 0.311 0.361 0.376 0.395 

0.432 0.463 0.481 0.519 0.529 0.567 

0.642 0.674 0.752 0.823 0.887 0.926 

 

We reject 𝐻0 (and accept 𝐻1) at a significance level of 𝜏 =
0.05 if 𝑝 −value < 𝜏. Table 3 gives the Anderson−Darling 

(AD), Cramer-von Mises (CvonM), KS distance, Mardia 

skewness (MS), Pearson 𝜒2 and Watson 𝑈2 statistics and the 

corresponding 𝑝 − values. The 𝑃 − 𝑃  plot of KME versus 

fitted survival function as well as empirical and fitted survival 

functions are presented in Figures 1 and 2. Table 3 and Figures 

1 and 2 indicate clearly that the KW distribution fits the data 

set well. 

Now, we assume that the measurements on the tensile 

strength of polyester fibers are randomly grouped into 15 

groups with k=2 carbon fibers within each group. The tensile 

strength of polyester fibers of the groups are: 
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{0.023,0.032}, {0.054,0.069}, {0.081,0.094}, {0.105,0.127}, 
{0.148,0.169}, {0.188,0.216}, {0.255,0.277}, {0.311,0.361}, 
{0.376,0.395}, {0.432,0.463}, {0.481,0.519}, {0.529,0.567}, 

{0.642,0.674}, {0.752,0.823}, {0.887,0.926}. 
 

Suppose that the pre-determined progressively first-failure 

censoring plan is applied using progressive censoring scheme: 

𝑹 = (1,1,1,1,1,0,0,0,0,0) . The progressively first-failure-

censored sample of size (𝑚 = 10) out of 15 groups was taken 

as follows: 0.023, 0.081, 0.148, 0.255, 0.376, 0.481, 0.529, 

0.642, 0.752, 0.887. The estimates of the parameter β, 𝑅(𝑡) 
and 𝐻(𝑡) with t=0.5 are obtained in Table 10. 

 

Table 3. The statistics and the corresponding p−values of the real data sets 

 

 AD CvonM KS MS Pearson 𝜒2 Watson 𝑈2 

Statistic 0.6080 0.0839 0.1164 1.4929 5.2000 0.0735 

𝑝 −value 0.1118 0.1842 0.3741 0.2218 0.3920 0.2228 

 

Table 4. MSEs of the estimates of β when k=2  

 
   BE  E-BE 

   AL GEL LI  AL GEL LI 

CS α Par. q(−2, −1) λ(−2, −1) c(−2, −1) Par. q(−2, −1) λ(−2, −1) c(−2, −1) 

 

𝑹1 0.3 �̃� (0.00235,0.00268) (0.00291,0.00290) (0.00289,0.00297) �̃�1 (0.00234,0.00261) (0.00282,0.00283) (0.00272,0.00283) 

      �̃�2 (0.00235,0.00263) (0.00288,0.00287) (0.00277,0.00287) 

      �̃�3 (0.00233,0.00260) (0.00279,0.00280) (0.11259,0.10754) 

 0.7 �̃� (0.01343,0.01456) (0.01559,0.01535) (0.01679,0.01621) �̃�1 (0.01342,0.01419) (0.01465,0.01466) (0.01528,0.01510) 

      �̃�2 (0.01346,0.01438) (0.01526,0.01511) (0.01593,0.01559) 

      �̃�3 (0.01342,0.01411) (0.01436,0.01445) (0.59743,0.55273) 

𝑹2 0.3 �̃� (0.00266,0.00236) (0.00314,0.00255) (0.00313,0.00262) �̃�1 (0.00265,0.00231) (0.00305,0.00249) (0.00296,0.00249) 

      �̃�2 (0.00266,0.00233) (0.00311,0.00253) (0.00302,0.00253) 

      �̃�3 (0.00265,0.00230) (0.00302,0.00247) (0.11018,0.10538) 

 0.7 �̃� (0.01341,0.01343) (0.01527,0.01446) (0.01645,0.01538) �̃�1 (0.01346,0.01294) (0.01438,0.01370) (0.01501,0.01414) 

      �̃�2 (0.01348,0.01317) (0.01496,0.01419) (0.01563,0.01468) 

      �̃�3 (0.01347,0.01284) (0.01411,0.01347) (0.58867,0.56988) 

𝑹3 0.3 �̃� (0.00263,0.00259) (0.00307,0.00281) (0.00306,0.00288) �̃�1 (0.00262,0.00253) (0.00298,0.00274) (0.00290,0.00274) 

      �̃�2 (0.00263,0.00255) (0.00304,0.00278) (0.00295,0.00278) 

      �̃�3 (0.00262,0.00252) (0.00296,0.00272) (0.10913,0.10704) 

 0.7 �̃� (0.01460,0.01360) (0.01592,0.01423) (0.01710,0.01499) �̃�1 (0.01474,0.01334) (0.01509,0.01363) (0.01578,0.01401) 

      �̃�2 (0.01474,0.01348) (0.01564,0.01402) (0.01636,0.01444) 

      �̃�3 (0.01477,0.01328) (0.01484,0.01345) (0.57251,0.54197) 

𝑹4 0.3 �̃� (0.00635,0.00756) (0.00917,0.00913) (0.00933,0.00976) �̃�1 (0.00628,0.00700) (0.00859,0.00858) (0.00826,0.00867) 

      �̃�2 (0.00635,0.00720) (0.00897,0.00894) (0.00862,0.00903) 

      �̃�3 (0.00626,0.00690) (0.00840,0.00840) (0.14295,0.14312) 

 0.7 �̃� (0.03407,0.02840) (0.04069,0.03196) (0.04962,0.03654) �̃�1 (0.03509,0.02720) (0.03590,0.02870) (0.04110,0.03087) 

      �̃�2 (0.03497,0.02783) (0.03906,0.03083) (0.04500,0.03336) 

      �̃�3 (0.03525,0.02698) (0.03445,0.02775) (0.69177,0.61575) 

𝑹𝟓 0.3 �̃� (0.00598,0.00617) (0.00889,0.00752) (0.00899,0.00803) �̃�1 (0.00592,0.00575) (0.00833,0.00707) (0.00792,0.00711) 

      �̃�2 (0.00598,0.00590) (0.00870,0.00736) (0.00827,0.00740) 

      �̃�3 (0.00590,0.00568) (0.00814,0.00692) (0.14415,0.13617) 

 0.7 �̃� (0.02992,0.02896) (0.03370,0.03207) (0.04012,0.03648) �̃�1 (0.03185,0.02796) (0.02997,0.02896) (0.03352,0.03110) 

      �̃�2 (0.03128,0.02853) (0.03241,0.03099) (0.03641,0.03348) 

      �̃�3 (0.03222,0.02778) (0.02887,0.02806) (0.65028,0.60192) 

𝑹𝟔 0.3 �̃� (0.00639,0.00599) (0.00984,0.00721) (0.01000,0.00769) �̃�1 (0.00624,0.00562) (0.00920,0.00679) (0.00879,0.00683) 

      �̃�2 (0.00633,0.00575) (0.00963,0.00707) (0.00919,0.00711) 

      �̃�3 (0.00620,0.00555) (0.00899,0.00665) (0.15141,0.13238) 

 0.7 �̃� (0.02788,0.02926) (0.03315,0.03291) (0.03978,0.03761) �̃�1 (0.02960,0.02797) (0.02920,0.02957) (0.03271,0.03181) 

      �̃�2 (0.02908,0.02865) (0.03179,0.03176) (0.03578,0.03437) 

      �̃�3 (0.02994,0.02773) (0.02802,0.02860) (0.67157,0.61846) 

�̃�𝑖 is the E-BE of 𝛽 based on 𝜋𝑖(𝜂, 𝛾), 𝑖 = 1,2,3. 

 

Table 5. MSEs of the estimates of β when k=5 
 

   BE  E-BE 

   AL GEL LI  AL GEL LI 

CS α Par. q(−2, −1) λ(−2, −1) c(−2, −1) Par. q(−2, −1) λ(−2, −1) c(−2, −1) 

 

𝑹1 0.3 �̃� (0.00267,0.00235) (0.00312,0.00254) (0.00311,0.00261) �̃�1 (0.00267,0.00229) (0.00303,0.00248) (0.00295,0.00248) 

      �̃�2 (0.00268,0.00231) (0.00309,0.00252) (0.00300,0.00252) 

      �̃�3 (0.00267,0.00228) (0.00300,0.00246) (0.10922,0.10568) 

 0.7 �̃� (0.01464,0.01338) (0.01653,0.01397) (0.01779,0.01470) �̃�1 (0.01466,0.01316) (0.01560,0.01339) (0.01630,0.01376) 

      �̃�2 (0.01470,0.01328) (0.01621,0.01377) (0.01695,0.01418) 

      �̃�3 (0.01465,0.01311) (0.01531,0.01322) (0.58953,0.53873) 

𝑹2 0.3 �̃� (0.00264,0.00254) (0.00323,0.00279) (0.00321,0.00287) �̃�1 (0.00261,0.00247) (0.00313,0.00272) (0.00303,0.00272) 

      �̃�2 (0.00263,0.00249) (0.00319,0.00277) (0.00309,0.00276) 

      �̃�3 (0.00261,0.00245) (0.00310,0.00270) (0.11353,0.10964) 
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 0.7 �̃� (0.01371,0.01368) (0.01494,0.01450) (0.01602,0.01534) �̃�1 (0.01390,0.01331) (0.01416,0.01381) (0.01477,0.01424) 

      �̃�2 (0.01387,0.01350) (0.01467,0.01426) (0.01531,0.01472) 

      �̃�3 (0.01394,0.01323) (0.01392,0.01361) (0.56977,0.55469) 

𝑹3 0.3 �̃� (0.00244,0.00278) (0.00292,0.00306) (0.00290,0.00315) �̃�1 (0.00243,0.00269) (0.00283,0.00298) (0.00274,0.00298) 

      �̃�2 (0.00244,0.00272) (0.00289,0.00303) (0.00279,0.00303) 

      �̃�3 (0.00242,0.00267) (0.00280,0.00295) (0.11042,0.11180) 

 0.7 �̃� (0.01418,0.01365) (0.01541,0.01447) (0.01651,0.01530) �̃�1 (0.01436,0.01329) (0.01462,0.01379) (0.01525,0.01420) 

      �̃�2 (0.01433,0.01347) (0.01514,0.01423) (0.01580,0.01468) 

      �̃�3 (0.01439,0.01322) (0.01438,0.01359) (0.56989,0.55466) 

𝑹4 0.3 �̃� (0.00629,0.00655) (0.00951,0.00788) (0.00963,0.00842) �̃�1 (0.00617,0.00612) (0.00889,0.00741) (0.00849,0.00748) 

      �̃�2 (0.00624,0.00628) (0.00930,0.00772) (0.00886,0.00779) 

      �̃�3 (0.00614,0.00605) (0.00870,0.00726) (0.14830,0.13559) 

 0.7 �̃� (0.03094,0.03001) (0.03698,0.03398) (0.04489,0.03892) �̃�1 (0.03228,0.02848) (0.03256,0.03044) (0.03701,0.03280) 

      �̃�2 (0.03197,0.02927) (0.03546,0.03275) (0.04054,0.03551) 

      �̃�3 (0.03252,0.02820) (0.03123,0.02940) (0.68310,0.62811) 

𝑹𝟓 0.3 �̃� (0.00572,0.00653) (0.00803,0.00791) (0.00812,0.00845) �̃�1 (0.00574,0.00608) (0.00753,0.00744) (0.00720,0.00749) 

      �̃�2 (0.00577,0.00625) (0.00787,0.00775) (0.00750,0.00780) 

      �̃�3 (0.00573,0.00601) (0.00737,0.00728) (0.13622,0.13717) 

 0.7 �̃� (0.03130,0.02983) (0.03640,0.03391) (0.04363,0.03889) �̃�1 (0.03287,0.02827) (0.03227,0.03034) (0.03631,0.03271) 

      �̃�2 (0.03246,0.02906) (0.03498,0.03268) (0.03955,0.03544) 

      �̃�3 (0.03317,0.02797) (0.03104,0.02929) (0.66926,0.63142) 

𝑹𝟔 0.3 �̃� (0.00664,0.00643) (0.01025,0.00777) (0.01042,0.00829) �̃�1 (0.00645,0.00601) (0.00958,0.00732) (0.00917,0.00737) 

      �̃�2 (0.00655,0.00616) (0.01003,0.00762) (0.00958,0.00766) 

      �̃�3 (0.00641,0.00594) (0.00936,0.00718) (0.15363,0.13604) 

 0.7 �̃� (0.02995,0.03123) (0.03710,0.03509) (0.04500,0.04011) �̃�1 (0.03115,0.02970) (0.03254,0.03151) (0.03686,0.03396) 

      �̃�2 (0.03088,0.03051) (0.03554,0.03385) (0.04047,0.03671) 

      �̃�3 (0.03137,0.02939) (0.03117,0.03046) (0.69855,0.62440) 

�̃�𝑖 is the E-BE of 𝛽 based on 𝜋𝑖(𝜂, 𝛾), 𝑖 = 1,2,3. 

 

Table 6. MSEs of the estimates of R(t) when t=0.5 and k=2  
 

   BE  E-BE 

   AL GEL LI  AL GEL LI 
CS α Par. q(−2, −1) λ(−2, −1) c(−2, −1) Par. q(−2, −1) λ(−2, −1) c(−2, −1) 

 

𝑹1 0.3 �̃� (0.00202,0.00199) (0.00174,0.00189) (0.00173,0.00187) �̃�1 (0.00191,0.00192) (0.00167,0.00184) (0.12072,0.12012) 

      �̃�2 (0.00194,0.00194) (0.00169,0.00186) (0.12098,0.12038) 

      �̃�3 (0.00190,0.00191) (0.00167,0.00183) (0.26973,0.26926) 

 0.7 �̃� (0.00422,0.00382) (0.00343,0.00362) (0.00349,0.00363) �̃�1 (0.00395,0.00372) (0.00344,0.00363) (0.04358,0.04308) 

      �̃�2 (0.00407,0.00377) (0.00344,0.00364) (0.04408,0.04357) 

      �̃�3 (0.00389,0.00369) (0.00334,0.00363) (0.09927,0.09887) 

𝑹2 0.3 �̃� (0.00219,0.00179) (0.00192,0.00170) (0.00192,0.00168) �̃�1 (0.00209,0.00172) (0.00187,0.00165) (0.11991,0.11994) 

      �̃�2 (0.00212,0.00174) (0.00189,0.00167) (0.12017,0.12019) 

      �̃�3 (0.00207,0.00171) (0.00186,0.00164) (0.26910,0.26915) 

 0.7 �̃� (0.00408,0.00360) (0.00335,0.00334) (0.00342,0.00334) �̃�1 (0.00382,0.00345) (0.00338,0.00331) (0.04329,0.04386) 

      �̃�2 (0.00393,0.00352) (0.00338,0.00333) (0.04379,0.04437) 

      �̃�3 (0.00377,0.00342) (0.00339,0.00330) (0.09906,0.09950) 

𝑹3 0.3 �̃� (0.00214,0.00196) (0.00189,0.00186) (0.00189,0.00184) �̃�1 (0.00205,0.00188) (0.00184,0.00181) (0.11972,0.12009) 

      �̃�2 (0.00208,0.00191) (0.00186,0.00183) (0.11998,0.12035) 

      �̃�3 (0.00203,0.00187) (0.00183,0.00180) (0.26896,0.26925) 

 0.7 �̃� (0.00416,0.00367) (0.00359,0.00350) (0.00365,0.00351) �̃�1 (0.00395,0.00358) (0.00365,0.00352) (0.04258,0.04285) 

      �̃�2 (0.00404,0.00363) (0.00364,0.00352) (0.04307,0.04334) 

      �̃�3 (0.00391,0.00356) (0.00366,0.00352) (0.09850,0.09872) 

𝑹4 0.3 �̃� (0.00598,0.00576) (0.00441,0.00511) (0.00441,0.00497) �̃�1 (0.00541,0.00527) (0.00415,0.00474) (0.12020,0.12156) 

      �̃�2 (0.00560,0.00544) (0.00424,0.00487) (0.12082,0.12220) 

      �̃�3 (0.00532,0.00519) (0.00410,0.00468) (0.26890,0.26985) 

 0.7 �̃� (0.01018,0.00784) (0.00748,0.00693) (0.00774,0.00698) �̃�1 (0.00913,0.00734) (0.00788,0.00701) (0.03956,0.04088) 

      �̃�2 (0.00962,0.00759) (0.00777,0.00702) (0.04062,0.04197) 

      �̃�3 (0.00891,0.00725) (0.00795,0.00703) (0.09546,0.09656) 

𝑹𝟓 0.3 �̃� (0.00596,0.00499) (0.00436,0.00441) (0.00436,0.00428) �̃�1 (0.00537,0.00454) (0.00408,0.00408) (0.12079,0.12143) 

      �̃�2 (0.00556,0.00469) (0.00418,0.00419) (0.12142,0.12206) 

      �̃�3 (0.00528,0.00447) (0.00403,0.00403) (0.26935,0.26984) 

 0.7 �̃� (0.00965,0.00790) (0.00712,0.00709) (0.00735,0.00716) �̃�1 (0.00862,0.00748) (0.00756,0.00724) (0.03927,0.04036) 

      �̃�2 (0.00909,0.00769) (0.00743,0.00722) (0.04032,0.04144) 

      �̃�3 (0.00841,0.00740) (0.00764,0.00727) (0.09529,0.09615) 

𝑹𝟔 0.3 �̃� (0.00638,0.00475) (0.00460,0.00421) (0.00460,0.00409) �̃�1 (0.00573,0.00434) (0.00428,0.00391) (0.12162,0.12080) 

      �̃�2 (0.00594,0.00448) (0.00439,0.00402) (0.12226,0.12142) 

      �̃�3 (0.00562,0.00427) (0.00422,0.00386) (0.26994,0.26939) 

 0.7 �̃� (0.00952,0.00804) (0.00659,0.00712) (0.00682,0.00717) �̃�1 (0.00835,0.00754) (0.00693,0.00720) (0.04007,0.04084) 

      �̃�2 (0.00888,0.00778) (0.00683,0.00721) (0.04115,0.04193) 

      �̃�3 (0.00812,0.00744) (0.00700,0.00722) (0.09597,0.09651) 

�̃�𝑖 is the E-BE of 𝑅(𝑡) based on 𝜋𝑖(𝜂, 𝛾), 𝑖 = 1,2,3. 
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Table 7. MSEs of the estimates of R(t) when t=0.5 and k=5 
 

   BE  E-BE 

   AL GEL LI  AL GEL LI 

CS α Par. q(−2, −1) λ(−2, −1) c(−2, −1) Par. q(−2, −1) λ(−2, −1) c(−2, −1) 

 

𝑹1 0.3 �̃� (0.00216,0.00178) (0.00190,0.00189) (0.00190,0.00167) �̃�1 (0.00206,0.00171) (0.00186,0.00164) (0.11969,0.12002) 

      �̃�2 (0.00209,0.00174) (0.00187,0.00166) (0.11995,0.12028) 

      �̃�3 (0.00205,0.00170) (0.00185,0.00164) (0.26894,0.26921) 

 0.7 �̃� (0.00434,0.00362) (0.00363,0.00346) (0.00370,0.00347) �̃�1 (0.00409,0.00354) (0.00366,0.00348) (0.04313,0.04277) 

      �̃�2 (0.00420,0.00358) (0.00366,0.00348) (0.04363,0.04326) 

      �̃�3 (0.00404,0.00352) (0.00367,0.00349) (0.09890,0.09866) 

𝑹2 0.3 �̃� (0.00222,0.00196) (0.00192,0.00185) (0.00192,0.00183) �̃�1 (0.00211,0.00187) (0.00186,0.00179) (0.12064,0.12074) 

      �̃�2 (0.00214,0.00190) (0.00188,0.00181) (0.12090,0.12100) 

      �̃�3 (0.00209,0.00186) (0.00185,0.00178) (0.26965,0.26973) 

 0.7 �̃� (0.00403,0.00361) (0.00345,0.00340) (0.00351,0.00341) �̃�1 (0.00382,0.00350) (0.00352,0.00340) (0.04264,0.04328) 

      �̃�2 (0.00391,0.00355) (0.00350,0.00341) (0.04314,0.04378) 

      �̃�3 (0.00377,0.00348) (0.00353,0.00340) (0.09856,0.09905) 

𝑹3 0.3 �̃� (0.00202,0.00209) (0.00176,0.00198) (0.00175,0.00195) �̃�1 (0.00192,0.00200) (0.00170,0.00190) (0.12018,0.12100) 

      �̃�2 (0.00195,0.00203) (0.00172,0.00193) (0.12044,0.12126) 

      �̃�3 (0.00191,0.00199) (0.00170,0.00189) (0.26932,0.26991) 

 0.7 �̃� (0.00415,0.00372) (0.00358,0.00351) (0.00364,0.00352) �̃�1 (0.00394,0.00361) (0.00364,0.00350) (0.04258,0.04330) 

      �̃�2 (0.00404,0.00366) (0.00363,0.00352) (0.04307,0.04380) 

      �̃�3 (0.00390,0.00358) (0.00366,0.00350) (0.09850,0.09906) 

𝑹4 0.3 �̃� (0.00626,0.00507) (0.00456,0.00449) (0.00455,0.00437) �̃�1 (0.00564,0.00464) (0.00425,0.00418) (0.12120,0.12093) 

      �̃�2 (0.00585,0.00478) (0.00436,0.00429) (0.12183,0.12156) 

      �̃�3 (0.00554,0.00457) (0.00420,0.00413) (0.26963,0.26945) 

 0.7 �̃� (0.00980,0.00809) (0.00697,0.00712) (0.00722,0.00717) �̃�1 (0.00868,0.00756) (0.00734,0.00719) (0.03985,0.04102) 

      �̃�2 (0.00919,0.00782) (0.00724,0.00720) (0.04092,0.04211) 

      �̃�3 (0.00846,0.00746) (0.00742,0.00720) (0.09575,0.09664) 

𝑹𝟓 0.3 �̃� (0.00542,0.00516) (0.00401,0.00456) (0.00401,0.00444) �̃�1 (0.00490,0.00471) (0.00379,0.00424) (0.11966,0.12129) 

      �̃�2 (0.00507,0.00486) (0.00387,0.00435) (0.12028,0.12193) 

      �̃�3 (0.00481,0.00464) (0.00375,0.00418) (0.26854,0.26972) 

 0.7 �̃� (0.01001,0.00814) (0.00731,0.00714) (0.00757,0.00719) �̃�1 (0.00894,0.00759) (0.00772,0.00718) (0.03950,0.04116) 

      �̃�2 (0.00943,0.00786) (0.00760,0.00721) (0.04056,0.04226) 

      �̃�3 (0.00872,0.00748) (0.00780,0.00719) (0.09544,0.09675) 

𝑹𝟔 0.3 �̃� (0.00663,0.00520) (0.00479,0.00462) (0.00479,0.00449) �̃�1 (0.00596,0.00476) (0.00445,0.00429) (0.12177,0.12116) 

      �̃�2 (0.00618,0.00490) (0.00457,0.00440) (0.12241,0.12179) 

      �̃�3 (0.00585,0.00468) (0.00440,0.00424) (0.27003,0.26961) 

 0.7 �̃� (0.00997,0.00837) (0.00683,0.00746) (0.00709,0.00752) �̃�1 (0.00876,0.00789) (0.00713,0.00755) (0.04038,0.04074) 

      �̃�2 (0.00931,0.00813) (0.00705,0.00756) (0.04147,0.04183) 

      �̃�3 (0.00851,0.00779) (0.00719,0.00757) (0.09617,0.09639) 

�̃�𝑖 is the E-BE of 𝑅(𝑡) based on 𝜋𝑖(𝜂, 𝛾), 𝑖 = 1,2,3. 

 

Table 8. MSEs of the estimates of H(t) when t=0.5 and k=2  
 

   BE  E-BE 

   AL GEL LI  AL GEL LI 
CS α Par. q(−2, −1) λ(−2, −1) c(−2, −1) Par. q(−2, −1) λ(−2, −1) c(−2, −1) 

 

𝑹1 0.3 �̃� (0.01372,0.01561) (0.01696,0.01689) (0.01849,0.01803) �̃�1 (0.01362,0.01521) (0.52371,0.52371) (0.01726,0.01708) 

      �̃�2 (0.01368,0.01536) (0.52541,0.52541) (0.01762,0.01738) 

      �̃�3 (0.01359,0.01514) (0.52371,0.52371) (0.01708,0.01694) 

 0.7 �̃� (0.07826,0.08489) (0.09084,0.08948) (0.12244,0.10325) �̃�1 (0.07824,0.08269) (2.85140,2.85139) (0.10899,0.09476) 

      �̃�2 (0.07847,0.08383) (2.86049,2.86050) (0.11473,0.09847) 

      �̃�3 (0.07823,0.08222) (2.85142,2.85141) (0.10627,0.09302) 

𝑹2 0.3 �̃� (0.01551,0.01377) (0.01827,0.01487) (0.01981,0.01587) �̃�1 (0.01546,0.01346) (0.52372,0.52371) (0.01865,0.01502) 

      �̃�2 (0.01552,0.01357) (0.52540,0.52541) (0.01901,0.01528) 

      �̃�3 (0.01544,0.01340) (0.52372,0.52371) (0.01848,0.01490) 

 0.7 �̃� (0.07814,0.07825) (0.08901,0.08425) (0.11954,0.09900) �̃�1 (0.07847,0.07541) (2.85142,2.85134) (0.10662,0.08971) 

      �̃�2 (0.07858,0.07675) (2.86048,2.86055) (0.11215,0.09369) 

      �̃�3 (0.07852,0.07485) (2.85143,2.85136) (0.10399,0.08785) 

𝑹3 0.3 �̃� (0.01532,0.01512) (0.01787,0.01635) (0.01935,0.01745) �̃�1 (0.01530,0.01474) (0.52372,0.52371) (0.01824,0.01653) 

      �̃�2 (0.01534,0.01488) (0.52540,0.52541) (0.01858,0.01682) 

      �̃�3 (0.01528,0.01468) (0.52372,0.52371) (0.01807,0.01639) 

 0.7 �̃� (0.08510,0.07925) (0.09282,0.08294) (0.12225,0.09521) �̃�1 (0.08594,0.07774) (2.85146,2.85141) (0.11010,0.08760) 

      �̃�2 (0.08589,0.07856) (2.86043,2.86049) (0.11538,0.09090) 

      �̃�3 (0.08606,0.07743) (2.85148,2.85142) (0.10759,0.08606) 

𝑹4 0.3 �̃� (0.03700,0.04404) (0.05344,0.05321) (0.06710,0.06281) �̃�1 (0.03662,0.04080) (0.52010,0.51993) (0.05870,0.05543) 

      �̃�2 (0.03699,0.04199) (0.52907,0.52924) (0.06153,0.05793) 

      �̃�3 (0.03647,0.04023) (0.52012,0.51995) (0.05733,0.05422) 

 0.7 �̃� (0.19860,0.16550) (0.23716,0.18626) (0.49995,0.26632) �̃�1 (0.20453,0.15851) (2.83301,2.83213) (0.39505,0.21726) 

      �̃�2 (0.20379,0.16221) (2.87932,2.88022) (0.44476,0.23886) 

      �̃�3 (0.20544,0.15726) (2.83319,2.83232) (0.37181,0.20737) 

𝑹𝟓 0.3 �̃� (0.03485,0.03597) (0.05182,0.04381) (0.06451,0.05160) �̃�1 (0.03452,0.03354) (0.52008,0.51994) (0.05627,0.04536) 
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      �̃�2 (0.03483,0.03440) (0.52910,0.52923) (0.05896,0.04737) 

      �̃�3 (0.03439,0.03313) (0.52009,0.51996) (0.05497,0.04439) 

 0.7 �̃� (0.17440,0.16877) (0.19640,0.18690) (0.38614,0.26448) �̃�1 (0.18566,0.16298) (2.83314,2.83230) (0.30659,0.21728) 

      �̃�2 (0.18232,0.16628) (2.87918,2.88004) (0.34214,0.23822) 

      �̃�3 (0.18781,0.16191) (2.83332,2.83249) (0.29004,0.20770) 

𝑹𝟔 0.3 �̃� (0.03727,0.03490) (0.05737,0.04202) (0.07231,0.04943) �̃�1 (0.03638,0.03274) (0.52003,0.51997) (0.06297,0.04355) 

      �̃�2 (0.03688,0.03353) (0.52914,0.52920) (0.06609,0.04546) 

      �̃�3 (0.03616,0.03237) (0.52005,0.51999) (0.06145,0.04263) 

 0.7 �̃� (0.16247,0.17055) (0.19322,0.19184) (0.39170,0.27380) �̃�1 (0.17251,0.16302) (2.83287,2.83214) (0.30790,0.22375) 

      �̃�2 (0.16951,0.16699) (2.87946,2.88021) (0.34522,0.24587) 

      �̃�3 (0.17449,0.16162) (2.83305,2.83233) (0.29050,0.21361) 

�̃�𝑖 is the E-BE of H(𝑡) based on 𝜋𝑖(𝜂, 𝛾), 𝑖 = 1,2,3. 

 

Table 9. MSEs of the estimates of H(t) when t=0.5 and k=5 
 

   BE  E-BE 

   AL GEL LI  AL GEL LI 

CS α Par. q(−2, −1) λ(−2, −1) c(−2, −1) Par. q(−2, −1) λ(−2, −1) c(−2, −1) 

 

𝑹1 0.3 �̃� (0.01559,0.01368) (0.01816,0.01480) (0.01968,0.01581) �̃�1 (0.01556,0.01336) (0.52372,0.52371) (0.01855,0.01496) 

      �̃�2 (0.01561,0.01348) (0.52540,0.52541) (0.01890,0.01522) 

      �̃�3 (0.01554,0.01330) (0.52372,0.52371) (0.01838,0.01483) 

 0.7 �̃� (0.08531,0.07801) (0.09634,0.08143) (0.12825,0.09330) �̃�1 (0.08543,0.07669) (2.85143,2.85141) (0.11498,0.08592) 

      �̃�2 (0.08566,0.07743) (2.86047,2.86048) (0.12073,0.08912) 

      �̃�3 (0.08541,0.07642) (2.85144,2.85143) (0.11226,0.08445) 

𝑹2 0.3 �̃� (0.01538,0.01483) (0.01881,0.01628) (0.02047,0.01746) �̃�1 (0.01523,0.01438) (0.52371,0.52370) (0.01918,0.01645) 

      �̃�2 (0.01531,0.01453) (0.52541,0.52542) (0.01958,0.01675) 

      �̃�3 (0.01519,0.01430) (0.52371,0.52370) (0.01899,0.01630) 

 0.7 �̃� (0.07991,0.07975) (0.08710,0.08450) (0.11476,0.09809) �̃�1 (0.08104,0.07758) (2.85146,2.85138) (0.10312,0.08963) 

      �̃�2 (0.08083,0.07868) (2.86044,2.86052) (0.10812,0.09329) 

      �̃�3 (0.08124,0.07713) (2.85147,2.85139) (0.10075,0.08792) 

𝑹3 0.3 �̃� (0.01420,0.01621) (0.01700,0.01784) (0.01849,0.01916) �̃�1 (0.01415,0.01567) (0.52372,0.52370) (0.01734,0.01804) 

      �̃�2 (0.01420,0.01586) (0.52540,0.52542) (0.01769,0.01839) 

      �̃�3 (0.01413,0.01558) (0.52372,0.52370) (0.01717,0.01787) 

 0.7 �̃� (0.08263,0.07958) (0.08984,0.08432) (0.11783,0.09767) �̃�1 (0.08370,0.07747) (2.85146,2.85138) (0.10611,0.08931) 

      �̃�2 (0.08353,0.07852) (2.86043,2.86052) (0.11116,0.09291) 

      �̃�3 (0.08389,0.07705) (2.85148,2.85139) (0.10372,0.08763) 

𝑹4 0.3 �̃� (0.03663,0.03820) (0.05540,0.04594) (0.06928,0.05411) �̃�1 (0.03598,0.03568) (0.52005,0.51996) (0.06044,0.04773) 

      �̃�2 (0.03640,0.03662) (0.52912,0.52921) (0.06336,0.04985) 

      �̃�3 (0.03580,0.03524) (0.52007,0.51998) (0.05902,0.04671) 

 0.7 �̃� (0.18033,0.17488) (0.21551,0.19803) (0.45138,0.28404) �̃�1 (0.18811,0.20453) (2.83293,2.83207) (0.35517,0.23166) 

      �̃�2 (0.18635,0.20379) (2.87940,2.88028) (0.39981,0.25490) 

      �̃�3 (0.18951,0.20544) (2.83311,2.83226) (0.33433,0.22099) 

𝑹𝟓 0.3 �̃� (0.03331,0.03806) (0.04683,0.04609) (0.05807,0.05432) �̃�1 (0.03348,0.03546) (0.52013,0.51995) (0.05078,0.04784) 

      �̃�2 (0.03365,0.03640) (0.52904,0.52923) (0.05315,0.04997) 

      �̃�3 (0.03341,0.03502) (0.52015,0.51996) (0.04964,0.04681) 

 0.7 �̃� (0.18242,0.17387) (0.21215,0.19763) (0.42357,0.28426) �̃�1 (0.19160,0.16475) (2.83305,2.83202) (0.33632,0.23143) 

      �̃�2 (0.18920,0.16939) (2.87927,2.88033) (0.37586,0.25483) 

      �̃�3 (0.19330,0.16304) (2.83323,2.83222) (0.31785,0.22067) 

𝑹𝟔 0.3 �̃� (0.03867,0.03750) (0.05976,0.04532) (0.07534,0.05314) �̃�1 (0.03762,0.03506) (0.52002,0.51995) (0.06567,0.04689) 

      �̃�2 (0.03817,0.03593) (0.52915,0.52922) (0.06892,0.04891) 

      �̃�3 (0.03737,0.03465) (0.52004,0.51997) (0.06409,0.04592) 

 0.7 �̃� (0.17456,0.18205) (0.21625,0.20451) (0.45069,0.29220) �̃�1 (0.18153,0.17308) (2.83275,2.83217) (0.35416,0.23929) 

      �̃�2 (0.17996,0.17782) (2.87959,2.88018) (0.39832,0.26302) 

      �̃�3 (0.18285,0.17131) (2.83293,2.83236) (0.33351,0.22838) 

�̃�𝑖 is the E-BE of H(𝑡) based on 𝜋𝑖(𝜂, 𝛾), 𝑖 = 1,2,3. 

 

Table 10. Estimates of β, R(t) and H(t) when t=0.5 and k=2 
 

  BE  E-BE 

  AL GEL LI  AL GEL LI 

CS α Par. q(−2, −1) λ(−2, −1) c(−2, −1) Par. q(−2, −1) λ(−2, −1) 

 

0.3 �̃� (0.00027,0.00029) (0.00444,0.00253) (0.00391,0.00317) �̃�1 (0.00085,0.00001) (0.00369,0.00200) (0.00231,0.00177) 

     �̃�2 (0.00069,0.00005) (0.00418,0.00235) (0.00270,0.00211) 

     �̃�3 (0.00094,0.00000) (0.00345,0.00183) (0.15377,0.14475) 

0.7 �̃� (0.17340,0.14673) (0.11115,0.12228) (0.11387,0.11814) �̃�1 (0.18419,0.15709) (0.11510,0.12625) (0.12388,0.12807) 

     �̃�2 (0.18166,0.15447) (0.11244,0.12358) (0.12112,0.12536) 

     �̃�3 (0.18546,0.15841) (0.11645,0.12759) (0.00006,0.00038) 

 

0.3 �̃� (0.00355,0.00224) (0.00093,0.00128) (0.00083,0.00105) �̃�1 (0.00227,0.00129) (0.00039,0.00062) (0.12599,0.12720) 

     �̃�2 (0.00260,0.00152) (0.00051,0.00077) (0.12699,0.12822) 

     �̃�3 (0.00212,0.00118) (0.00034,0.00055) (0.27358,0.27446) 

0.7 �̃� (0.04366,0.04892) (0.05665,0.05413) (0.05742,0.05577) �̃�1 (0.04877,0.05411) (0.06190,0.05936) (0.00747,0.00777) 

     �̃�2 (0.04733,0.05268) (0.06051,0.05795) (0.00772,0.00802) 
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     �̃�3 (0.04951,0.05483) (0.06260,0.06007) (0.06479,0.06522) 

 

0.3 �̃� (\ 0.00157,0.00167) (\ 0.02586,0.01475) (\ 0.03917,0.02480) �̃�1 (0.00496,0.00008) (0.51416,0.51368) (0.02567,0.01491) 

     �̃�2 (0.00400,0.00028) (0.53517,0.53567) (0.02917,0.01736) 

     �̃�3 (0.00548,0.00002) (0.51422,0.51374) (0.02400,0.01375) 

0.7 �̃� (1.01065,0.85519) (0.64780,0.71271) (0.58947,0.65321) �̃�1 (1.07354,0.91559) (2.83160,2.83048) (0.64878,0.71166) 

     �̃�2 (1.05876,0.90030) (2.88063,2.88178) (0.63187,0.69546) 

     �̃�3 (1.08096,0.92328) (2.83174,2.83061) (0.65732,0.71983) 

 
 

Figure 1. P-P plot of KME versus fitted model survival 

function for real data set 

 

 
 

Figure 2. Empirical and fitted survival function of real data 

set 

 

 

6. CONCLUSIONS 

 

In this article, we have tackled the BEs and E-BEs problems, 

for the KW model based on progressive first failure censoring, 

from a Bayesian viewpoint. The Bayesian inference, using AL, 

GEL and LINEX loss functions, is obtained based on the 

conjugate prior distribution. Also, comparisons are made 

between the different estimators based on a simulation study. 

Also, the details have been explained using a real-life example. 

It is observed that the E-BEs based on progressive first failure 

censoring have smaller MSEs than the corresponding BEs. 

From the numerical results presented in Tables 4-9, we may 

report the following observations: 

1. It is clearly observed that when 𝑘 increases, then MSEs of 

all the estimators increase, as expected, in all cases for all 

the tables. 

2. It is clear from Tables 4-9 that the E-BEs under AL and 

GEL functions perform well when compared to the BEs 

under the same loss functions. Further, under the LINEX 

loss function, the E-BEs perform well when compared to 

the BEs based on 𝜋𝑖(𝜂, 𝛾), 𝑖 = 1,2, while BEs gives better 

values through the MSE based on 𝜋3(𝜂, 𝛾). 

3. It is checked that the performances in general of BEs and 

E-BEs of β, R(t) and H(t) under the AL function do well 

when compared to the GEL and LINEX loss functions in 

terms of MSE. 

4. One can also observe that the MSEs decrease as 𝛼 

decreases. 

5. We can see that the MSEs are sensitive with the variation 

of 𝛼. 

6. From Tables 4-9, for fixed 𝛼 and CS, we can conclude that 

MSEs based on AL and GEL functions of all estimations 

�̃�𝑖 = (𝛽𝑖 , �̃�𝑖, 𝐻𝑖), 𝑖 = 1,2,3, are relatively not sensitive to 

𝜋(𝜂, 𝛾), in all cases considered. we also can see that the 

MSEs based on LINEX loss function are sensitive with the 

variation of 𝜋(𝜂, 𝛾). 
7. It is clearly observed that MSEs of all estimations are 

relatively not sensitive to the censoring schemes. 

 

 

ACKNOWLEDGMENT 

 

We would like to appreciate the constructive comments by 

an associate editor and two anonymous referees which 

improved the quality and the presentation of our results. 

 

 

REFERENCES  

 

[1] Montanari, G.C., Cacciari, M. (1988). Progressively-

censored aging tests on XLPE-insulated cable models. 

IEEE Transactions on Dielectrics and Electrical 

Insulation, 23: 365-372. https://doi.org/10.1109/14.2376 

[2] Abu-Awwad, R.R., Raqab, M.Z., Al-Mudahakha, I.M. 

(2015). Statistical inference based on progressively type-

II censored data from Weibull model. Communications 

in Statistics - Simulation and Computation, 44(10): 2654-

2670. https://doi.org/10.1080/03610918.2013.842589 

[3] Balakrishnan, N. (2007). Progressive censoring 

methodology, an appraisal. Test, 16: 211-296. 

https://doi.org/10.1007/s11749-007-0061-y 

[4] Balakrishnan, N., Aggarwala, R. (2000). Progressive 

Censoring – Theory, Methods, and Applications. 

Birkha ̈user, Boston, MA. 

[5] Balakrishnan, N., Cramer, E. (2014). The art of 

progressive censoring, applications to reliability and 

quality. Birkhauser, Boston. 

[6] Dube, M., Garg, R., Krishna, H. (2016). On 

progressively first failure censored Lindley distribution. 

Computational Statistics, 31: 139-163. 

https://doi.org/10.1007/s00180-015-0622-6 

[7] Kotb, M.S., Raqab, M.Z. (2019). Statistical inference for 

modified Weibull distribution based on progressively 

type-II censored data. Mathematics and Computers in 

Simulation, 162: 233-248. 

https://doi.org/10.1016/j.matcom.2019.01.015 

[8] Kundu, D. (2008). Bayesian inference and life testing 

plan for the Weibull distribution in presence of 

699



 

progressive censoring. Technometrics, 50(2): 144-154. 

https://doi.org/10.1198/004017008000000217 

[9] Mao, S.S., Luo, C.B. (1989). Reliability analysis of zero-

failure data. Chinese Mathematical Statistics and 

Applied Probability, 4(4): 489-506. 

[10] Mohie El-Din, M.M., Amein, M.M., El-Attar, H.E., 

Hafez, E.H. (2013). Estimation for parameters of Feller-

Pareto distribution from progressive type-II censoring 

and some characterizations. Journal of Probability and 

Statistical Science, 11: 97-108. 

[11] Dey, S., Dey, T., Luckett, D.J. (2016). Statistical 

inference for the generalized inverted exponential 

distribution based on upper record values. Mathematics 

and Computers in Simulation, 120: 64-78. 

https://doi.org/10.1016/j.matcom.2015.06.012 

[12] Mohie El-Din, M.M., Kotb, M.S., Abd-Elfattah, E.F., 

Newer, H.A. (2017). Bayesian inference and prediction 

of the Pareto distribution based on ordered ranked set 

sampling. Communications in Statistics - Theory and 

Methods, 46(13): 6264-6279. 

https://doi.org/10.1080/03610926.2015.1124118 

[13] Soliman, A.A., Al-Aboud, F.M. (2008). Bayesian 

inference using record values from Rayleigh model with 

application. European Journal of Operational Research, 

185(2): 659-672. 

https://doi.org/10.1016/j.ejor.2007.01.023 

[14] Kumaraswamy, P. (1980). A generalized probability 

density-function for double-bounded random processes. 

Journal of Hydrology, 46: 79-88. 

https://doi.org/10.1016/0022-1694(80)90036-0 

[15] Courard-Hauri, D. (2007). Using Monte Carlo analysis to 

investigate the relationship between overconsumption 

and uncertain access to one’s personal utility function. 

Ecological Economics, 64(1): 152-162. 

https://doi.org/10.1016/j.ecolecon.2007.02.018 

[16] Fletcher, S.C., Ponnambalam, K. (1996) Estimation of 

reservoir yield and storage distribution using moments 

analysis. Journal of Hydrology, 182: 259-275. 

https://doi.org/10.1016/0022-1694(95)02946-X 

[17] Ganji, A., Ponnambalam, K., Khalili, D., Karamouz, M. 

(2006). Grain yield reliability analysis with crop water 

demand uncertainty. Stochastic Environmental Research 

and Risk Assessment, 20: 259-277. 

https://doi.org/10.1007/s00477-005-0020-7 

[18] Sanchez, S., Ancheyta, J., McCaffrey, W.C. (2007). 

Comparison of probability distribution function for 

fitting distillation curves of petroleum. Energy and Fuels, 

21: 2955-2963. https://doi.org/10.1021/ef070003y 

[19] Seifi, A., Ponnambalam, K., Vlach, J. (2000). 

Maximization of manufacturing yield of systems with 

arbitrary distributions of component values. Annals of 

Operations Research, 99: 373-383. 

https://doi.org/10.1023/A:1019288220413 

[20] Sundar, V., Subbiah, K. (1989). Application of double 

bounded probability density-function for analysis of 

ocean waves. Ocean Engineering, 16: 193-200. 

https://doi.org/10.1016/0029-8018(89)90005-X 

[21] Jones, M.C. (2009). Kumaraswamy’s distribution: A 

beta-type distribution with some tractability advantages. 

Statistical Methodology, 6(1): 70-81. 

https://doi.org/10.1016/j.stamet.2008.04.001 

[22] Wang, L. (2017). Inference for the Kumaraswamy 

distribution under k-record values. Journal of 

Computational and Applied Mathematics, 321: 246-260. 

https://doi.org/10.1016/j.cam.2017.02.037 

[23] Wang, L. (2018). Inference of progressively censored 

competing risks data from Kumaraswamy distributions. 

Journal of Computational and Applied Mathematics, 343: 

719-736. https://doi.org/10.1016/j.cam.2018.05.013 

[24] Han, M. (2009). E-Bayesian estimation and hierarchical 

Bayesian estimation of failure rate. Applied 

Mathematical Modelling, 33: 1915-1922. 

https://doi.org/10.1016/j.apm.2008.03.019 

[25] Jaheen, Z.F., Okasha, H.M. (2011). E-Bayesian 

estimation for the Burr type XII model based on type-II 

censoring. Applied Mathematical Modelling, 35: 4730-

4737. https://doi.org/10.1016/j.apm.2011.03.055 

[26] Okasha, H.M., Wang, J. (2016). E-Bayesian estimation 

for the geometric model based on record statistics. 

Applied Mathematical Modelling, 40(1): 658-670. 

https://doi.org/10.1016/j.apm.2015.05.004 

[27] Al-Bayyati, H.N. (2002). Comparing methods of 

Estimating Weibull Failure Models Using Simulation. 

Ph.D. Thesis, College of Administration and Economics, 

Baghdad University, Iraq. 

[28] Kotb, M.S., Mohie El-Din, M.M. (2021). Parametric 

inference for step-stress accelerated life testing from 

Rayleigh distribution under ordered ranked set sampling. 

IEEE Transactions on Reliability, pp. 1-12. 

https://doi.org/10.1109/TR.2020.2999392 

[29] Kotb, M.S., Raqab, M.Z. (2018). Bayesian inference and 

prediction of the Rayleigh distribution based on ordered 

ranked set sampling. Communications in Statistics - 

Simulation and Computation, 47(3): 905-923. 

https://doi.org/10.1080/03610918.2017.1300262 

[30] Calabria, R., Pulcini, G. (1996). Point estimation under 

asymmetric loss functions for left-truncated exponential 

samples. Communications in Statistics - Theory and 

Methods, 25(3): 585-600. 

https://doi.org/10.1080/03610929608831715 

[31] Varian, H.R. (1975). A Bayesian approach to real estate 

assessment. North Holland, Amsterdam, pp. 195-208. 

[32] Basu, A.P., Ebrahimi, N. (1991). Bayesian approach to 

life testing and reliability estimation using asymmetric 

loss function. Journal of Statistical Planning and 

Inference, 29: 21-31. https://doi.org/10.1016/0378-

3758(92)90118-C 

[33] Soliman, A.A., Abd-Ellah, A.H., Sultan, K.S. (2006). 

Comparison of estimates using record statistics from 

Weibull model: Bayesian and non-Bayesian approaches. 

Computational Statistics & Data Analysis, 51(3): 2065-

2077. https://doi.org/10.1016/j.csda.2005.12.020 

[34] Bernardo, J.M., Smith, A.F.M. (1994). Bayesian Theory. 

New York: Wiley. 

[35] Mohammed, H.S., Ateya, S.F., Al-Hussaini, E.K. (2017). 

Estimation based on progressive first-failure censoring 

from exponentiated exponential distribution. Journal of 

Applied Statistics, 44(8): 1479-1494. 

https://doi.org/10.1080/02664763.2016.1214245 

[36] Quesenberry, C.P., Hales, C. (1980). Concentration 

bands for uniformity plots. Journal of Statistical 

Computation and Simulation, 11: 41-53. 

https://doi.org/10.1080/00949658008810388 

[37] Kaplan, E.L., Meier, P. (1958). Nonparametric 

estimation from incomplete observations. Journal of the 

American Statistical Association, 53: 457-481. 

https://doi.org/10.1007/978-1-4612-4380-9_25 

 

700



 

NOMENCLATURE 

 

AD Anderson-Darling 

AL Al-Bayyati loss 

BE 

cdf 

Bayesian estimator 

Cumulative distribution function 

CS Censoring scheme 

CvonM Cramer-von Mises 

E-BE Expected BE 

GEL General entropy loss 

KME Kaplan-Meier estimator 

KS Kolmogorov−Smirnov 

KW Kumaraswamy 

LINEX Linear−exponential 

MC Monte Carlo 

MS Mardia skewness 

MSE Mean square error 

pdf Probability density function 

SEL Squared error loss 

 

 

APPENDIX  

 

Appendix A 

 

Proof of Theorem 4.2 

(1) To show that 𝛽𝐴𝐿3 < 𝛽𝐴𝐿1 < 𝛽𝐴𝐿2 , we can write: 

 

𝛽𝐴𝐿1 − 𝛽𝐴𝐿3 = ∫ ∫ 𝛽𝐴𝐿

𝜖

1

(𝜋1(𝜂, 𝛾) − 𝜋3(𝜂, 𝛾))
1

0

d𝛾d𝜂

=
1

𝜖2 − 1
(𝑚 + 𝑞 +

𝑎

𝑎 + 𝑏
) {2

− 2𝜖 

+(1 + 𝜖 − 2𝜓𝑚,𝑘) ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)} = 𝛽𝐴𝐿2 − 𝛽𝐴𝐿1 . 

(47) 

 

Since 𝜖 > 1  and 𝜓𝑚,𝑘 < 0 , we have (𝑚 + 𝑞 +
𝑎

𝑎+𝑏
) /

(𝜖2 − 1) > 0. Now, let,  

 

£1(𝜖) = 2 − 2𝜖 + (1 + 𝜖 − 2𝜓𝑚,𝑘) ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

).  

 

Then, 

 

£1
′ (𝜖) = −2 +

1 + 𝜖 − 2𝜓𝑚,𝑘
𝜖 − 𝜓𝑚,𝑘

+ ln(
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

),  

 

£1
′′(𝜖) = (𝜖 − 1)/(𝜖 − 𝜓𝑚,𝑘)

2 > 0, £1(1) = £1
′ (1) = 0 ; 

£1(𝜖)  and £1
′ (𝜖)  are increasing functions. So, we have 

£1(𝜖) > 0. Thus, we have 𝛽𝐴𝐿3 < 𝛽𝐴𝐿1 < 𝛽𝐴𝐿2 . 

 

(2) To show that 𝛽𝐺𝐸3 < 𝛽𝐺𝐸1 < 𝛽𝐺𝐸2 , we can write: 
 

𝛽𝐺𝐸1 − 𝛽𝐺𝐸3 =
𝐺(𝜆)

(𝜖2 − 1)𝐵(𝑎, 𝑏)
{2 − 2𝜖 +(1 + 𝜖

− 2𝜓𝑚,𝑘) ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)}

=
𝜖 − 1

𝜖 + 1
(𝛽𝐺𝐸2 − 𝛽𝐺𝐸1). 

(48) 

 

From Lemma 4.1, we have 𝐺(𝜆)/((𝜖2 − 1)𝐵(𝑎, 𝑏)) > 0. 

Now, let,  

 

£2(𝜖) = 2 − 2𝜖 + (1 + 𝜖 − 2𝜓𝑚,𝑘) ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)

= £1(𝜖) > 0. 

(49) 

 

Since (𝜖 − 1)/(𝜖 + 1)  >  0 and by using Eqns. (48) and 

(49), we have 𝛽𝐺𝐸3 < 𝛽𝐺𝐸1 < 𝛽𝐺𝐸2 . 

 

(3) To show that 𝛽𝐿𝐼3 < 𝛽𝐿𝐼1 < 𝛽𝐿𝐼2, first we prove that 

𝛽𝐿𝐼3 < 𝛽𝐿𝐼1 is as follows:  

 

𝛽𝐿𝐼1 − 𝛽𝐿𝐼3 =
1

𝑐(𝜖2 − 1)
(𝑚 +

𝑎

𝑎 + 𝑏
) 

× {(𝜖 + 𝑐 − 𝜓𝑚,𝑘) (1 + 𝑐 − 𝜓𝑚,𝑘)  

× ln (
𝜖 + 𝑐 − 𝜓𝑚,𝑘
1 + 𝑐 − 𝜓𝑚,𝑘

) − 𝑐(𝜖 − 1)  

−(𝜖 − 𝜓𝑚,𝑘)(1 − 𝜓𝑚,𝑘) ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)}. 

(50) 

 

Since 𝜖 > 1  and 𝑐 > 0 , we have (𝑚 + 𝑞 +
𝑎

𝑎+𝑏
) /𝑐(𝜖2 −

1) > 0. Now, let,  

 

£3(𝜖) = (𝜖 + 𝑐 − 𝜓𝑚,𝑘)(1 + 𝑐

− 𝜓𝑚,𝑘) ln (
𝜖 + 𝑐 − 𝜓𝑚,𝑘
1 + 𝑐 − 𝜓𝑚,𝑘

)

− (𝜖 − 𝜓𝑚,𝑘)(1

− 𝜓𝑚,𝑘) ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

) − 𝑐(𝜖

− 1). 

(51) 

 

Then 

 

£3
′ (𝜖) = (1 + 𝑐 − 𝜓𝑚,𝑘) ln (

𝜖 + 𝑐 − 𝜓𝑚,𝑘
1 + 𝑐 − 𝜓𝑚,𝑘

)

− (1 − 𝜓𝑚,𝑘) ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

) , 

(52) 

 

and 

 

£3
′′(𝜖) =

1 + 𝑐 − 𝜓𝑚,𝑘
𝜖 + 𝑐 − 𝜓𝑚,𝑘

−
1 − 𝜓𝑚,𝑘
𝜖 − 𝜓𝑚,𝑘

> 0, (53) 

 

£3(1) = £3
′ (1) = 0 ; £3(𝜖)  and £3

′ (𝜖)  are increasing 

functions. This implies that £3(𝜖) > 0. Thus, one can show 

that 𝛽𝐿𝐼3 < 𝛽𝐿𝐼1. Similarly, we can show that 𝛽𝐿𝐼1 < 𝛽𝐿𝐼2. This 

completes the proof. 

 

Proof of Theorem 4.3 

 

(1, 2) Since lim
𝜓→−∞

(1 + 𝜖 − 2𝜓𝑚,𝑘) ln (
𝜖−𝜓𝑚,𝑘

1−𝜓𝑚,𝑘
) = 2(𝜖 − 1), 

we find from (47) that: 

 

lim
𝜓→−∞

𝛽𝐴𝐿1 − 𝛽𝐴𝐿3 = lim
𝜓→−∞

𝛽𝐴𝐿2 − 𝛽𝐴𝐿1 = 0, (54) 
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and from (48), 

lim
𝜓→−∞

𝛽𝐺𝐸1 − 𝛽𝐺𝐸3 = lim
𝜓→−∞

𝛽𝐺𝐸2 − 𝛽𝐺𝐸1 = 0. (55) 

Next, it can be easily checked that 

lim
𝜓→−∞

𝛽𝐴𝐿1 = lim
𝜓→−∞

𝛽𝐴𝐿2 = lim
𝜓→−∞

𝛽𝐴𝐿3 , 

and 

lim
𝜓→−∞

𝛽𝐺𝐸1 = lim
𝜓→−∞

𝛽𝐺𝐸2 = lim
𝜓→−∞

𝛽𝐺𝐸3 . 

(3) Since,

lim
𝜓→−∞

{(𝜖 + 𝑐 − 𝜓𝑚,𝑘)(1 + 𝑐

− 𝜓𝑚,𝑘) ln (
𝜖 + 𝑐 − 𝜓𝑚,𝑘
1 + 𝑐 − 𝜓𝑚,𝑘

)−(𝜖

− 𝜓𝑚,𝑘)(1

− 𝜓𝑚,𝑘) ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)}

= 2(𝜖 − 1), 

(56) 

We find from (50) that, 

lim
𝜓→−∞

𝛽𝐿𝐼1 − 𝛽𝐿𝐼3 = lim
𝜓→−∞

𝛽𝐿𝐼2 − 𝛽𝐿𝐼1 = 0. 

It can be easily checked that the above equation implies: 

lim
𝜓→−∞

𝛽𝐿𝐼1 = lim
𝜓→−∞

𝛽𝐿𝐼2 = lim
𝜓→−∞

𝛽𝐿𝐼3 . 

Hence, the theorem is proved. 

Appendix B 

Proof of Theorem 4.4 

(1) From (23)−(25) and (34)−(36), notice that for 0 < 𝑡 < 1,

𝐻𝐴𝐿1 =
𝛼 𝑡𝛼−1

1 − 𝑡𝛼
𝛽𝐴𝐿1 ,

𝐻𝐴𝐿2 =
𝛼 𝑡𝛼−1

1 − 𝑡𝛼
𝛽𝐴𝐿2  ,

𝐻𝐴𝐿3 =
𝛼 𝑡𝛼−1

1 − 𝑡𝛼
𝛽𝐴𝐿3 .}

(57) 

Hence it follows that 

𝐻𝐴𝐿1
𝛽𝐴𝐿1

=
𝐻𝐴𝐿2
𝛽𝐴𝐿2

=
𝐻𝐴𝐿3
𝛽𝐴𝐿3

. (58) 

According to part (1) of Theorem 4.2 and Eq. (58), the stated 

result follows. 

(2) It can be obtained along the same line as in part (1), the

details are avoided.

(3) To show that 𝐻𝐿𝐼3 < 𝐻𝐿𝐼1 < �̃�𝐿𝐼2 , first we prove that

�̃�𝐿𝐼3 < 𝐻𝐿𝐼1  is as follows: 

𝐻𝐿𝐼1 − 𝐻𝐿𝐼3 =
1

c(𝜖2 − 1)
(𝑚 +

𝑎

𝑎 + 𝑏
) £4(𝜖), (59) 

where, 

£4(𝜖) = {(
𝑐𝛼 𝑡𝛼−1

1 − 𝑡𝛼
+ 𝜖 − 𝜓𝑚,𝑘) (

𝑐𝛼 𝑡𝛼−1

1 − 𝑡𝛼
+ 1

− 𝜓𝑚,𝑘) × ln (
𝜁(𝜖)

𝜁(1)
)

− (𝜖 − 𝜓𝑚,𝑘)(1

− 𝜓𝑚,𝑘)× ln (
𝜖 − 𝜓𝑚,𝑘
1 − 𝜓𝑚,𝑘

)

− (𝜖 − 1)
𝑐𝛼 𝑡𝛼−1

1 − 𝑡𝛼
}. 

(60) 

Using the same line as in part (3) of Theorem 4.2, details 

are avoided, it is easy to obtain £4(𝜖) > 0. Thus, it can show

that 𝐻𝐿𝐼3 < 𝐻𝐿𝐼1 . Similarly, we can show that 𝐻𝐿𝐼1 < �̃�𝐿𝐼2 .

This completes the proof. 
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