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In this study, we have developed a fourth order compact finite difference method for 

finding the numerical solution of two-parameter singularly perturbed convection-

diffusion boundary value problems. We have used fourth order compact finite 

difference method on uniform mesh which provides a tridiagonal linear system of 

equations. The convergence analysis of the proposed method is established through a 

matrix analysis approach and it is proved that present method gives fourth order 

convergence results. Present method is implemented on two numerical examples for 

checking the efficiency and precision of the method. Numerical outcomes are exhibited 

which supports the theoretical outcomes. Numerical outcomes are compared with other 

existing methods and found that present method gives more accurate approximate 

solution as compare to the other existing methods. 
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1. INTRODUCTION

We consider the following two-parameter singularly 

perturbed convection--diffusion boundary value problem: 

( ) ( ) ( ) ( ) ( ) ( ) ( ), 0, 1u x p x u x q x u x f x x  − + + =  (1) 

( ) ( )0 , 1 .u u = = (2) 

with two small positive parameters, 0 < 𝜀 ≪ 1 and 0 < 𝜇 ≪
1. The function 𝑝(𝑥), 𝑞(𝑥) and 𝑓(𝑥) are sufficiently smooth

real valued function and satisfied 𝑝(𝑥) ≥ 𝑝∗ > 0, 𝑞(𝑥) ≥
𝑞∗ > 0  and 𝑓(𝑥) ≥ 𝑓∗ > 0  for 𝑥 ∈ (0,1).  Under these

assumptions problem (1) is characterized into two cases:

1) When we put 𝜇 = 0, in Eq. (1), then the Eq. (1) is known

as reaction-diffusion singular perturbation problem. 

2) When we put 𝜇 = 1, in Eq. (1), then the Eq. (1) is known

as convection-diffusion singular perturbation problem. 

These kinds of problems arise in numerous field like applied 

mathematics, chemical reactor theory and control theory [1-6]. 

O’Malley [7] has discussed the nature of two-parameter 

problems by asymptotic expansion where the ratio of 𝜇 and   

have significant role in solution. The two-parameter singular 

perturbation boundary value problems have two cases 
𝜇2

𝜀→0
 as 

0 → and 
𝜀

𝜇2→0
 as 𝜇 → 0 an established sufficient condition 

for convergence. 

We frequently discuss the boundary value problems in 

which one or two small positive parameter multiplies with the 

derivatives. A lot of research work has been done by 

researchers for single parameter convection-diffusion and 

reaction-diffusion problems [8-11]. However, only few 

researchers have studied two-parameter singular perturbation 

boundary value problems [12-21]. Shishkin and Titov [22] 

have discussed an exponentially fitted finite difference method 

based on a uniform mesh to obtain the approximate solution of 

two-parameter boundary value problems. Zahra and El 

Mhlawy [21] have solved two parameter singularly perturbed 

semi-linear boundary value problem via exponential spline 

with Shishkin mesh. Khandelwal and Khan [23] have 

discussed the numerical solution of problem (1) and (2) by 

using non-polynomial cubic spline method. For more detail 

about singular perturbation problems readers are referred to 

books [24-26] and references therein. 

The remaining part of the paper is arranged as: In section 2 

we have given a brief description of the proposed method for 

the numerical solution of problem (1) and (2). Convergence 

analysis of the method is presented in section 3. Section 4 

presents the numerical results and comparisons are made with 

other existing methods. Finally, the conclusion is given at the 

end of the paper in section 5.  

2. DESCRIPTION OF THE METHOD

We divide the interval [0,1] into N equal subinterval and 

choice piecewise uniform mesh points represented by 𝜋 =
{0 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑁−1, 𝑥𝑁 = 1} i.e., 𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 =

0,1,2, … , 𝑁,  where ℎ =
1

𝑁
.  For straightforwardness, let us 

denote 𝑝(𝑥𝑖) = 𝑝𝑖 , 𝑞(𝑥𝑖) = 𝑞𝑖 , 𝑓(𝑥𝑖) = 𝑓𝑖 , 𝑢(𝑥𝑖) =

𝑢𝑖 , 𝑢′(𝑥𝑖) = 𝑢𝑖
′ , 𝑢″(𝑥𝑖) = 𝑢″and 𝑢(𝑛)(𝑥𝑖) = 𝑢𝑖

(𝑛)
. Assume that

u(x) has continuous fourth order derivatives on [0,1]. Using 

the Taylor’s series expansion, we obtain:  
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( ) ( ) ( )

( ) ( ) ( )

2 3 4 5
3 4 5

1

6 7
6 7 8

2! 3! 4! 5!

6! 7!

i i i i i i i

i i

h h h h
u u hu u u u u

h h
u u O h

+
 = + + + + +

+ + +

 (3) 

 

( ) ( ) ( )

( ) ( ) ( )

2 3 4 5
3 4 5

1

6 7
6 7 8

2! 3! 4! 5!

6! 7!

i i i i i i i

i i

h h h h
u u hu u u u u

h h
u u O h

−
 = − + − + −

+ − +

 (4) 

 

Subtracting Eq. (4) from Eq. (3), we obtain second order 

finite difference approximation for 𝑢𝑖
′ : 

 

1 1
1

2

i i
x i

u u
u T

h
 + −−

= +  (5) 

 

where, 
( ) ( ) ( )

2 4
3 5 6

1 .
6 124

i i

h h
T u u O h= − − +   

Adding Eq. (3) from Eq. (4), we obtain second order finite 

difference approximation for 𝑢𝑖
″: 

 

2 1 1
22

2i i i
x i

u u u
u T

h
 − +− +

= +  (6) 

 

where, 
( ) ( ) ( )

2 4
4 6 7

2 .
12 360

i i

h h
T u u O h= − − +  

The central difference discretization of Eq. (1) can be 

written as: 

 
2 , 1,2, , 1,x i i x i i i iu p u q u R f i N  − + + + = = −  (7) 

 

where the truncation error R is given by: 

 

( ) ( ) 
( ) ( )  ( )

2
3 4

4
5 6 6

2
12

3 .
360

i i i

i i i

h
R p u u

h
p u u O h

 

 

= − +

+ − + +

 (8) 

 

Discretized Eq. (1) at 𝑥 = 𝑥𝑖 , 𝑖 = 0,1,2, … , 𝑁, we obtain, 

 

.i i i i i iu p u q u f  − + + =  (9) 

 

To obtain the fourth order accuracy, the terms containing h2 

in Eq. (8) must be further approximated. For approximating 

the 𝑢𝑖
(3)

and 𝑢𝑖
(4)

. We first differentiating Eq. (1) with respect 

to x and then at 𝑥 = 𝑥𝑖 , we get, 
 

( ) ( )3
,

0,1,2, , .

i ii i i

i i i i

p qp q f
u u u u

i N



   

 +  
 = + + −

=

 (10) 

 

Now, differentiating Eq. (1) twice with respect to x and then 

at 𝑥 = 𝑥𝑖 , we have: 

 

( )
2 2

4

2

2

2 2

2

2

2

, 0,1,2, , .

i i i

i i

i i i i i i i i i

i i

i i i

p p q
u u

p p p q p q p q q
u u

p f f
i N

 

 

   

   





  
= + + 

  

     +   
+ + + + +   

    

 
− − =

 (11) 

 

Using Eqns. (10) and (11) in Eq. (8), we obtain: 

 

( ) ( )  ( )

2 2 2 2 2

2 2 2 2 2

2 2 2

2 4
5 6 6

12 6 12

12 12 12 6

12 12 12

3 .
12 360

i i i
i

i i i i i i
i

i i i i i
i

i
i i i

p h p h q h
R u

p p h p q h p h q h
u

p q h q h p f h
u

f h h
p u u O h

 



  

 

 

 

 

  
= − + + 

  

    
+ − − + + 

  

    
+ − + + 
  


− + − + +

 (12) 

 

Replacing 𝑢𝑖
′  and 𝑢𝑖

″  by their central difference 

approximations in above equation, we get: 

 

( ) ( )  ( )

2 2 2 2 2
2

2 2 2 2 2

2 2 2 2

4
5 6 6

12 6 12

12 12 12 6

12 12 12 12

3 , 1,2, , 1.
360

i i i
x i

i i i i i i
x i

i i i i i i
i

i i i

p h p h q h
R u

p p h p q h p h q h
u

p q h q h p f h f h
u

h
p u u O h i N

 




  


 

 

 

 

  
= − + + 
  

    
+ − − + + 
  

     
+ − + + − 
  

+ − + + = −

 (13) 

 

From Eqns. (7) and (13), we have, 

 

( ) ( ) 
( )

2 2 2 2 2
2

2 2 2 2 2

2 2

2 2 4
5 6

6

12 6 12

12 12 12 6

12 12

3
12 12 360

,   1,2, , 1.

i i i
x i

i i i i i i
i x i

i i i
i i

i i i
i i i i

p h p h q h
u

p p h p q h p h q h
p u

p q h q h
q u

p f h f h h
f p u u

O h i N

 
 



  
 

 






 



  
− − + + 
  

    
+ − − + + 
  

   
+ − + 
  

 
= − + + −

+ = −

 
(14) 

 

Substituting the values from Eqns. (5) and (6) in Eq. (14). 

After simplifying, we obtain: 

820



2 2 2 2 2 2 3 3 3 3

1

2 2 2 2 2 4 4

2 2 2 2 2 2 3

12 6 12 2 24 24 24 12

5
2

6 3 6 12 12

12 6 12 2 24

i i i i i i i i i i
i

i i i i i i
i

i i i i i i

p h p h q h p h p p h p q h p h q h
u

p h p h q h p q h q h
u

p h p h q h p h p p h

     


  

  


 

   


 

−

     
− − + + − + + − − 
  

   
+ + − + − + 
  

  
+ − − + + + −

3 3 3

1

4 4
2

24 24 12

, 1,2, , 1.
12 12

i i i i
i

i i i
i

p q h p h q h
u

p f h f h
f h T i N

 







+

  
− + + 

  

 
= − + + = −

 (15) 

 

where, 

( ) ( )5 66 6

120 360

i i ip u h u h
T

 
= − is the local truncation error.  

From Eq. (15), we obtain the three term recurrence relation 

of the form: 

 

1 1 , 1,2, , 1,i i i i i i iE u Fu G u H i N− +− + − = = −  (16) 

 

where, 
2 2 2 2 2 2 3

3 3 3

12 6 12 2 24

,
24 24 12

i i i i i i
i

i i i i

p h p h q h p h p p h
E

p q h p h q h

   


 

 



 
= + − − + −

 
− + +

 

2 2 2 2 2 4 4

2 2 2 2 2 2 3

3 3 3

4 4
2

5
2 ,

6 3 6 12 12

12 6 12 2 24

,
24 24 12

.
12 12

i i i i i i
i

i i i i i i
i

i i i i

i i i
i i

p h p h q h p q h q h
F

p h p h q h p h p p h
G

p q h p h q h

p f h f h
H f h

  


 

   


 

 







 
= + − + − +

 
= + − − − +

 
+ − −

 
= − +

 

It is easily seen that the Eq. (16) gives (𝑁 − 1) algebraic 

equations with (𝑁 − 1)  unknowns. These systems of 

equations are written in matrix form 𝐴𝑋 = 𝐵, (where A is a tri-

diagonal coefficient matrix, B is constant column matrix and 

X is an unknown’s column matrix). This matrix form has been 

solved by Thomas algorithm in MATLAB software for getting 

the values of unknowns. Obtained unknowns values are called 

the numerical solution of problem (1) and (2). 

 

 

3. CONVERGENCE ANALYSIS 

 

Writing Eq. (15) in matrix vector form, we obtain: 

 
,AU C=  (17) 

 

where, ( ) , 1 , 1ijA a i j N=   −  is a tri-diagonal matrix of 

order (𝑁 − 1), with 
2 2 2 2 2 2 3

1

3 3 3

12 6 12 2 24

,
24 24 12

i i i i i i
i i

i i i i

p h p h q h p h p p h
a

p q h p h q h

   


 

 



+

 
= + − − − +

 
+ − −

 

2 2 2 2 2 4 45
2 ,

6 3 6 12 12

i i i i i i
i i

p h p h q h p q h q h
a

  


 

 
= + − + − +  

2 2 2 2 2 2 3

1

3 3 3

12 6 12 2 24

,
24 24 12

i i i i i i
i i

i i i i

p h p h q h p h p p h
a

p q h p h q h

   


 

 



−

 
= + − − + −

 
− + +

 

and 𝐶 = (𝑐𝑖) is a column vector with  
4 4

2 , 1,2, , 1.
12 12

i i i
i i

p f h f h
c f h i N





 
= − + = −  

and with the local truncation error 

 

( )
( ) ( )5 66 6

120 360

i i i
i

p u h u h
T h

 
= −  (18) 

 

We also have  

 

( )AU T h C− =  (19) 

 

where, ( )1 2 1, , ,
T

NU u u u −=  denotes the exact solution and 

( ) ( ) ( ) ( )( )1 2 1, , ,
T

NT h T h T h T h−=  denotes local truncation 

error. From Eq. (17) and (19), we get  

 

( )AE T h=  (20) 

 

where, ( )1 2 1, , , .
T

NE U U e e e −= − =  

Let 𝑆𝑖 be the sum of elements of the 𝑖𝑡ℎ row of the matrix A, 

then 
1 2 2 2 2 2

1 1 1
1 1

1

2 3 3 3 3
1 1 1 1 1 1 1

4 4
1 1 1

11

12 6 12

2 24 24 24 12

, 1.
12 12

N

j

j

p h p h q h
S a

p h p p h p q h p h q h

p q h q h
i

 




   

 





−

=


= = + − +

  
+ − − + +


− + =



 

1 4 4
2

1

, 2,3, , 2.
12 12

N
i i i

i ij i

j

p q h q h
S a q h i N





−

=


= = − + = −  

1

1 1,

1

2 2 2 2 2
1 1 1 111

12 6 12 2

N

N N j

j

N N N N

S a

p h p h q h p h  




−

− −

=

− − − −

=


= + − + −


  

2 3 3 3
1 1 1 1 1

24 24 24

N N N N Np p h p q h p h  

 
− − − − −

 
+ + −  
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3 4 4
1 1 1 1 , 1.

12 12 12

N N N Nq h p q h q h
i N




− − − −

 
− − + = −   

If we choose h sufficiently small, matrix A becomes 

irreducible and monotone [27]. It follows that A-1 exists and its 

elements are nonnegative. Hence, from Eq. (20), we have  

 

( )1E A T h−=  (21) 

 

Let 𝑎𝑘,𝑖
−1 is the (𝑘, 𝑖)𝑡ℎ element of the matrix A-1. We define 

 
1

1 1
, ,

1 1
1

max

N

k i k i
k N

i

a a

−
− −

  −
=

=   (22) 

 

and  

 

( )
1 1

max k
k N

T T h
  −

=  (23) 

 

In addition, from the theory of matrices, we have  

 
1

1
,

1

1, 1,2, , 1.

N

k i i

i

a S k N

−
−

=

= = −  (24) 

 

Therefore  

 

0

1
, 2

1 1

1 1
,

min
k i

i i
i N

a
S h Q

−

  −

 =  (25) 

 

where 
0 2 1 1

1
min 0,i i
i N

Q S
h   −

=   for some i0 between 1 to N-1. 

From Eqns. (18), (21), (22) and (25), we have  

 

( )
1

1
,

1

, 1,2, , 1,

N

i k i i

i

e a T h k N

−
−

=

= = −  (26) 

and therefore  

 

0

4

, 1,2, , 1,i

i

Kh
e i N

Q
 = −  (27) 

 

where, K is constant independent of h. It follows that ‖𝐸‖ =

𝑂(ℎ4). This implies that the present method gives a fourth 

order convergence. 

 

 

4. NUMERICAL EXAMPLES 

 

To exhibit the relevance of the proposed method, we have 

considered two numerical examples. 

 

Example 1: Consider the following two-parameter 

singularly perturbed boundary value problem from [13, 15]. 

1u u u  − + + = , ( )0, 1x =  

subject to boundary conditions: 

( ) ( )0 0, 1 0.u u= =  

The exact solution of the example 1 is  

( )

2

2

2 4
2

2 2

4
{

1

e
u x e e

e


  


 

 



− + +
−

+
= +

− +

 

( ) ( ) 2 2 21 2 4 4 4

2 2

x x x x

e e

       

 

+ + − + + + − +

− +  

2 2 24 4 4

2 2 }.

x x x x

e e

        

 

+ + + + + + +

+ −   

The point wise absolude errors of example 1 are presented 

in Tables 1 and 2 for different values of 𝜀, 𝜇  and N. 

Comparisons with other existing techniques are also shown in 

the same tables. The Tables 1 and 2 show that the present 

method gives better approximate solution than the other 

existing methods at the same number of mesh points.  

 

Table 1. Comparison of point wise error with other existing methods of example 1 

 

 

Table 2. Comparison of point wise error with other existing methods of example 1 

 

 

 

𝑥 ↓ 

𝜀 = 0.1, 𝜇 = 1, 𝑁 = 32 𝜀 = 0.1, 𝜇 = 1, 𝑁 = 128 

Kadalbajoo and Yadaw 

[15] 

Gracia et al. 

[13] 

Present 

method 

Kadalbajoo and Yadaw 

[15] 

Gracia et al. 

[13] 

Present 

method 

1/16 2.74E-02 3.27E-06 7.35E-10 6.8E-03 1.15E-06 2.93E-12 

2/16 2.59E-02 5.44E-06 3.84E-10 6.4E-03 2.18E-06 1.35E-12 

4/16 2.30E-02 3.98E-06 1.41E-08 5.7E-03 3.72E-06 5.46E-11 

6/16 2.04E-02 1.61E-05 6.79E-08 5.0E-03 3.92E-06 2.63E-10 

12/16 2.50E-02 8.52E-04 1.94E-06 4.0E-04 4.45E-05 7.53E-09 

14/16 3.30E-02 1.70E-03 3.82E-06 9.4E-03 9.61E-05 1.48E-08 

𝑥 ↓ 

𝜀 = 0.01, 𝜇 = 1, 𝑁 = 32 𝜀 = 0.01, 𝜇 = 1, 𝑁 = 128 

Kadalbajoo and Yadaw 

[15] 

Gracia et al. 

[13] 

Present 

method 

Kadalbajoo and Yadaw 

[15] 

Gracia et al. 

[13] 

Present 

method 

1/16 2.95E-02 4.55E-06 3.70E-08 7.3E-03 2.84E-07 1.46E-10 

2/16 2.78E-02 8.55E-06 6.96E-08 6.9E-03 5.35E-07 2.74E-10 

4/16 2.45E-02 1.51E-05 1.23E-07 6.1E-03 9.45E-07 4.84E-10 

6/16 2.17E-02 2.00E-05 1.63E-07 5.4E-03 1.25E-06 6.42E-10 

12/16 1.50E-02 3.07E-05 2.24E-07 3.7E-03 1.73E-06 8.85E-10 

14/16 1.29E-02 1.41E-03 1.65E-05 3.3E-03 7.31E-07 1.37E-08 
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The proposed method provides fourth-order convergence 

results whenever previous existing methods provide the 

second-order convergence result. Figures 1 and 2 show the 

graphical representation of exact and approximate solution. 

 

Example 2: Consider the following two-parameter 

singularly perturbed boundary value problem from [15, 19, 21, 

23]. 

( )cos ,u u u x   − + + = ( )0, 1x =  

subject to boundary conditions: 

( ) ( )0 0, 1 0.u u= =  

The exact solution of the example 2 is 

( ) ( ) ( ) ( )21
1

1 2cos sin ,
xx

u x a x b x C e C e
 

− −
= + + +  

where, 

( ) ( )
2 1

1 2 1 2

2

2 2
2 2 2 2 2 2

2

1 2 1,2

1
, ,

1 1

41 1
, , .

21 1

a b

e e
C a C a

e e

 

   

 

     

  




−

− −

+
= =

+ + + +

++ +
= − = =

− −

 

The maximum absolute errors of example 2 are summarized 

in Tables 3 and 4 at 𝜀 = 10−2, 𝜀 = 10−4  and 𝑁 = 128  and 

different values of 𝜇,  respectively. Comparisons with other 

existing techniques are also mentioned in Tables 3, 4. These 

tables depicts that the proposed method gives a more accurate 

approximate solution than the existing methods. This method 

provides fourth-order convergence results whenever previous 

existing methods provide the first or second-order 

convergence result. Figure 3 and 4 are shows the graphical 

representation of exact and approximate solution. 

 

 

 

 
   

Figure 1. Graphical representation of exact and 

approximate solution of example 1 for 𝜀 = 0.1, 𝜇 =
1 and 𝑁 = 32 

 
Figure 2. Graphical representation of exact and approximate 

solution of example 1 for 𝜀 = 0.1, 𝜇 = 1 and 𝑁 = 128 

 

Table 3. Comparison of maximum absolute error with other existing methods of example 2 for 𝜀 = 10−2 and 𝑁 = 128 

 
𝜇 ↓ Kadalbajoo and Yadaw [15] Zahra and El Mhlawy [21] Pandit and Kumar [19] Khandelwal and Khan [23] Present method 

10−3 8.3832E-05 4.1924E-05 4.2303E-05 6.0243E-06 7.2704E-07 

10−4 8.2686E-05 4.1296E-05 4.1318E-05) 6.1827E-07 7.3425E-08 

10−5 8.2572E-05 4.1232E-05 4.1220E-05 1.1455E-07 2.6931E-08 

10−6 8.2561E-05 4.1226E-05 4.1210E-05 7.2269E-08 2.4863E-08 

10−7 8.2560E-05 4.1225E-05 4.1209E-05 6.8266E-08 2.4661E-08 

 

 

 

 
   

Figure 3. Graphical representation of exact and approximate 

solution of example 2 for 𝜀 = 10−2, 𝜇 = 10−3 and 𝑁 = 128 

 Figure 4. Graphical representation of exact and approximate 

solution of example 2 for 𝜀 = 10−4, 𝜇 = 10−5 and 𝑁 = 128 
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Table 4. Comparison of maximum absolute error with other existing methods of example 2 for 𝜀 = 10−4 and 𝑁 = 128

𝜇 ↓ Kadalbajoo and Yadaw [15] Zahra and El Mhlawy [21] Pandit and Kumar [19] Khandelwal and Khan [23] Present method 

10−3 9.4446E-03 4.7598E-03 5.1964E-03 6.2154E-03 2.7628E-04 

10−4 9.0436E-03 4.2856E-03 4.1710E-03 1.8330E-03 2.7220E-04 

10−5 9.0036E-03 4.2295E-03 4.0754E-03 1.1412E-03 2.7146E-04 

10−6 8.9996E-03 4.2238E-03 4.0659E-03 1.3699E-03 2.7138E-04 

10−7 8.9992E-03 4.2232E-03 4.0650E-03 1.3656E-03 2.7138E-04 

5. CONCLUSIONS

In this communication, a fourth order compact finite 

difference method have studied for numerical solution of two-

parameter singularly perturbed convection-diffusion boundary 

value problems. Present method is computationally efficient. 

The algorithm of this method is easy to implement on 

computer and it gives fourth order convergence result. 

Comparison of the methods are also delineated through Tables 

1, 2, 3 and 4 which is indicated that this scheme gives better 

numerical solution as compared with previously applied 

techniques with the same mesh point. 
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