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The groundwater for aquatic purposes must be assessed prior to its consumption. Huge 

number of conventional methods are existing for assessing the quality of groundwater. 

The water quality index is one of the important conventional methods to assess the 

groundwater quality. But the conventional methods alone are not enough to assess 

groundwater quality as well as classify based on its purity. In this paper, we propose an 

enhanced weight update method for Simplified Fuzzy Adaptive Resonance Theory model 

to classify the groundwater quality depending on the relative weights of the groundwater 

quality parameters. Finding the optimal weights is the key to achieve better accuracy of 

the model, most of the nonlinear models fails to exhibit good accuracy if they fail to learn 

the optimal weights in the learning process. The aim of the work is to find the good fit 

between the predicted and the actual groundwater quality grades by identifying the 

optimal weights of the network by the enhanced weight update method. The Simplified 

Fuzzy Adaptive Resonance Theory map with the enhanced weight update method 

performance is justified by comparing it with the Simplified Fuzzy Adaptive Resonance 

Theory Map. The enhanced weight update method improves the accuracy of the 

Simplified Fuzzy Adaptive Resonance Theory Map in classifying and predicting the 

groundwater quality. 
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1. INTRODUCTION

We all know that groundwater is one of the natural major 

water sources across the world. Primarily, it is used for 

drinking and living purposes. Besides this, it is also used for 

agricultural, industrial and domestic purposes. But 

urbanization and industrialization, for getting the crops in 

short periods the farmers using pesticides and chemical 

fertilizers for protecting the crops from insects. The quality of 

groundwater is deteriorated due to the waste produced by the 

industries which is also one of the factors. We cannot 

absolutely stop these practices which will deteriorate the 

groundwater quality. Instead, we should take proper care 

regarding the groundwater. We can assess the quality of the 

groundwater before consumed, because groundwater is 

deteriorated by various factors as above stated and mostly by 

anthropogenic activities. Water Quality Index is one powerful 

and frequently used mathematical method to assess the 

groundwater quality. WQI is actually developed by Horton 

(1965) [1] in USA. Since 1965 it is one of the most effective 

tools used in various groundwater studies by researchers and 

groundwater management stations. Recently, Udeshani et al. 

[2], applied wqi to assess the groundwater quality of a hard 

rock terrain in Sri Lanka. 

Rest of this research work is arranged as follows: In Section 

2 the literature is presented. The methodology we followed to 

develop the models is presented in Section 3. Empirical study 

of the considered 2 models is presented in Section 4. Finally, 

Section 5 provides conclusion of this work. 

2. LITERATURE SURVEY

In this section, an attempt has been made to study the 

assessment methods used to determine status of the 

groundwater excellence and the classification of the 

groundwater depending on its purity. According to the 

chronological order, Horton (1965) is the first person who 

formulated water quality index method to assess the quality of 

water in United States. Brown et al. [3] improved the Horton’s 

water quality index by adding 2 more water quality parameters. 

Since 1970 more than 30 groundwater quality indices are 

formulated across the globe to assess the groundwater quality 

basing on physical, chemical parameters. Lumb et al. [4] 

presented a comprehensive review of various water quality 

indices since 1960 to 2011. Vidyalakshmi et al. [5] reviewed 

more than 30 water quality indices those are exits since 1970 

to 2011. Tyagi et al. [6] reviewed and presented the pros and 

cons of 4 popular water quality assessment methods. Anwar 

and Aggarwal [7] utilized wqi to assess the groundwater status 

of Aligarh City, India. By collecting groundwater data in pre 

and post monsoon seasons from 40 sampling points during 

2012. This study reports that half of area under study is 

moderately polluted. Gholami et al. [8] applied wqi, GIS and 
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statistical techniques to identify the sanitary boundaries of the 

drinking water wells to guarantee the water quality. Saleem et 

al. [9] utilized wqi by collecting samples from 10 locations of 

Grater Noida, Uttar Pradesh State, India, and the results 

exhibited that most of the study area belongs to good water 

quality type. Saana et al. [10] utilized wqi to determine the 

groundwater quality for potable purpose of Upper West and 

Northern regions of Ghana and found that the groundwater is 

suitable for potable purpose form the area under study. 

Adimalla et al. [11] applied wqi method, Gibbs and Hill-Piper 

diagrams to assess the groundwater quality of the study area 

viz. ShaslerVagu watershed of Nalgonda, India. This study 

state that 76% of groundwater samples from the study area 

belongs to poor water type. Hui et al. [12] utilized wqi and 

multivariate statistical analysis methods for appraisal of 

shallow groundwater in Hailun, Northeast China. The samples 

are classified as excellent type, good, poor and not fit for 

drinking purpose are 69.09%, 25.45%, 1.81% and 3.64% 

respectively. 

 

2.1 Applications of ANN and fuzzy logic in groundwater 

classification  

 

Classification is a supervised learning process. 

Classification used in various applications like image 

processing, document classification, pattern classification etc. 

It can be applied to groundwater quality classification also. 

Many groundwater studies are used for various classification 

models like Back propagation, Radial Bias function neural 

network, Decision trees, Random forests etc. 

Since last two decades Artificial Neural Networks (ANN) 

are used in various sectors akin to financial sector, medical 

diagnosis, earth sciences, power systems, business 

applications etc. Actually, ANN is biologically inspired 

computational model and is first proposed by McCulloch in 

1943. Thereafter, various researchers proposed and developed 

different kinds of ANN models. Different types of ANN model 

are proposed and used in groundwater quality research but the 

MLP model has been frequently used to classify the 

groundwater quality class or type of groundwater [13-25]. 

Actually, the ANN models can handle crisp data, but some of 

the classification problems need to process the data with 

uncertainty along with the crisp data. The groundwater and 

surface water quality classification are one of the classification 

problems where the water quality parameter data possess 

vagueness i.e., fuzzy data. In this view, researchers used fuzzy 

set theory to classify the groundwater and surface water. Fuzzy 

set theory is theory about handling data with uncertainty and 

it is developed by Zadeh in 1960 [26]. 

Fuzzy set theory is also employed to verify the excellence 

of groundwater. Hosseini Moghar et al. [27] developed fuzzy 

water quality index to counter the limitations of conventional 

water quality index. Developed water quality index based on 

the fuzzy set theory [28-31]. Mohammed et al. [32] conducted 

a comprehensive study, to define the hydro chemical 

characteristics those control the quality of the groundwater 

quality. In this study, applied conventional methods as well as 

fuzzy logic comprehensive evaluation method. The 

conventional methods and the fuzzy logic comprehensive 

evaluation method justified that the groundwater samples from 

the area under study belongs to fresh category and it is suitable 

for drinking purposes. 

 

 

2.2 Applications of simplified ARTMAP in classification 

problems  

 

Fuzzy inference system is one of the classification models 

built on top of the fuzzy set theory. Simplified Fuzzy Adaptive 

Resonance Theory is another popular model to classify the 

data with vagueness. Simplified ARTMAP is proposed by 

Kasuba, 1993. Kausba’s Simplified ARTMAP is used in a 

wide range of classification problems. Rajasekaran and 

Vijayalakshmi Pai [33] studied the capability of Simplified 

ARTMAP for classification of patterns by extending the 

functionality model by a moment based on feature extractor. 

Vakil-Baghmisheh [34] proposed a variant of Kasuba 

Simplified ARTMAP model in 2003 and the proposed model 

is better than the Kausba’s model. Boonpoke [35] applied 

Simplified ARTMAP for pattern recognition and classification 

of Partial Discharge. Kakati et al. [36] proposed a new 

approach of Simplified ARTMAP for supporting Medical 

Diagnostic Reasoning. Alickovic& Subasi [37] used Simplified 

ARTMAP to classify the data of 3 bench mark data sets to 

study the potential of classification and found that the 

Simplified ARTMAP achieves better performance. Vincent et 

al. [38] utilized Simplified ARTMAP to classify honeys. 

Acampora and Cosma [39] performed comparative study of 3 

fuzzy methods including Simplified ARTMAP to classify the 

customer review rating predictions. De Oliveira and Inman 

[40] utilized the Simplified ARTMAP along with the 

Euclidean distance measure to classify the structural damage. 

De Oliveira and Inman [41] study the potential of Simplified 

ARTMAP for identifying Structural Damage Growth. Naga et 

al. [42] applied Simplified ARTMAP to classify the 

groundwater.  

From the literature it is observed that assessment and 

classification of the groundwater is independent of the 

sampling location, number of parameters and seasons. In this 

work we have evaluated the quality of groundwater data using 

the wqi method. Thereafter, we classify the groundwater by 2 

machine learning models simplified fuzzy adaptive resonance 

theory model and enhanced simplified fuzzy adaptive 

resonance theory model. In this work we enhanced the weight 

update method to improve the performance of the simplified 

fuzzy adaptive resonance theory model to classify the 

groundwater data more accurately. 
 

 

3. METHODOLOGY 
 

3.1 Experimental setup 
 

We implemented the Simplified ARTMAP and Simplified 

ARTAMP with enhanced weight update method models using 

the freeware i.e., Python language with version number 3.8.9 

through Anaconda 3 individual user platform. In the 

development of the above two models sklearn, pandas, numpy 

and matplotlib package were used. The groundwater data 

samples are collected from Water Quality Monitoring Lab, 

RWS&S Sub-Division, Narsapuram, West Godavari, Andhra 

Pradesh, India for experimental study. The groundwater 

quality data samples are subjected to 7 parameters, they 

include pH, Temp, Conductivity, BOD, Nitrate+Nitrite, Fecal 

Coliform and Total Coliform. The class label each 

groundwater samples is assessed by applying the WAWQI 

method, in the grade assignment process we follow the 

guidelines of drinking water issued by Bureau of Indian 

Standards [43]. The class label of the samples may be excellent 
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type, good, poor, very poor and unfit for potable purpose. 

These grades are assigned based on the computed value of the 

sample by the WAWQI method. If the computed value is 

between 0 to 25 then the sample belongs to excellent category, 

if the computed value is between 26 to 50 the sample is 

belonging to good category, if the computed values is between 

51-72 the sample belongs to poor category, if the computed 

value is between 76 to 100 the sample belongs to very poor 

category and the value is between greater than 100 then the 

water is not fit for potable purpose. The WAWQI is calculated 

using the following Equation. 4. Thereafter, the groundwater 

quality classification and prediction were made using the 

Simplified ARTAMP with the enhanced weight update 

method. Further, the accuracy of the model is verified by 

comparing it with its counter model in terms of classifier 

accuracy, mean absolute error and root mean squared error. 

The statistical summary of the considered parameters is 

presented in Table 1. The detailed steps to determine the 

groundwater excellence are presented below. 

 

Table 1. Statistical summary of the parameters for groundwater samples 
 

Name of 

the 

Statistic 

Potential 

Hydrogen 
Conductivity 

Biological 

Oxygen 

Demand 

Nitrate + Nitrite 
Fecal 

Coliform 
Total Coliform Temperature 

min 2.6 37 0.3 0 2 5 17 

max 9.1 36593 27.8 14.85 36250 75000 31.1 

mean 7.43 758.61 9.59 3.20 5876.20 13511.1 24.8 

std 0.85 1951.7 7.74 2.60 10439.0 21972.1 3.12 

25% 7.3 294 2.2 1.5 24 82 22 

50% 7.5 531 8.8 2.69 130 343 24.5 

75% 7.8 970 13.5 4.77 5000 26750 25.8 

count 1020 1020 1020 1020 1020 1020 1020 

 

3.2 Assessment of groundwater quality grade through 

WQI 

 

By applying Weighted Arithmetic Water Quality Index 

method (WAWQI) we can assess the type of each sample. To 

calculate the drinking water quality, the groundwater quality 

parameters pH, Temp, Conductivity, BOD, Nitrate+Nitrite, 

Fecal Coliform and Total Coliform were considered. The most 

frequently used water quality assessment method WAWQI 

used in this study which was employed in several earlier 

studies [44-47]. In order to assess the groundwater quality, 

first we should assign the weight for the above 7 groundwater 

quality parameters basing on their importance with respect to 

drinking purposes. To assign the relative weight for each of 

the 7 parameters, it can be determined by using the Eq. (1), 

next the quality rating scale of each parameter was calculated 

by using Eq. (2). The relative weight of each parameter is 

multiplied by quality rating scale of each parameter to get the 

groundwater quality subindices of each parameter and is given 

in Eq. (3). Finally, we can compute the water quality index 

(WQI) by using the Eq. (4). 

 

𝑟𝑤𝑖 =
𝑊𝑖

∑ 𝑊𝑖
𝑛
𝑖=1

 (1) 

 

𝑄𝑖 =
𝐶𝑖

𝑆𝑖 ∗ 100⁄  (2) 

 

𝑆𝐼𝑖 =  𝑟𝑤𝑖 ∗ 𝑄𝑖 (3) 

 

𝑊𝑄𝐼 = ∑ 𝑆𝐼𝑖

𝑛

𝑖=1

 (4) 

 

In the above equations, rwi, wi are the relative weight and 

influence of each groundwater quality parameter, n is the total 

number of parameters considered in this study, Qi represents 

the quality rating scale of groundwater parameters, the Si 

represents the national drinking water quality standard, as per 

BIS 2012. Ci is the concentration of each of the parameters. 

𝐒𝐈𝐢 and WQI represents the sub index and water quality index. 

The assigned weights and relative weights used to compute the 

WQI are presented in Table 2. 

 

Table 2. Assignment of weight and relative of each 

parameters 

 
Name of the Parameter Weight (wi) Relative Weight (rwi) 

pH 5 0.20 

Conductivity 5 0.20 

BOD 3 0.12 

Fecal Coliform 3 0.12 

Total Coliform 3 0.12 

Nitrate+Nitrite 3 0.12 

Temp 3 0.12 

 ∑ wi= 25 ∑ rwi = 1.00 

 

The pseudo code of Simplified ARTMAP is presented 

below. 
 

3.3 Pseudo code of Simplified ARTMAP 
 

1. Start the training procedure. 

2. Load the groundwater dataset. 

3. IFV is a n dimensional input feature vector 

representing the groundwater quality features. 

4. 𝑤 represents the top down weight vector. 

5. Initialize the parameters n, α, ρ and ɛ.  

6. for to n samples in the training dataset do 

7. 𝐴𝐼𝐹𝑉 = (𝐼𝐹𝑉, 𝐼𝐹𝑉𝐶) where 

8. 𝐼𝐹𝑉𝑖 = (𝐹1,𝐹2,𝐹3 … … … 𝐹𝑛) with n dimensions and 

its class label is 𝐶𝑖 

9. 𝐼𝐹𝑉𝐶 = (𝐹1,𝐹2,𝐹3 … … … 𝐹𝑛, 1 − 𝐹1,1 − 𝐹2 … .1 − 𝐹𝑛) 

10.  𝜌𝑖 ← 𝜌 

11. If𝐴𝐼𝐹𝑉𝑖 is the first input with class label 𝐶𝑖do 

12. 𝑤𝑖 = 𝐴𝐼𝐹𝑉𝑖 

13. done. 

14. for j← 1 to n do 

1i
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15.  Tj(AIFVi) =
‖AIFVi ΛWj‖

α+ ‖Wj‖
 

16.  Tk = argmaxTj{(AIFVi), j = 1,2,3 … … . n} 

17.  Tk(AIFVi) =
‖AIFVi ΛWj‖

n
 

18.  ifTk(AIFVi)>ρ and Ci = Ckdo 

19.  wj
new = wj

old + ‖AIFVi + wj
old‖ 

20. done. 

21.  else if Tk(AIFVi)>ρ and Ci ≠ Ckdo 

22.   ρ
i

← Tj+ ɛ 

23.  done. 

24.  else (i.e.)Tk(AIFVi)<ρdo 

25.   Tk = −1 

26.   wj
new = IFVj 

27.  done. 

28.  end for. 

29. 𝑖 ← i + 1. 
30. end for. 

31. end of the training procedure. 

 

3.4 Our contribution 

 

The primary objective of this work is to classify the 

groundwater data based on the groundwater parameters. All 

the groundwater monitoring and management stations first 

collect the groundwater samples and then they will be tested 

at the laboratory to get the values of the groundwater 

parameters. Based on the groundwater quality parameter 

values, the management stations decide the quality of the 

groundwater. In this regard, the researchers applied artificial 

neural network models to classify the groundwater samples. 

But the problem with the ANN models are: deciding the 

architecture of the network, finding the right activation 

function and configuration parameters etc. After identifying 

the right architecture, activation function and parameter values 

another important problem to address is to find the optimal 

values of the weight vector it can be done by running the ANN 

model with different iterations. Finding the optimal weights of 

the weight vector is the core activity in the ANN model 

training. The optimal weights of the weight vector only 

identify the good fit between the predicted and the actual value. 

So, it is very essential to find the optimal weights. Hence, we 

propose an enhanced weight update model to learn the optimal 

weights and it is incorporated with the simplified fuzzy 

adaptive resonance theory model we named it as ESFART. 

The proposed weight update method depends on the relative 

weights of the groundwater parameters and hence it can be 

applicable to groundwater classification problems only. 

Further, we experimented with the simplified fuzzy adaptive 

resonance theory model and the enhanced simplified fuzzy 

adaptive resonance theory model to check the performance of 

the proposed weight update method with the same training and 

the test data set we use 70% of the data for training and 30% 

data for testing the models. The proposed weight update model 

is presented below. 

 

Wj
new = (α ∗ (I ʌWj

old)) + (RW ʌWj
old) + (α

∗ Wj
old) 

(5) 

 

In Eq. (5). RW is the sum of the relative weights of the 

groundwater sample parameters i.e., RW = ∑ rwn
i=1 . 

In the proposed weight update method, the weights are 

updated using three terms, all these terms use old weight 

vector values. All the terms minimize the weight vector values 

which in turn increase the accuracy of the model. 

 

 

4. RESULTS &DISCUSSION 

 

We first assessed the groundwater quality type of every 

representative in the dataset by applying the most popular wqi 

i.e., Weight Arithmetic Water Quality Index Method Eq. (4). 

The wqi method is also implemented using the Python 3.8.9 

programming language. After applying WAWQI method, we 

get the groundwater quality type of each data sample, the 

quality type belongs to excellent or good or poor or very poor 

or not suitable for drinking purpose. The percentages of 

samples fall into each type are presented in Table 3 and we 

plotted the type of each sample (Figure 1). 

 

Table 3. Groundwater quality classification criteria and their 

percentage 
 

WQI RANGE WATERCATEGORY PERCENTAGE 

0-25 Excellent 30.88% 

25-50 Good 36.17% 

51-75 Fair/Poor 12.54% 

75-100 Very Poor/Poor 12.05% 

>100 Not suitable for Drinking 8.33% 

 
The assessed value of groundwater quality of each sample 

varies from 19.30 to 194.18 with an average of 58.74. The 

groundwater type is classified into 5 types based on the 

computed value using the WAWQI method. Excellent 

groundwater quality when the computed values is less than 25, 

good groundwater quality when it is greater than 25 and less 

than 50, poor groundwater quality when it is greater than 

51andless than 75, very poor when it is greater than and 75 and 

less than 100 and not fit for potable purpose when it is greater 

than 100.According to the wqi computed value, 30.88% of the 

groundwater samples falls into excellent groundwater quality 

type, 36.17% of the groundwater samples belong to good 

groundwater quality type, 12.54% of the samples come under 

poor category, 12.05% of the samples comes under poor/very 

poor category and the remaining groundwater samples 8.33% 

comes under unfit for potable type (Table 3). From Figure 1 it 

should be observed that most of the samples index values 

below 75 and greater than 50.  

 

 
 

Figure 1. The water quality grade of each sample 

 

In this empirical study, the performance of two neuro fuzzy 

models i.e., Simplified fuzzy adaptive resonance theory model 

and ESFART model were evaluated to determine the suitable 

model to classify the groundwater data. The two neuro fuzzy 
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models are trained with reference to the 7 groundwater quality 

parameters along with the wqi computed value and the 

groundwater type viz. excellent, good, poor etc. Thereafter we 

evaluated the accuracy of the 2 models based on statistical 

metrics. There are many statistical metrics for model 

evaluation. In this study we used confusion matrix to find out 

the accuracy of the model. The mean absolute error and root 

mean squared error (Najah et al. [15]; Wagh et al. [21]; Wang 

et al. [47]) also used to validate the two neuro fuzzy models in 

terms of error rate. The computed metrics values as above 

mentioned of the two models are studied from 250 iterations 

to 2500 iterations. The above stated 3 metrics are used to find 

the best fitting between the actual and the predicted values. 

The computed classifier accuracy values of the two models are 

presented in the following Table 4. The training process is 

stopped at 2500 iterations as the accuracy of the model 

remains constant. From the Table 4, it is observed that the 

enhanced simplified fuzzy adaptive resonance theory model 

exhibits good accuracy rate in terms of classifier accuracy. 

 

Table 4. Accuracy values of SFART and Enhanced SFART 

models 
 

Number of 

iterations 

Name of the Model 

SFART Model 

Accuracy 

Enhanced SFART 

Model Accuracy 

250 88.64 91.43 

500 88.64 94.33 

750 90.9 96.00 

1000 91.43 96.60 

1250 91.43 96.55 

1500 91.43 96.55 

1750 91.43 96.96 

2000 91.43 97.36 

2250 91.43 98.79 

2500 91.43 98.79 

 

 
 

Figure 2. The Mean Absolute Error Graph of SFART and 

Enhanced SFART 
 

In this work, The MAE and RMSE metrics are used to 

identify how close the model prediction and the ground truth 

value. The MAE and RMSE values obtained are plotted in 

Figure 2 and Figure 3 between the Simplified fuzzy adaptive 

resonance theory model and the Enhanced Simplified fuzzy 

adaptive resonance theory model. It can be observed from the 

Figure 2 and Figure 3 Enhanced Simplified fuzzy adaptive 

resonance theory model had low MAE and RMSE values than 

the Simplified fuzzy adaptive resonance theory model.  

If the MAE and RMSE values of the model are low means 

that the model performs well and vice versa. If the MAE and 

RMSE values are 0 means the model exhibits 100% accuracy 

in predicting the groundwater class label or else if the MAE 

and RMSE it very closer to 0 also indicate that the model 

having highest accuracy rate between 98% to 100%. The 

lowest MAE and RMSE values indicate that there is good fit 

between the predicted groundwater class label and the ground 

truth class label. The computed MAE and RMSE values are 

presented in the following Table 5 and Table 6. 
 

Table 5. The MAE values of SFART and Enhanced SFART 

models 
 

Number of 

iterations 

Name of the model 

Simplified 

ARTMAP 

Enhanced Simplified 

ARTMAP 

250 0.340 0.256 

500 0.340 0.103 

750 0.285 0.080 

1000 0.256 0.080 

1250 0.256 0.068 

1500 0.256 0.068 

1750 0.256 0.060 

2000 0.256 0.041 

2250 0.256 0.041 

2500 0.181 0.041 

 

Table 6. The RMSE values of SFART and Enhanced SFART 

models 
 

Number of 

iterations 

Name of the model 

Simplified 

ARTMAP 

Enhanced Simplified 

ARTMAP 

250 1.011 0.878 

500 1.011 0.483 

750 0.925 0.400 

1000 0.878 0.400 

1250 0.878 0.371 

1500 0.878 0.371 

1750 0.878 0.348 

2000 0.878 0.287 

2250 0.878 0.287 

2500 0.738 0.287 

 

 
 

Figure 3. The root mean squared error graph of SFART and 

enhanced SFART 
 

From the Figure 2, the experimental outputs of the SFART 

model represents the mean absolute error rate is high at 250-

750 iterations by increasing the number of iterations and the 

mean absolute error rate is decreased. At 2500 iterations the 

mean absolute error rate is 0.181. The mean absolute error rate 
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of the ESFART model is high at 250 iterations and it gets 

decreased to 0.041 when the number of iterations is 2000. The 

mean absolute error seems to be considerable when compared 

with the SFART model. 

The root mean squared error is another widely acceptable 

metric as stated above to study the performance of the 

classification model. The computed RMSE values of the 2 

models SFART and ESFART are presented in Table 6. We 

plotted the root means squared values in Figure 3. From the 

Figure 3 it is noticed that the ESFART rmse values are lower 

than the SFART model. At 2000 iterations it gets 0.287 error 

rate which is considerably very lower than the SFART model. 

If the rmse value is lower it indicates that the model performs 

well in the prediction process. If rmse values are larger means 

that the model performs not up to mark. If the rmse values are 

closer to 0 or 0 means that the model achieves 100% accuracy 

and there is good agreement between the predicted ground 

water class label and the original class label. 

One can assess the performance of the classification models 

in terms of error rate, in this work we used the MAE and 

RMSE metrics to study the error rate of the 2 models. From 

Table 5, Table 6, Figure 2 and Figure 3 we notice that the 

enhanced simplified fuzzy ART model has the good fit 

between the training data and the test data than the simplified 

fuzzy ART model. It is shows that the predicted class label is 

same as the actual groundwater class label in 98% of the total 

predictions we made on the test data set. From Table 5, Table 

6 and Figure 2, Figure 3 it is noticed that from 2000 iterations 

the MAE and RMSE value records its better values. From this 

analysis we conclude that the proposed weight update method 

improves the accuracy of the simplified fuzzy ART model to 

classify and predict the groundwater class label. 

 
 

5. CONCLUSION 

 

The conventional methods are used for the assessment of 

quality of the groundwater with respect to the groundwater 

quality parameters. After applying any one of the conventional 

methods, the results of the conventional method states that 

whether the groundwater is suitable for aquatic purposes or not. 

But the conventional methods lack the predictive feature. By 

using the machine learning models we can predict the quality 

of the groundwater of a given groundwater sample. In the 

leaning process, the machine learning model will find the 

optimal weights, if the model finds the optimal weights, then 

the model establishes a fit between the predicted value and the 

ground truth value. The weight update method is the key to 

find the optimal weights in the learning process. The 

simplified fuzzy adaptive resonance theory model is used in 

this work to classify the groundwater data. Each groundwater 

sample is subjected to 7 groundwater quality parameters viz., 

pH, Temp, Conductivity, BOD, Nitrate+Nitrite, Fecal 

Coliform and Total Coliform. We enhanced the simplified 

fuzzy adaptive resonance theory model by proposing an 

enhanced weight update method to classify the groundwater 

data. From the experimental study it is evident that the 

enhanced simplified fuzzy adaptive resonance theory model is 

the promising model to classify and predict the groundwater 

quality type when compared with the simplified fuzzy 

adaptive resonance theory model. The enhanced simplified 

fuzzy adaptive resonance theory model achieved 

98.79%accuracy in classifying the groundwater data subjected 

to the above stated 7 parameters. 
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NOMENCLATURE 

 

WQI Water Quality Index 

ANN  artificial neural network  

SFART simplified fuzzy Adaptive Resonance 

Theory 

pH potential of Hydrogen 

DO dissolved oxygen  

BOD  biological oxygen demand  

TH  total hardness  

TDS total dissolved solids 

T-Alk total alkalinity 

Pb Lead 

Cd Cadmium 

Cr Chromium  

Mn Manganese 

Fe Iron 

Zn Zinc 

Ni Nickel 

MAE mean absolute error  

RMSE root mean square error  

ρ vigilance parameter 
 

Subscripts 

 

Xi ith value of the sample 

Tj activation function of the jth node 

Wj weights of the jth node 
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