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 In this paper, the unsteady magnetohydrodynamic (MHD) Couette flow of two non-

Newtonian immiscible fluids micropolar and micropolar dusty (fluid-particle suspension) 

are considered in the horizontal channel with heat transfer. A comprehensive mathematical 

model and computational simulation with the modified cubic B-Spline-Differential 

Quadrature method (MCB-DQM) is described for unsteady flow. The coupled partial 

differential equation for fluid and particle-phase are formulated and the effect of viscous 

dissipation, Joule heating, Hall current, and other hydrodynamic and solutal parameters i. 

e. Reynolds number, Eckert number, particle concentration parameter, Eringen micropolar 

material parameter, time, viscosity ratio, and density ratio on the flow rate, micro rotation, 

and temperature characteristics were investigated. The analysis of obtained results reveals 

that the fluids and particle velocities are slightly decreasing with Hartmann number, and 

increasing with time, ion-slip, and Hall parameters. Microrotation declined with 

Microrotations dropped significantly with ion-slip and Hall parameter and grown Hartman 

number. The temperature begins to rise as time, Hartman number, and Eckert number grow 

and declined with Ion-slip and Hall parameter. 
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1. INTRODUCTION 

 

Hall current with ion slip has significant roles in various 

scientific processes including magnetohydrodynamic reactors, 

refrigeration coils, hall accelerators, flowmeters, and also in-

flight magneto-aerodynamics. In the presence of a strong 

magnetic field, the effect of the Hall current and ion slip is 

important. As a result, it is essential to include the effect of the 

magnetohydrodynamics formulation, Hall current, and ion slip 

terms in the spectrum of functionalities such as a solid-state 

fuel-powered MHD engine. Inferred from these facts, many 

studies into MHD flows in the presence of Hall and ion slip 

currents have been conducted. The effect of ion slip on MHD 

energy monitoring of plasma flow around a blunt body is 

investigated by Yoshino et al. [1]. Elahi et al. [2] investigated 

the peristaltic flow of Jeffrey fluid in a non-uniform 

rectangular channel with Hall and ion slip effects and 

discussed the trapping phenomenon of MHD flow. Krishna 

and Chamkha [3] explored the Hall and Ion-slip implications 

for the MHD convective flow of viscous liquid through the 

permeable medium with applied periodic pressure gradient. 

Goud [4] the effect of heat generation and diffusion on a 

stretched quasi vertical plate flowing through a porous 

medium in a steady MHD flow. On the MHD free convective 

flow of the Casson fluid model, Rajkumar et al. [5, 6] found 

the effects of radiation absorption and viscous dissipation. 

Fendoğlu et al. [7] explored the magnetohydrodynamic (MHD) 

flow of viscous fluid in a rectangular channel with a perplexed 

boundary. 

The advancement of micropolar fluids has arisen as an 

important area of research for numerous non-Newtonian fluid 

flow investigations such as blood transfer into vessels, 

turbulent shear flows, liquid crystals, and lubrication 

processes. The micropolar liquids are non-Newtonian liquids 

comprising of polymeric and rotating microstructure or 

colloidal liquid components like enormous free weight 

particles. The properties of such non-Newtonian fluids are 

even not sufficiently described by Navier-Stokes’s equations. 

Eringen developed the fundamental modeling of micropolar 

fluid flow [8, 9]. The study of micropolar fluid with 

temperature distribution has been done by Fakour et al. [10]. 

The interaction between solid balls rotating through a 

micropolar fluid has been done by Sherief et al. [11]. The 

hydrodynamic velocity for quasi micropolar fluid was 

calculated by Saad et al. [12]. Normal convection was studied 

by Mehryan et al. [13] within a porous structured platform 

equipped with micropolar nanofluid. Under the MHD effect, 

heat transfer analysis through variable viscosity inside a duct 

comprising micropolar fluid has been investigated by Javed 

and Siddiqui [14]. Tetbirt et al. [15] Numerical investigation 

of the magnetic impact on the velocity propagation of a 

micropolar and viscous fluid in a longitudinal path.  

The suspension of tiny (dust particles) in a mixture of 

nanofluid is normally used to improve the conductivity of the 

base liquid, called dusty liquid. It can be used for oxidation, 

petroleum products aeration, and ionic accumulation, among 

other things. For micropolar dusty free convection flow, 

Reddy and Ferdows [16] observed energy and momentum 

transportations. Ghadikolaei et al. [17-19] investigated the 

immersion of composite nanoparticles in micropolar liquid. 

Eid and Mabood [20] investigated the deposition of nanotubes 

in MHD micropolar dusty liquid. Makinde et al. [21] carried 

out a detailed simulation solution of MHD melting micropolar 

solution and discovered the heat transfer generation. Attia et 
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al. discovered the effect of different fluid parameters on the 

velocity and temperature profiles of dusty fluid flow [22]. 

Numerous problems in hydrology, chemical engineering, 

oil filtration and recuperation, and other domains may be 

viewed as processes containing two immiscible fluids. 

Immiscible liquid streams are used in a variety of applications 

such as hemodynamics that refers to demonstrate the blood 

movement through semi-blocked veins. Devakar et al. [23, 24] 

found the effect of various fluid parameter which are present 

only in one of the immiscible fluids but also affects the 

velocity, temperatures of other. Srinivas and Murthy [25-27] 

reviewed the two immiscible fluid flow in various schemes of 

different shapes. Umavathi et al. [28-30] have been done a 

further study on the flow of immiscible fluids between parallel 

sheets for Newtonian and non-Newtonian fluids. 

There are different mathematical techniques for addressing 

the solution of the partial differential equation. The differential 

quadrature technique (DQM) is the most noticeable for 

managing unsteady and nonlinear terms in the coupled 

equation. Arora and Joshi [31] settled the nonlinear Burgers 

condition for two spatial dimensions. Ramesh and Joshi [32] 

simulated unsteady Jeffery liquid flow between two permeable 

plates utilizing the geometrical B-spline differential 

quadrature technique. Two immiscible micropolar and 

Newtonian liquids flow were simulated by the cubic B-Spline 

differential quadrature technique [33]. 

Using various shapes and numerical simulations, 

researchers have conducted several experiments on the steady 

and unsteady flow of single and immiscible combinations of 

micropolar, Newtonian fluids, resulting in many results. One 

of the two-phase flow streams that can be investigated using 

magnetohydrodynamic and thermal effects is two immiscible 

micropolar fluids.  

In the present work, the unsteady Couette flow of two 

immiscible micropolar and micropolar dusty (fluid-particle 

suspension) fluids are considered in the horizontal channel.  

The Couette flow of these non-Newtonian, viscous, and 

incompressible fluids is studied with heat transfer and 

externally applied magnetic field. 

In light of this, we intend to investigate Ion slip, Viscous 

dissipation, Joule heating, and Hall current effect on flow 

velocity, microrotation, and temperature profiles. The 

modeling of the coupled partial differential equation has been 

done and numerical results are obtained for velocity, 

microrotation, and temperature profiles under the effect of 

various important fluid parameters.  

 

 

2. MATHEMATICAL FORMULATION 

 

 
 

Figure 1. Geometric configuration of problem 

 

Consider the time-dependent, Couette flow of two 

immiscible, incompressible micropolar and micropolar dusty 

fluids through a horizontal channel. The flow is unidirectional 

and induced by upper plate movement which is applied in the 

x-direction of the channel as depicted in Figure 1. Both plates 

are electrically non-conductive and are located in the X-Z 

plane and both fluids are assumed to be electrically conductive 

having electrical conductivity 𝜎𝑐 . An external uniform 

magnetic field 𝐵𝑢 is applied on fluids in the y-axis. The lower 

plate is fixed and located at y=−𝑘 , with constant heat 

temperature 𝑇ℎ1  while the upper plates at y= 𝑘 , has the 

temperature 𝑇ℎ2  and moving with constant velocity 

𝑈0Micropolar fluid filled in the lower zone of the channel i. e. 

(−𝑘 ≤ 𝑦 ≤ 0) and owns the fluid velocity 𝑈1, Microrotation 

(angular velocity) 𝑁1,  density  𝜌 1 , viscosity  𝜇1 , vortex 

viscosity 𝑉1 ,  gyro-viscosities 𝐺𝑣1 𝑎𝑛𝑑 𝛽1  gyration parameter 

𝑖 1, thermal conductivity K1, specific heat capacity CP1 and, 

Micropolar dusty fluid flows in the upper zone of the channel 

( 0 ≤ 𝑦 ≤ 𝑘 ) and has the fluid velocity 𝑈2,  Microrotation 

(angular velocity)𝑁2 density 𝜌 2, viscosity 𝜇2, vortex viscosity 

𝑉2 , gyro-viscosities 𝐺𝑣2 𝑎𝑛𝑑 𝛽2,  gyration parameter 𝑖2 , 

thermal conductivity K2, specific heat capacity CP2.  Body 

forces and body couples are ignored. The transportation 

features are similar in both domains. Let the fluid velocity 

vectors 𝑈𝑖 = 𝑈𝑖(𝑦, 𝑡) , micro-rotation vector 𝑁𝑖 = 𝑁𝑖(𝑦, 𝑡)  , 

temperature vector 𝑇𝑖 = 𝑇𝑖(𝑦, 𝑡) in both regions (i=1,2) and 

particle velocity is 𝑈𝑝(𝑦, 𝑡) in zone II (upper). Through the 

mechanism of momentum exchange, the fluid layers are 

mechanically linked. Continuity in velocity and shear stress 

over the contact allows momentum to be transferred. At the 

interface between two fluids, moreover, we assume that the 

flow rate and shear pressure are also continuous. Since the 

fluids are electrically conducting, magnetohydrodynamic 

effects are caused. The channel's walls are thought to be 

electrically shielded. The effect of an applied transverse 

magnetic field on both plates, which causes stiffness in the 

fluid flow through the Lorentz force, which appears to drag 

fluid velocities written as follows [22]: 

 

𝐽0 × 𝐵𝑢 =
𝜎𝐵𝑢

2(1 + 𝐵𝑖. 𝐵𝑒)𝑈𝑖
(1 + 𝐵𝑖. 𝐵𝑒)2 + 𝐵𝑒2

 (1) 

 

where, 𝐽0 is current density, 𝐵𝑢 is the external magnetic field, 

𝜎𝑐 . is the electric conductivity and 𝐵𝑖 is the ion slip parameter, 

𝐵𝑒 is the hall parameter. 

Dust particles in the micropolar dusty (upper zone) fluid are 

uniform size, mass, non-deformable, and uniformly dispersed 

within the fluid. In the dusty fluid, the dust particles have 

particle velocity 𝑈𝑝, density 𝜌 𝑝, and possess the average mass 

𝑚𝑝, particle volume fraction function ∅. It’s expected that the 

particle phase is diluted enough that couplings between any 

two particles are neglected, and that the dust particle size 

(radius r) is small. Hence the net dust effect on the fluid 

particles is equivalent to the additional force per unit volume, 

written as [17, 22]. 

 

𝐷𝑟𝑎𝑔𝑓 = 𝐾𝑁(𝑈2 − 𝑈𝑝) (2) 

 

Here 𝐾 = 6𝜋𝑟𝜇2𝑈0 is the Stokes drag coefficient, 𝑁 is the 

density number of a dust particle, 𝜇2  is the viscosity of the 

micropolar dusty fluid. 

Dust particles gain heat from the fluid by conduction 

through their surface. Let 𝑐𝑝 is the specific heat capacity of the 

particles, the heat conduction between the fluid and particles 

depends on the temperature relaxation parameter 𝛾𝑇𝑒𝑚𝑝  [17, 

19, 22]. 
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𝛾𝑇𝑒𝑚𝑝 =
3

2

𝜌𝑝. 𝑐𝑝. 𝜇2

𝐾.𝑁. 𝐾2
 (3) 

 

Fluid velocities (𝑈1 ,  𝑈2)  particle velocity (𝑈𝑝 ), micro-

rotation (𝑁1 ,  𝑁2)  and temperature  (𝑇1 ,  𝑇2)  particle 

temperature ( 𝑇𝑝 ), distribution of MHD 

(magnetohydrodynamic) flow under the aforesaid assumed 

constraints take the form [17, 19, 22, 25]. 

Zone-I (Micropolar fluid: −k ≤ y ≤ 0). 

 

𝜌 1
𝜕𝑈1
𝜕𝑡

=  𝑉1
𝜕𝑁1
𝜕𝑦

+ (𝜇1 + 𝑉1)
𝜕2𝑈1
𝜕𝑦2

−
𝜎𝐵𝑢

2(1 + 𝐵𝑖. 𝐵𝑒)

(1 + 𝐵𝑖. 𝐵𝑒)2 + 𝐵𝑒2
𝑈1 

(4) 

 

𝜌 1 𝑖 1
𝜕𝑁1
𝜕𝑡

= 𝐺𝑣1  
𝜕2𝑁1
𝜕𝑦2

 − 𝑉1(2𝑁1 +
𝜕𝑈1
𝜕𝑦

) (5) 

 

𝜌1𝐶𝑃1
𝜕𝑇1
𝜕𝑡

= 𝐾1
𝜕2𝑇1
𝜕𝑦2

+ 𝜇1 (
𝜕𝑈1
𝜕𝑦

)
2

+ 𝑉1 (2𝑁1 +
𝜕𝑈1
𝜕𝑦

)
2

 

+ 𝛽1 (
𝜕𝑁1
𝜕𝑦

)
2

 +
𝜎𝐵𝑢

2(1 + 𝐵𝑖. 𝐵𝑒)

(1 + 𝐵𝑖. 𝐵𝑒)2 + 𝐵𝑒2
𝑈1

2 

(6) 

  

Zone-II (Micropolar dusty fluid: 0 ≤ y ≤ k) 

 

𝜌 2
𝜕𝑈2
𝜕𝑡

=  𝑉2
𝜕𝑁2
𝜕𝑦

+ (𝜇2 + 𝑉2)
𝜕2𝑈2
𝜕𝑦2

 

−
𝜎𝐵𝑢

2(1 + 𝐵𝑖. 𝐵𝑒)

(1 + 𝐵𝑖. 𝐵𝑒)2 + 𝐵𝑒2
𝑈2 −  𝑁∅

(𝑈2 − 𝑈𝑝)

(1 − ∅)
 

(7) 

 

𝑚𝑝  
𝜕𝑈𝑝

𝜕𝑡
=  𝐾𝑁(𝑈2 − 𝑈𝑝) (8) 

 

𝜌 2 𝑗 2
𝜕𝑁2
𝜕𝑡

= 𝐺𝑣2  
𝜕2𝑁2
𝜕𝑦2

 − 𝜅2 (2𝑁2 +
𝜕𝑈2
𝜕𝑦

) (9) 

 

𝜌2𝐶𝑃2
𝜕𝑇2
𝜕𝑡

= 𝐾2
𝜕2𝑇2
𝜕𝑦2

+ 𝜇2 (
𝜕𝑈2
𝜕𝑦

)
2

+ 𝑉2 (2𝑁2 +
𝜕𝑈2
𝜕𝑦

)
2

+ 𝛽2 (
𝜕𝑁2
𝜕𝑦

)
2

+
𝜎𝐵𝑢

2(1 + 𝐵𝑖. 𝐵𝑒)

(1 + 𝐵𝑖. 𝐵𝑒)2 + 𝐵𝑒2
𝑈2

2 

+ 
𝜌𝑝𝑐𝑝∅(𝑇𝑝 − 𝑇2)

𝛾𝑇𝑒𝑚𝑝(1 − ∅)
+ 𝐾𝑁𝜌𝑝∅

(𝑈2 − 𝑈𝑝)
2

(1 − ∅)
 

(10) 

 

𝜕𝑇𝑝

𝜕𝑡
=  −

(𝑇𝑝 − 𝑇2)

𝛾𝑇𝑒𝑚𝑝
 (11) 

 

Both velocity (𝑈1, 𝑈2) and microrotation (𝑁1, 𝑁2) diminish 

at the duct wall whereas velocities 𝑈1 𝑎𝑛𝑑 𝑈2 , angular 

velocities 𝑁1, 𝑁2 , temperature (𝑇1, 𝑇2 ) vectors, shear stress, 

and coupling stress are continuous at the liquid-liquid interface. 

Initially, the fluids and plates are maintained at a constant 

temperature. The temperatures on both plates are set to 𝑇ℎ1 

and 𝑇ℎ2, respectively. 

Initial conditions:  

 

𝐴𝑡 𝑡 ≤  0, 𝑎𝑛𝑑 − 𝑘 ≤ 𝑦 ≤ 0  
𝑈1(𝑦, 𝑡) = 0

𝑁1(𝑦, 𝑡) = 0

𝑇1(𝑦, 𝑡) = 𝑇0

} 
(12) 

 

𝐴𝑡 𝑡 ≤  0, 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝑘 
𝑈2(𝑦, 𝑡) = 0

𝑁2(𝑦, 𝑡) = 0

𝑇2(𝑦, 𝑡) = 𝑇0
𝑈𝑝(𝑦, 𝑡) = 0

𝑇𝑝(𝑦, 𝑡) = 𝑇0}
 
 

 
 

 
(13) 

 

Boundary (At channel walls) conditions: At t > 0, 

 
𝑈1(−𝑘, 𝑡) = 0

𝑁1(−𝑘, 𝑡) = 0

  𝑇1(−𝑘, 𝑡) = 𝑇ℎ1
𝑈2(𝑘, 𝑡) = 𝑈0
𝑈𝑝(𝑘, 𝑡) = 𝑈0
𝑁2(𝑘, 𝑡) = 0

𝑇2(𝑘, 𝑡) = 𝑇ℎ2
𝑇𝑝(𝑘, 𝑡)  = 𝑇ℎ2 }

 
 
 
 

 
 
 
 

 (14) 

 

Interface conditions at y = 0. 

 
𝑈1(0, 𝑡) = 𝑈2(0, 𝑡)

𝑁1(0, 𝑡) = 𝑁2(0, 𝑡)

𝑇1(0, 𝑡) = 𝑇2(0, 𝑡)
𝐾1𝑇1𝑦 = 𝐾2𝑇2𝑦

 ( 𝜇1 + 𝜅1)𝑈1𝑦 + 𝜅1𝑁1 = ( 𝜇2 + 𝜅2)𝑈2𝑦 + 𝜅2𝑁2}
 
 

 
 

 (15) 

 

Introducing the non-dimensional parameters: 

 

�̅� =
𝑥

𝑘
, �̅� =

𝑦

𝑘
,  𝑈1̅̅ ̅̅ =

𝑈1
𝑈0
 , 𝑈2̅̅ ̅ =

𝑈2
𝑈0

 𝑈𝑝̅̅̅̅ =
𝑈𝑝

𝑈0
 , �̅� =

𝑝

 𝜌1𝑈0
2 , 𝑡̅ =

𝑡𝑈0
𝑘

𝑇1̅ =
𝑇1 − 𝑇ℎ1 

𝑇ℎ2 − 𝑇ℎ1
, 𝑇2̅̅̅ =

𝑇2 − 𝑇ℎ2 

𝑇ℎ2 − 𝑇ℎ1
, 𝑎𝑛𝑑 𝑇𝑝̅̅ ̅ =

𝑇𝑝 − 𝑇ℎ2 

𝑇ℎ2 − 𝑇ℎ1

𝑁1̅̅ ̅ =
𝑁1𝑘

𝑈0
, 𝑎𝑛𝑑 𝑁2̅̅̅̅ =

𝑁2𝑘

𝑈0

𝑅𝑒 =
𝜌 1𝑈0
𝜇1

,  𝜂1 =
𝑉1
𝜇1
, 𝑎𝑛𝑑 𝜂2 =

𝑉2
𝜇2

𝐻𝑎2 =
𝜎𝐵0

2𝑘2

𝜇1
, 𝑎𝑛𝑑 𝑃𝑟 =

𝜇1 𝐶𝑃1 

𝐾1
 

𝐸𝑐 =
𝑈0

𝐶𝑃1(𝑇ℎ2 − 𝑇ℎ1)
, 𝑅 =

𝐾𝑁𝑘2∅

𝜇2(1 − ∅)

𝛿1 =
𝛽1
𝜇1𝑘

2 , 𝛿2 =
𝛽2
𝜇2𝑘

2 , 𝑟1 =
𝜇2
𝜇1
, , 𝑟2 =

𝜌 2
𝜌 1

𝑟3 =
𝜌2
𝜌𝑝
, 𝐶𝑟 =

𝐶𝑃2
𝐶𝑃1

 , 𝐾𝑟 =
𝐾2
𝐾1
, 𝐶𝑃𝑟 =

𝐶𝑃2
𝑐𝑝 }

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 (16) 

 

Assuming 𝛾1 = (𝜇1 + 𝑉1/2)𝑖 1  and 𝛾2 = (𝜇2 + 𝑉2/2)𝑖 2 

with 𝑖 1 =  𝑖 2  = 𝑘2 according to [24]. 

After dropping the bars, the Eqns. (3)-(9) can be written as:  

 

 

Zone-I (Micropolar fluid: −k ≤ y ≤ 0).  
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𝜕𝑈1
𝜕𝑡

=  
1

𝑅𝑒
 

[
 
 
 
 𝜂1

𝜕𝑁1
𝜕𝑦

+ (1 + 𝜂1)
𝜕2𝑈1
𝜕𝑦2

−
𝐻𝑎2(1 + 𝐵𝑖. 𝐵𝑒)

(1 + 𝐵𝑖. 𝐵𝑒)2 + 𝐵𝑒2
𝑈1 ]
 
 
 
 

 (17) 

 

𝜕𝑁1
𝜕𝑡

=
1

𝑅𝑒
 [(1 +

𝜂1
2
)
𝜕2𝑁1
𝜕𝑦2

 − 𝜂1 (2𝑁1 +
𝜕𝑈1
𝜕𝑦

)] (18) 

 

𝜕𝑇1
𝜕𝑡

=
𝐸𝑐

𝑅𝑒
[

1

𝑃𝑟. 𝐸𝑐

𝜕2𝑇1
𝜕𝑦2

+ (
𝜕𝑈1
𝜕𝑦

)
2

+ 𝜂1 (2𝑁1 +
𝜕𝑈1
𝜕𝑦

)
2

+  𝛿1 (
𝜕𝑁1
𝜕𝑦

)
2

+
𝐻𝑎2(1 + 𝐵𝑖. 𝐵𝑒)

(1 + 𝐵𝑖. 𝐵𝑒)2 + 𝐵𝑒2
𝑈1

2 ] 

(19) 

 

Zone-II (Micropolar dusty fluid: 0 ≤ y ≤ k) 

 
𝜕𝑈2
𝜕𝑡

=  
𝑟1

𝑟2. 𝑅𝑒

[
 
 
 
 𝜂2

𝜕𝑁2
𝜕𝑦

+ (1 + 𝜂2)
𝜕2𝑈2
𝜕𝑦2

−

𝐻𝑎2(1 + 𝐵𝑖. 𝐵𝑒)

𝑟1((1 + 𝐵𝑖. 𝐵𝑒)
2 + 𝐵𝑒2)

𝑈2 −  𝑅(𝑈2 −𝑈𝑝) ]
 
 
 
 

 
(20) 

 
𝜕𝑈𝑝

𝜕𝑡
=  
𝑅. 𝑟1. 𝑟3
𝑟2. 𝑅𝑒

(𝑈2 − 𝑈𝑝) (21) 

 

𝜕𝑁2
𝜕𝑡

=
𝑟1

𝑟2. 𝑅𝑒
[(1 +

𝜂2
2
)
𝜕2𝑁2
𝜕𝑦2

 − 𝜂2 (2𝑁2 +
𝜕𝑈2
𝜕𝑦

)] (22) 

 
𝜕𝑇2
𝜕𝑡

=
𝐸𝑐. 𝑟1

𝑅𝑒. 𝑟2. 𝐶𝑟

[
 
 
 
 
 
 
 
 
 
 
 𝐾𝑟

𝑃𝑟. 𝐸𝑐. 𝑟1

𝜕2𝑇2
𝜕𝑦2

+ (
𝜕𝑈2
𝜕𝑦

)
2

+

𝜂2 (2𝑁2 +
𝜕𝑈2
𝜕𝑦

)
2

+

 𝛿2 (
𝜕𝑁2
𝜕𝑦

)
2

+
𝐻𝑎2(1 + 𝐵𝑖. 𝐵𝑒)

𝑟1((1 + 𝐵𝑖. 𝐵𝑒)
2 + 𝐵𝑒2)

𝑈2
2

+
2

3

𝑅. 𝐾𝑟
𝑃𝑟. 𝐸𝑐. 𝑟1

(𝑇𝑝 − 𝑇2)

+ 
𝑅. 𝐶𝑟 . 𝑟3
𝐸𝑐

 (𝑈2 − 𝑈𝑝)
2

]
 
 
 
 
 
 
 
 
 
 
 

 

(23) 

 

𝜕𝑇𝑝

𝜕𝑡
=  
2

3

𝑅 ∗ 𝑘𝑟 ∗ 𝐶𝑟 ∗ 𝑟3
𝐶𝑃𝑟 ∗ 𝑟1 ∗ 𝑃𝑟

(𝑇2 − 𝑇𝑝)

𝑅𝑒
 (24) 

 

Eqns. (12)-(15) are considered as initial, interfacial, and 

boundary conditions with 𝑇0 = 0, 𝑇ℎ1 = 0, 𝑇ℎ2 = 1, 𝑈0 = 1, 

and 𝑘 = 1. 

 

 

3. NUMERICAL SOLUTION 
 

To analyze the fluid velocity and temperature distribution 

for schemes I and II, the domain [-1, 1] is split into [-1, 0] for 

pure fluid (region –I) and [0, 1] for dusty fluid (region-II). 

Next both domains are likewise discretized with step length h 

in the y-(transverse) direction and 𝑘′ in the time scales. 

Similarly, the domain [-1, 1] is uniformly discretized for flow 

analysis for scheme III. The nodes are presumed to disperse 

uniformly. 

 

𝑎 = 𝑦1 < 𝑦2 < ⋯ < 𝑦 < 𝑦𝑛 = 𝑏, such that 

 𝑦𝑖+1 − 𝑦𝑖 = ℎ on the real axis. 
(25) 

 

Following this, let the  𝑅𝑖𝑦(𝑦𝑖 , 𝑡) is the first and 

𝑅𝑖𝑦𝑦(𝑦𝑖 , 𝑡) are the second-order derivatives of 

𝑈1(𝑦, 𝑡), 𝑈2(𝑦, 𝑡), 𝑈𝑃(𝑦, 𝑡), 𝑁1(𝑦, 𝑡), 𝑁2(𝑦, 𝑡)𝑇1(𝑦, 𝑡), 𝑇2(𝑦, 𝑡), 
𝑎𝑛𝑑 𝑇𝑃(𝑦, 𝑡) are obtained at any time on the nodes 𝑦𝑖. 
 

For 𝑖 = 1,2,3, … , 𝑛. 𝑈1𝑦(𝑦𝑖 , 𝑡) = ∑ 𝑋∗𝑖𝑗𝑈1(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  (26) 

 

𝑈1𝑦𝑦(𝑦𝑖 , 𝑡) =∑𝑌∗𝑖𝑗𝑈1(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 (27) 

 

For 𝑖 = 1,2,3, … , 𝑛. 𝑈2𝑦(𝑦𝑖 , 𝑡) = ∑ 𝑋∗𝑖𝑗𝑈2(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  (28) 

 

𝑈2𝑦𝑦(𝑦𝑖 , 𝑡) =∑𝑌∗𝑖𝑗𝑈2(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 (29) 

 

For 𝑖 = 1,2,3, … , 𝑛.𝑈𝑝𝑦
(𝑦𝑖 , 𝑡) = ∑ 𝑋∗𝑖𝑗𝑈𝑝(𝑦𝑗 , 𝑡)

𝑁
𝑗=1  (30) 

 

𝑈𝑝𝑦𝑦
(𝑦𝑖 , 𝑡) =∑𝑌∗𝑖𝑗𝑈𝑝(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 (31) 

 

For 𝑖 = 1,2,3, … , 𝑛. 𝑁1𝑦(𝑦𝑖 , 𝑡) = ∑ 𝑋∗𝑖𝑗𝑁1(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  (32) 

 

𝑁1𝑦𝑦(𝑦𝑖 , 𝑡) =∑𝑌∗𝑖𝑗𝑁1(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 (33) 

 

For 𝑖 = 1,2,3, … , 𝑛. 𝑁2𝑦(𝑦𝑖 , 𝑡) = ∑ 𝑋∗𝑖𝑗𝑁2(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  (34) 

 

𝑁2𝑦𝑦(𝑦𝑖 , 𝑡) =∑𝑌∗𝑖𝑗𝑁2(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 (35) 

 

For 𝑖 = 1,2,3, … , 𝑛. 𝑇1𝑦(𝑦𝑖 , 𝑡) = ∑ 𝑋∗𝑖𝑗𝑇1(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  (36) 

 

𝑇1𝑦𝑦(𝑦𝑖 , 𝑡) =∑𝑌∗𝑖𝑗𝑇1(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 (37) 

 

For 𝑖 = 1,2,3, … , 𝑛. 𝑇2𝑦(𝑦𝑖 , 𝑡) = ∑ 𝑋∗𝑖𝑗𝑇2(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  (38) 

 

𝑇2𝑦𝑦(𝑦𝑖 , 𝑡) =∑𝑌∗𝑖𝑗𝑇2(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 (39) 

 

For 𝑖 = 1,2,3, … , 𝑛.𝑇𝑝𝑦
(𝑦𝑖 , 𝑡) = ∑ 𝑋∗𝑖𝑗𝑇𝑝(𝑦𝑗 , 𝑡)

𝑁
𝑗=1  (40) 

 

𝑇𝑝𝑦𝑦
(𝑦𝑖 , 𝑡) =∑𝑌∗𝑖𝑗𝑇𝑝(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 (41) 

 

Here 𝑋∗𝑖𝑗  𝑌
∗
𝑖𝑗are the respective weighting coefficients of 

1st and 2nd order derivative coefficients concerning y-

coordinate, measured using modified cubic B-spline functions. 
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The cubic B-spline functions of the knots are as specified 

below. 

 

𝜃𝑗 = 

1

ℎ3

{
  
 

  
 

 

(𝑦 − 𝑦𝑗−2)
3
,                         𝑦𝜖 [𝑦𝑗−2, 𝑦𝑗−1)

(𝑦 − 𝑦𝑗−2)
3
− 4(𝑦 − 𝑦𝑗−1)

3
, 𝑦𝜖[𝑦𝑗−1, 𝑦𝑗)

(𝑦𝑗+2 − 𝑦)
3
− 4(𝑦𝑗+1 − 𝑦)

3
, 𝑦𝜖 [𝑦𝑗 , 𝑦𝑗+1)

(𝑦𝑗+2 − 𝑦)
3
,                  𝑦𝜖[𝑦𝑗+1, 𝑦𝑗+2)

0,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

 
(42) 

 

𝜃𝑗  with 𝑗 = 0,1,2… ,𝑁 + 1 forms a basis over the region [a, 

b]. 

The updated cubic B-spline functions are described in the 

nodes as follows. 

 

𝐹1(𝑦) = 𝜃1(𝑦) + 2𝜃0(𝑦) (43) 

 

𝐹2(𝑦) = 𝜃2(𝑦) − 𝜃0(𝑦) (44) 

 

𝐹𝑗(𝑦) = 𝜃𝑗, 𝑓𝑜𝑟 𝑗 = 3,… , 𝑁 − 2 (45) 

 

𝐹𝑁−1(𝑦) = 𝜃𝑁−1(𝑦)  − 𝜃𝑁+1(𝑦) (46) 

 

𝐹𝑁(𝑦) = 𝜃𝑁(𝑦) + 2𝜃𝑁+1(𝑦) (47) 

 

Here {𝐹1𝐹2, … , 𝐹𝑁} forms a basis over the region [𝑎, 𝑏]. The 

weighting coefficients are derived using the modified cubic B-

spline function. The approximation for the 1st order derivative 

is: 

 

 𝐹𝑘
′(𝑦𝑖) = ∑𝑋∗𝑖𝑗𝜃𝑘(𝑦𝑗)

    𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁
        𝑘 = 1,2, … , 𝑁

𝑁

𝑗=1

 (48) 

 

The estimate can be provided for the first-knot point 𝑦1. 

 

𝐹𝑘
′(𝑦1) =∑𝑋∗1𝑗𝜃𝑘(𝑦𝑗)

      𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁
         𝑘 = 1,2, … , 𝑁

𝑁

𝑗=1

 (49) 

 

Then the tri-diagonal system of equations is formed as  

 

[
 
 
 
 
 
 
6 1 0
0 4 1
0 1 4

0
0
1

⋯ 0 0

⋮ 0 ⋱ 0 ⋮

0 0 ⋯
1
0
0

4 1 0
1 4 0
0 1 6]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝑋∗11
𝑋∗12
𝑋∗13
.
.
.

𝑋∗𝑁−3
𝑋∗𝑁−2
𝑋∗𝑁−1
𝑋∗𝑁 ]

 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
−6/ℎ
6/ℎ
0
.
.
.
0
0
0
0 ]

 
 
 
 
 
 
 
 
 

 (50) 

 

Similarly for the point, 𝑦2we have, 

 

𝐹𝑘
′(𝑦2) =∑𝑋∗2𝑗𝜃𝑘(𝑦𝑗)

     𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁
 𝑘 = 1,2, … , 𝑁

𝑁

𝑗=1

 (51) 

 

Then again, the tri-diagonal system of equations is formed 

as: 

 

[
 
 
 
 
 
 
6 1 0
0 4 1
0 1 4

0
0
1

⋯ 0 0

⋮ 0 ⋱ 0 ⋮

0 0 ⋯
1
0
0

4 1 0
1 4 0
0 1 6]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝑋∗21
𝑋∗22
𝑋∗23
.
.
.

𝑋∗2𝑁−3
𝑋∗2𝑁−2
𝑋∗2𝑁−1
𝑋∗2𝑁 ]

 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
−3/ℎ
0
3/ℎ
0
.
.
0
0
0
0 ]

 
 
 
 
 
 
 
 
 

 (52) 

 

We continue to find the tri-diagonal systems for the 

remaining 𝑦𝑖’s and the system for last 𝑦𝑁 is given by: 

 

[
 
 
 
 
 
 
6 1 0
0 4 1
0 1 4

0
0
1

⋯ 0 0

⋮ 0 ⋱ 0 ⋮

0 0 ⋯
1
0
0

4 1 0
1 4 0
0 1 6]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝑋∗𝑁1
𝑋∗𝑁2
𝑋∗𝑁3
.
.
.

𝑋∗𝑁𝑁−3
𝑋∗𝑁𝑁−2
𝑋∗𝑁𝑁−1
𝑋∗𝑁𝑁 ]

 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
0
0
0
0
.
.
0
0

−6/ℎ
6/ℎ ]

 
 
 
 
 
 
 
 
 

  (53) 

 

The solution of the above systems provides the coefficients 

 
𝑋∗11, 𝑋

∗
12… ,𝑋

∗
1𝑁 , 𝑋

∗
21, 𝑋

∗
22… ,𝑋

∗
2𝑁 … ,𝑋

∗
𝑁1, 𝑋

∗
𝑁2… ,𝑋

∗
𝑁𝑁. 

 

Then the values of 𝑌∗𝑖𝑗  for 𝑖 = 1,2,3…𝑁, 𝑗 = 1,2,3…𝑁 are 

calculated as follows: 

 

𝑌∗𝑖𝑗 = 2𝑋∗𝑖𝑗 (𝑋
∗
𝑖𝑗 −

1

𝑦𝑖 − 𝑦𝑗
) for 𝑖 ≠ 𝑗

𝑌∗𝑖𝑖 = − ∑ 𝑌∗𝑖𝑗

𝑁

𝑖=1,𝑖≠𝑗

𝑖 = 𝑗
}
 
 

 
 

 (54) 

 

The reduced system of ordinary differential equations in 

time, that is, represented as for i=1, 2, 3…, N. 

 

𝑉𝑡 = 𝑅𝑚(𝑈1, 𝑈2, 𝑇1, 𝑇2, 𝑁1, 𝑁2𝑈𝑝, 𝑇𝑝) (55) 

 

The system is solved by the following strong stability 

preserving scheme (section 3.1).  

 

3.1 Computation of 𝒖𝟏, 𝒖𝟐, 𝐍𝟏, 𝑵𝟐, 𝑻𝟏, 𝑻𝟐 

 

To obtain the velocity, micro-rotation, and temperature 

profiles for MHD (magnetohydrodynamic) Couette flow of 

micropolar and micropolar dusty fluids in the respective Zone, 

replace the approximation of the spatial components of the I 

and II order derivatives obtained by using MCB-DQM 

(modified cubic b-spline differential quadrature method). 

Hence the system of coupled partial Eqns. (17)-(24) is 

numerically solved with the initial and boundary conditions 

(12)-(15) and the linear velocities, angular velocity component 

(microrotation), and temperature profiles of both fluids and 

particles are readily obtained. The Eqns. (17)-(24) can be 

updated as follows: 

 

Zone-I (Micropolar fluid: −k ≤ y ≤ 0).  
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𝜕𝑈1
𝜕𝑡

=
1

𝑅𝑒
.

[
 
 
 
 
 
 
 
 

𝜂1∑𝑋∗𝑖𝑗𝑁1(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

+

(1 + 𝜂1) (∑𝑌∗𝑖𝑗𝑈1(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 )

−
𝐻𝑎2(1 + 𝐵𝑖. 𝐵𝑒)

(1 + 𝐵𝑖. 𝐵𝑒)2 + 𝐵𝑒2
𝑈1(𝑦𝑗 , 𝑡) ]

 
 
 
 
 
 
 
 

 (56) 

 

𝜕𝑁1
𝜕𝑡

=
1

𝑅𝑒
 

[
 
 
 
 
 
 

(1 +
𝜂1
2
)(∑𝑌∗𝑖𝑗𝑁1(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 ) 

−𝜂1 (2𝑁1(𝑦𝑗 , 𝑡) +  ∑𝑋∗𝑖𝑗𝑈1(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

]
 
 
 
 
 
 

 (57) 

 

𝜕𝑇1
𝜕𝑡

=
𝐸𝑐

𝑅𝑒

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1

𝑃𝑟. 𝐸𝑐
(∑𝑌∗𝑖𝑗𝑇1(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 )

+(∑𝑋∗𝑖𝑗𝑈1(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

+

𝜂1 (2𝑁1(𝑦𝑗 , 𝑡) +∑𝑋∗𝑖𝑗𝑈1(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

+ 𝛿1 (∑𝑋∗𝑖𝑗𝑁1(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

 +

𝐻𝑎2(1 + 𝐵𝑖. 𝐵𝑒)

(1 + 𝐵𝑖. 𝐵𝑒)2 + 𝐵𝑒2
𝑈1(𝑦𝑗 , 𝑡) 

2 
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (58) 

 

Zone-II (Micropolar dusty fluid: 0 ≤ y ≤ k) 

 

𝜕𝑈2

𝜕𝑡
=

 
𝑟1

𝑟2.𝑅𝑒

[
 
 
 
 
 

𝜂2∑ 𝑋∗𝑖𝑗𝑁2(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 +

(1 + 𝜂2)(∑ 𝑌∗𝑖𝑗𝑈2(𝑦𝑗, 𝑡)
𝑁
𝑗=1  )

−
𝐻𝑎2(1+𝐵𝑖.𝐵𝑒)

𝑟1((1+𝐵𝑖.𝐵𝑒)
2+𝐵𝑒2)

𝑈2(𝑦𝑗 , 𝑡) 

−  𝑅 (𝑈2(𝑦𝑗 , 𝑡) − 𝑈𝑝(𝑦𝑗 , 𝑡)) ]
 
 
 
 
 

    

(59) 

 

𝜕𝑈𝑝
𝜕𝑡

=  
𝑅. 𝑟1. 𝑟3
𝑟2. 𝑅𝑒

[𝑈2(𝑦𝑗, 𝑡) − 𝑈𝑝(𝑦𝑗 , 𝑡)] (60) 

 
𝜕𝑁2
𝜕𝑡

=
𝑟1

𝑟2. 𝑅𝑒

[
 
 
 
 
 
 

(1 +
𝜂2
2
)(∑𝑌∗𝑖𝑗𝑁2(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 ) 

−𝜂2 (2𝑁2(𝑦𝑗 , 𝑡) +∑𝑋∗𝑖𝑗𝑈2(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

]
 
 
 
 
 
 

 

(61) 

 

𝜕𝑇2
𝜕𝑡

=
𝐸𝑐. 𝑟1
𝑅𝑒. 𝑟2. 𝐶𝑟

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝐾𝑟

𝑃𝑟. 𝐸𝑐. 𝑟1
(∑𝑌∗𝑖𝑗𝑇2(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

+ (∑𝑋∗𝑖𝑗𝑈2(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

+𝜂2

(

 

2𝑁2(𝑦𝑗 , 𝑡) +

∑𝑋∗𝑖𝑗𝑈2(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

2

+ 

𝛿2(∑𝑋∗𝑖𝑗𝑁2(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

+
𝐻𝑎2(1 + 𝐵𝑖. 𝐵𝑒)

𝑟1((1 + 𝐵𝑖. 𝐵𝑒)
2 +𝐵𝑒2)

𝑈2(𝑦𝑗 , 𝑡)
2

+
2

3

𝑅.𝐾𝑟
𝑃𝑟. 𝐸𝑐. 𝑟1

(𝑇𝑝(𝑦𝑗 , 𝑡) − 𝑇2(𝑦𝑗 , 𝑡)) +  

   
𝑅. 𝐶𝑟. 𝑟3
𝐸𝑐

 (𝑈2(𝑦𝑗 , 𝑡) − 𝑈𝑝(𝑦𝑗 , 𝑡))
2

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (62) 

 

𝜕𝑇𝑝

𝜕𝑡
=  
2

3

𝑅 ∗ 𝑘𝑟 ∗ 𝐶𝑟 ∗ 𝑟3
𝐶𝑃𝑟 ∗ 𝑟1 ∗ 𝑃𝑟

(𝑇2(𝑦𝑗 , 𝑡) − 𝑇𝑝(𝑦𝑗 , 𝑡))

𝑅𝑒
 (63) 

 

Thus, equations are reduced into a system of ordinary 

differential equations in time, that is, for i=1, 2, 3…, N, and 

the system is solved by the robust four-step third-order SSP 

RK43 [33]. The velocities and microrotation in both Zones are 

obtained as follows: 

At first - the step for i=1,2,3…, n 

Zone-I ( −k ≤ y ≤ 0) (micropolar fluid): 

 

𝑈11 = 𝑈10 +

𝛥𝑡

2

(

 
 1

𝑅𝑒
.

[
 
 
 
 

𝜂1∑ 𝑋∗𝑖𝑗𝑁10(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 +

(1 + 𝜂1)(∑ 𝑌∗𝑖𝑗𝑈10(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  )

−
𝐻𝑎2(1+𝐵𝑖.𝐵𝑒)

(1+𝐵𝑖.𝐵𝑒)2+𝐵𝑒2
𝑈10(𝑦𝑗 , 𝑡) ]

 
 
 
 

)

 
 

 
(64) 

 

𝑁11
= 𝑁10

+ 
𝛥𝑡

2

(

 
 
 
 
 

1

𝑅𝑒
 

[
 
 
 
 
 
 
 
(1 +

𝜂1
2
)(∑𝑌∗𝑖𝑗𝑁10(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 ) 

−𝜂1

(

 

2𝑁10(𝑦𝑗 , 𝑡) +

 ∑𝑋∗𝑖𝑗𝑈10(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

]
 
 
 
 
 
 
 

)

 
 
 
 
 

 

(65) 

 

𝑇11 = 𝑇10 +
𝛥𝑡

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝑐

𝑅𝑒

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1

𝑃𝑟. 𝐸𝑐
(∑𝑌∗𝑖𝑗𝑇10(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 )

+(∑𝑋∗𝑖𝑗𝑈10(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

+

𝜂1

(

 

2𝑁10(𝑦𝑗 , 𝑡) +

∑𝑋∗𝑖𝑗𝑈10(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

2

+ 𝛿1 (∑𝑋∗𝑖𝑗𝑁10(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

 +

𝐻𝑎2(1 + 𝐵𝑖. 𝐵𝑒)

(1 + 𝐵𝑖. 𝐵𝑒)2 + 𝐵𝑒2
𝑈10(𝑦𝑗 , 𝑡) 

2 
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (66) 
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Zone-II (0 ≤ y ≤ k) (micropolar dusty fluid): 

 

𝑈21 = 𝑈20 +
𝛥𝑡

2
            

(

 
 
 
 

𝑟1

𝑟2.𝑅𝑒

[
 
 
 
 
 
 

𝜂2∑ 𝑋∗𝑖𝑗𝑁20(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 +

(1 + 𝜂2)(∑ 𝑌∗𝑖𝑗𝑈20(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  )

−
𝐻𝑎2(1+𝐵𝑖.𝐵𝑒)

𝑟1((1+𝐵𝑖.𝐵𝑒)
2+𝐵𝑒2)

𝑈20(𝑦𝑗 , 𝑡) 

−  𝑅 (𝑈20(𝑦𝑗 , 𝑡) − 𝑈𝑝0(𝑦𝑗 , 𝑡)) ]
 
 
 
 
 
 

)

 
 
 
 

 
(67) 

 

𝑈𝑝1 = 𝑈𝑝0 +
𝛥𝑡

2
(
𝑅. 𝑟1. 𝑟3
𝑟2. 𝑅𝑒

[𝑈20(𝑦𝑗 , 𝑡) − 𝑈𝑝0(𝑦𝑗 , 𝑡)]) (68) 

 

𝑁21
= 𝑁10

+  
𝛥𝑡

2

(

 
 
 
 
 

𝑟1
𝑟2. 𝑅𝑒

[
 
 
 
 
 
 
 
(1 +

𝜂2
2
)(∑𝑌∗𝑖𝑗𝑁20(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 ) 

−𝜂2

(

 

2𝑁20(𝑦𝑗 , 𝑡) +

∑𝑋∗𝑖𝑗𝑈20(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

]
 
 
 
 
 
 
 

)

 
 
 
 
 

 

(69) 

 
𝑇21
= 𝑇10

+
Δ𝑡

2
.

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝑐. 𝑟1
𝑅𝑒. 𝑟2. 𝐶𝑟

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝐾𝑟

𝑃𝑟.𝐸𝑐. 𝑟1
(∑𝑌∗𝑖𝑗𝑇20 (𝑦𝑗, 𝑡)

𝑁

𝑗=1

)

+ (∑𝑋∗𝑖𝑗𝑈20 (𝑦𝑗, 𝑡)

𝑁

𝑗=1

)

2

+𝜂2

(

 
 
2𝑁20 (𝑦𝑗, 𝑡)+

∑𝑋∗𝑖𝑗𝑈20 (𝑦𝑗, 𝑡)

𝑁

𝑗=1 )

 
 

2

+ 

𝛿2 (∑𝑋∗𝑖𝑗𝑁20 (𝑦𝑗, 𝑡)

𝑁

𝑗=1

)

2

+
𝐻𝑎2(1+ 𝐵𝑖. 𝐵𝑒)

𝑟1((1+ 𝐵𝑖. 𝐵𝑒)2 +𝐵𝑒2)
𝑈20 (𝑦𝑗, 𝑡)

2

+
2

3

𝑅.𝐾𝑟
𝑃𝑟.𝐸𝑐. 𝑟1

(
𝑇𝑝0 (𝑦𝑗, 𝑡)

−𝑇20 (𝑦𝑗, 𝑡)
)+ 

𝑅. 𝐶𝑟. 𝑟3
𝐸𝑐

 (
𝑈20 (𝑦𝑗, 𝑡)

−𝑈𝑝0 (𝑦𝑗, 𝑡)
)

2

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(70) 

 

𝑇𝑝1
= 𝑇𝑝0

+ 
𝛥𝑡

2
( 
2

3

𝑅 ∗ 𝑘𝑟 ∗ 𝐶𝑟 ∗ 𝑟3
𝐶𝑃𝑟 ∗ 𝑟1 ∗ 𝑃𝑟

(𝑇20(𝑦𝑗 , 𝑡) − 𝑇𝑝0(𝑦𝑗 , 𝑡))

𝑅𝑒
) 

(71) 

 

At the first step of the method, the conditions (12)-(15) are 

regarded favourably.  

 

At the second step for i=1,2,3…, n: 

Zone-I ( −𝑘 ≤ 𝑦 ≤ 0) (micropolar fluid): 

 

𝑈12 = 𝑈11 +

𝛥𝑡

2

(

 
 1

𝑅𝑒
.  

[
 
 
 
 

𝜂1∑ 𝑋∗𝑖𝑗𝑁11(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 +

(1 + 𝜂1)(∑ 𝑌∗𝑖𝑗𝑈11(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  )

−
𝐻𝑎2(1+𝐵𝑖.𝐵𝑒)

(1+𝐵𝑖.𝐵𝑒)2+𝐵𝑒2
𝑈11(𝑦𝑗 , 𝑡) ]

 
 
 
 

  

)

 
 

 
(72) 

 

𝑁12
= 𝑁11

+ 
Δ𝑡

2

(

 
 
 
 
 

1

𝑅𝑒
 

[
 
 
 
 
 
 
 
(1 +

𝜂1
2
)(∑𝑌∗𝑖𝑗𝑁11(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 ) 

−𝜂1

(

 

2𝑁11(𝑦𝑗 , 𝑡) +

 ∑𝑋∗𝑖𝑗𝑈11(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

]
 
 
 
 
 
 
 

)

 
 
 
 
 

 

(73) 

 

𝑇12
= 𝑇11

+
𝛥𝑡

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝑐

𝑅𝑒

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1

𝑃𝑟. 𝐸𝑐
(∑𝑌∗𝑖𝑗𝑇11(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 )

+(∑𝑋∗𝑖𝑗𝑈11(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

+

𝜂1

(

 

2𝑁11(𝑦𝑗 , 𝑡) +

∑𝑋∗𝑖𝑗𝑈11(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

2

+ 𝛿1 (∑𝑋∗𝑖𝑗𝑁11(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

 +

𝐻𝑎2(1 + 𝐵𝑖. 𝐵𝑒)

(1 + 𝐵𝑖. 𝐵𝑒)2 + 𝐵𝑒2
𝑈11(𝑦𝑗 , 𝑡) 

2 
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(74) 

 

Zone-II (0 ≤ y ≤ k) (micropolar dusty fluid): 

 

𝑈22 = 𝑈21 +

𝛥𝑡

2

(

 
 
 
 

𝑟1

𝑟2.𝑅𝑒

[
 
 
 
 
 
 

𝜂2∑ 𝑋∗𝑖𝑗𝑁21(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 +

(1 + 𝜂2)(∑ 𝑌∗𝑖𝑗𝑈21(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  )

−
𝐻𝑎2(1+𝐵𝑖.𝐵𝑒)

𝑟1((1+𝐵𝑖.𝐵𝑒)
2+𝐵𝑒2)

𝑈21(𝑦𝑗 , 𝑡) 

−  𝑅 (𝑈21(𝑦𝑗 , 𝑡) − 𝑈𝑝1(𝑦𝑗 , 𝑡)) ]
 
 
 
 
 
 

)

 
 
 
 

 
(75) 

 

𝑈𝑝2 = 𝑈𝑝1 +
𝛥𝑡

2
(
𝑅. 𝑟1. 𝑟3
𝑟2. 𝑅𝑒

[𝑈21(𝑦𝑗 , 𝑡) − 𝑈𝑝1(𝑦𝑗 , 𝑡)]) (76) 

 

𝑁22
= 𝑁11

+ 

(

 
 
 
 
 

𝑟1
𝑟2. 𝑅𝑒

[
 
 
 
 
 
 
 
(1 +

𝜂2
2
)(∑𝑌∗𝑖𝑗𝑁21(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 ) 

−𝜂2

(

 

2𝑁21(𝑦𝑗 , 𝑡) +

∑𝑋∗𝑖𝑗𝑈21(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

]
 
 
 
 
 
 
 

)

 
 
 
 
 

 

(77) 
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𝑇22 = 𝑇11 +
𝛥𝑡

2
.

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝑐. 𝑟1

𝑅𝑒. 𝑟2. 𝐶𝑟

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝐾𝑟

𝑃𝑟. 𝐸𝑐. 𝑟1
(∑𝑌∗𝑖𝑗𝑇21 (𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

+ (∑𝑋∗𝑖𝑗𝑈21 (𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

+𝜂
2

(

 
 

2𝑁21 (𝑦𝑗 , 𝑡) +

∑ 𝑋∗𝑖𝑗𝑈21 (𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 
 

2

+ 

𝛿2 (∑𝑋∗𝑖𝑗𝑁21 (𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

+
𝐻𝑎2(1 + 𝐵𝑖. 𝐵𝑒)

𝑟1((1 + 𝐵𝑖. 𝐵𝑒)
2 + 𝐵𝑒2)

𝑈21 (𝑦𝑗 , 𝑡)
2

+
2

3

𝑅. 𝐾𝑟

𝑃𝑟. 𝐸𝑐. 𝑟1
(
𝑇𝑝1

(𝑦
𝑗
, 𝑡)

−𝑇21 (𝑦𝑗 , 𝑡)
) +  

   
𝑅. 𝐶𝑟. 𝑟3

𝐸𝑐
 (

𝑈21 (𝑦𝑗 , 𝑡)

−𝑈𝑝1
(𝑦

𝑗
, 𝑡)
)

2

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (78) 

 

𝑇𝑝2
= 𝑇𝑝1

+ 
Δ𝑡

2
( 
2

3

𝑅 ∗ 𝑘𝑟 ∗ 𝐶𝑟 ∗ 𝑟3
𝐶𝑃𝑟 ∗ 𝑟1 ∗ 𝑃𝑟

(𝑇21(𝑦𝑗 , 𝑡) − 𝑇𝑝1(𝑦𝑗 , 𝑡))

𝑅𝑒
 ) 

(79) 

 

At the second step of the method, the conditions (12)-(15) 

are regarded favourably. 

At the third step for i=1,2,3…,n 

 

Zone-I ( −𝑘 ≤ 𝑦 ≤ 0) (micropolar fluid): 

 

𝑈13 =
2.𝑈10

3
+ 

𝑈11

3
+

𝛥𝑡

6

(

 
 1

𝑅𝑒
.  

[
 
 
 
 

𝜂1∑ 𝑋∗𝑖𝑗𝑁12(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 +

(1 + 𝜂1)(∑ 𝑌∗𝑖𝑗𝑈12(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  )

−
𝐻𝑎2(1+𝐵𝑖.𝐵𝑒)

(1+𝐵𝑖.𝐵𝑒)2+𝐵𝑒2
𝑈12(𝑦𝑗 , 𝑡) ]

 
 
 
 

 

)

 
 

 
(80) 

 

𝑁13 =
2.𝑁10

3
+ 

𝑁11

3
+ 

𝛥𝑡

6

(

 
 
 
 
 

1

𝑅𝑒
 

[
 
 
 
 
 
 
 
(1 +

𝜂1
2
)(∑𝑌∗𝑖𝑗𝑁12(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 ) 

−𝜂1

(

 

2𝑁12(𝑦𝑗 , 𝑡) +

 ∑𝑋∗𝑖𝑗𝑈12(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

]
 
 
 
 
 
 
 

)

 
 
 
 
 

 
(81) 

 

𝑇13 =
2.𝑇10

3
+ 

𝑇11

3
+

𝛥𝑡

6

(

 
 
 
 
 
 
 

𝐸𝑐

𝑅𝑒

[
 
 
 
 
 
 
 
 
 

1

𝑃𝑟.𝐸𝑐
(∑ 𝑌∗𝑖𝑗𝑇12(𝑦𝑗 , 𝑡)

𝑁
𝑗=1  )

+(∑ 𝑋∗𝑖𝑗𝑈12(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 )

2
+

𝜂1 (
2𝑁12(𝑦𝑗 , 𝑡) +

∑ 𝑋∗𝑖𝑗𝑈12(𝑦𝑗 , 𝑡)
𝑁
𝑗=1

)

2

+ 𝛿1(∑ 𝑋∗𝑖𝑗𝑁12(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 )

2
 +

𝐻𝑎2(1+𝐵𝑖.𝐵𝑒)

(1+𝐵𝑖.𝐵𝑒)2+𝐵𝑒2
𝑈12(𝑦𝑗 , 𝑡) 

2 ]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 

 
(82) 

 

Zone-II (0 ≤ y ≤ k) (micropolar dusty fluid): 

𝑈23 = 
2.𝑈20

3
+ 

𝑈21

3
+ 

   
𝛥𝑡

6
  

(

 
 
 
 

𝑟1

𝑟2.𝑅𝑒

[
 
 
 
 
 
 

𝜂2∑ 𝑋∗𝑖𝑗𝑁22(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 +

(1 + 𝜂2)(∑ 𝑌∗𝑖𝑗𝑈22(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  )

−
𝐻𝑎2(1+𝐵𝑖.𝐵𝑒)

𝑟1((1+𝐵𝑖.𝐵𝑒)
2+𝐵𝑒2)

𝑈22(𝑦𝑗 , 𝑡) 

−  𝑅 (𝑈22(𝑦𝑗 , 𝑡) − 𝑈𝑝2(𝑦𝑗 , 𝑡)) ]
 
 
 
 
 
 

)

 
 
 
 

 
(83) 

 

𝑈𝑝3 =
2.𝑈𝑝0

3
+ 

𝑈𝑝1

3
+ 

 
𝛥𝑡

6
 (
𝑅.𝑟1.𝑟3

𝑟2.𝑅𝑒
[𝑈22(𝑦𝑗 , 𝑡) − 𝑈𝑝2(𝑦𝑗 , 𝑡)]) 

(84) 

 

𝑁23 = 
2.𝑁20

3
+ 

𝑁21

3
+ 

 
 Δ𝑡

6

(

 
 
 
 
 

𝑟1
𝑟2. 𝑅𝑒

[
 
 
 
 
 
 
 
(1 +

𝜂2
2
)(∑𝑌∗𝑖𝑗𝑁22(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 ) 

−𝜂2

(

 

2𝑁22(𝑦𝑗 , 𝑡) +

∑𝑋∗𝑖𝑗𝑈22(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

]
 
 
 
 
 
 
 

)

 
 
 
 
 

 
(85) 

 

𝑇23 = 
2.𝑇20

3
+ 

𝑇21

3
+ 

 
𝛥𝑡

6
.

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝑐. 𝑟1
𝑅𝑒. 𝑟2. 𝐶𝑟

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝐾𝑟

𝑃𝑟. 𝐸𝑐. 𝑟1
(∑𝑌∗𝑖𝑗𝑇22(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

+ (∑𝑋∗𝑖𝑗𝑈22(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

+𝜂2

(

 

2𝑁22(𝑦𝑗 , 𝑡) +

∑𝑋∗𝑖𝑗𝑈22(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

2

+ 

𝛿2 (∑𝑋∗𝑖𝑗𝑁22(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

+
𝐻𝑎2(1 + 𝐵𝑖. 𝐵𝑒)

𝑟1((1 + 𝐵𝑖. 𝐵𝑒)
2 + 𝐵𝑒2)

𝑈22(𝑦𝑗 , 𝑡)
2

+
2

3

𝑅.𝐾𝑟
𝑃𝑟. 𝐸𝑐. 𝑟1

(
𝑇𝑝2(𝑦𝑗 , 𝑡)

−𝑇22(𝑦𝑗 , 𝑡)
) +  

   
𝑅. 𝐶𝑟 . 𝑟3
𝐸𝑐

 (
𝑈22(𝑦𝑗 , 𝑡)

−𝑈𝑝2(𝑦𝑗 , 𝑡)
)

2

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(86) 

 

𝑇𝑝3 =
2.𝑇𝑝0

3
+ 

𝑇𝑝1

3
+

 
Δ𝑡

6
. ( 

2

3

𝑅∗𝑘𝑟∗𝐶𝑟∗𝑟3

𝐶𝑃𝑟∗𝑟1∗𝑃𝑟

(𝑇21(𝑦𝑗,𝑡)−𝑇𝑝1
(𝑦𝑗,𝑡))

𝑅𝑒
) 

(87) 

 

At the third step of the method, the conditions (12)-(15) are 

once again regarded favourably. 

 

At the fourth step for i=1,2,3…,n: 

Zone-I ( −𝑘 ≤ 𝑦 ≤ 0) (micropolar fluid): 

 

𝑈14 = 𝑈13 +

 𝛥𝑡

2

(

 
 1

𝑅𝑒
.  

[
 
 
 
 

𝜂1∑ 𝑋∗𝑖𝑗𝑁13(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 +

(1 + 𝜂1)(∑ 𝑌∗𝑖𝑗𝑈13(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  )

−
𝐻𝑎2(1+𝐵𝑖.𝐵𝑒)

(1+𝐵𝑖.𝐵𝑒)2+𝐵𝑒2
𝑈13(𝑦𝑗 , 𝑡) ]

 
 
 
 

   

)

 
 
   

(88) 
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𝑁14 = 𝑁13 + 
Δ𝑡

2

(

 
 
 
 
 

1

𝑅𝑒
 

[
 
 
 
 
 
 
 
(1 +

𝜂1
2
)(∑𝑌∗𝑖𝑗𝑁13(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 ) 

−𝜂1

(

 

2𝑁13(𝑦𝑗 , 𝑡) +

 ∑𝑋∗𝑖𝑗𝑈13(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

]
 
 
 
 
 
 
 

)

 
 
 
 
 

 (89) 

 
𝑇14 = 𝑇13 + 

Δ𝑡

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝑐

𝑅𝑒

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1

𝑃𝑟. 𝐸𝑐
(∑𝑌∗𝑖𝑗𝑇13(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 )

+(∑𝑋∗𝑖𝑗𝑈13(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

+

𝜂1

(

 

2𝑁13(𝑦𝑗 , 𝑡) +

∑𝑋∗𝑖𝑗𝑈13(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

2

+ 𝛿1(∑𝑋∗𝑖𝑗𝑁13(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

 +

𝐻𝑎2(1 + 𝐵𝑖. 𝐵𝑒)

(1 + 𝐵𝑖. 𝐵𝑒)2 +𝐵𝑒2
𝑈13(𝑦𝑗 , 𝑡) 

2 
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    (90) 

 

Zone-II (0 ≤ y ≤ k) (micropolar dusty fluid): 

 

𝑈24 = 𝑈23 +
𝛥𝑡

2

(

 
 
 
 

𝑟1

𝑟2.𝑅𝑒

[
 
 
 
 
 
 

𝜂2 ∑ 𝑋∗𝑖𝑗𝑁23(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 +

(1 + 𝜂2)(∑ 𝑌∗𝑖𝑗𝑈23(𝑦𝑗 , 𝑡)
𝑁
𝑗=1  )

−
𝐻𝑎2(1+𝐵𝑖.𝐵𝑒)

𝑟1((1+𝐵𝑖.𝐵𝑒)
2+𝐵𝑒2)

𝑈23(𝑦𝑗 , 𝑡) 

−  𝑅 (𝑈23(𝑦𝑗 , 𝑡) − 𝑈𝑝3(𝑦𝑗 , 𝑡)) ]
 
 
 
 
 
 

)

 
 
 
 

 (91) 

 

𝑈𝑝4 = 𝑈𝑝3 +
𝛥𝑡

2
(
𝑅. 𝑟1. 𝑟3
𝑟2. 𝑅𝑒

[𝑈23(𝑦𝑗 , 𝑡) − 𝑈𝑝3(𝑦𝑗 , 𝑡)]) (92) 

 

𝑁24 = 𝑁23 + 
𝛥𝑡

2

(

 
 
 
 
 

𝑟1
𝑟2. 𝑅𝑒

[
 
 
 
 
 
 
 
(1 +

𝜂2
2
)(∑𝑌∗𝑖𝑗𝑁23(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

 ) 

−𝜂2

(

 

2𝑁23(𝑦𝑗 , 𝑡) +

∑𝑋∗𝑖𝑗𝑈23(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

]
 
 
 
 
 
 
 

)

 
 
 
 
 

 (93) 

 
𝑇24
= 𝑇23

+
𝛥𝑡

2
.

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝑐. 𝑟1
𝑅𝑒. 𝑟2. 𝐶𝑟

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝐾𝑟

𝑃𝑟. 𝐸𝑐. 𝑟1
(∑𝑌∗𝑖𝑗𝑇23(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

+ (∑𝑋∗𝑖𝑗𝑈23(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

+𝜂2

(

 

2𝑁23(𝑦𝑗 , 𝑡) +

∑𝑋∗𝑖𝑗𝑈23(𝑦𝑗 , 𝑡)

𝑁

𝑗=1 )

 

2

+ 

𝛿2(∑𝑋∗𝑖𝑗𝑁23(𝑦𝑗 , 𝑡)

𝑁

𝑗=1

)

2

+
𝐻𝑎2(1 + 𝐵𝑖. 𝐵𝑒)

𝑟1((1 + 𝐵𝑖. 𝐵𝑒)
2 + 𝐵𝑒2)

𝑈23(𝑦𝑗 , 𝑡)
2

+
2

3

𝑅.𝐾𝑟
𝑃𝑟. 𝐸𝑐. 𝑟1

(
𝑇𝑝3(𝑦𝑗 , 𝑡)

−𝑇23(𝑦𝑗 , 𝑡)
) +  

   
𝑅. 𝐶𝑟 . 𝑟3
𝐸𝑐

 (
𝑈23(𝑦𝑗 , 𝑡)

−𝑈𝑝3(𝑦𝑗 , 𝑡)
)

2

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(94) 

 

𝑇𝑝4
= 𝑇𝑝3

+ 
Δ𝑡

2
( 
2

3

𝑅 ∗ 𝑘𝑟 ∗ 𝐶𝑟 ∗ 𝑟3
𝐶𝑃𝑟 ∗ 𝑟1 ∗ 𝑃𝑟

(𝑇23(𝑦𝑗 , 𝑡) − 𝑇𝑝3(𝑦𝑗 , 𝑡))

𝑅𝑒
 ) 

(95) 

 

At the fourth step of the method, the conditions (12)-(15) 

are also regarded favourably.  

Hence the fluid (linear) velocity and angular velocity 

(Eringen microrotation) and temperatures profiles i. e. 

𝑈1, 𝑁1, 𝑇1, of micropolar fluid in Zone-I, and also the fluid 

velocity (linear) and particle velocity components, angular 

velocity, and temperature profiles.  𝑈2,  𝑈𝑝 𝑁2, 𝑇2, 𝑇𝑝 for 

micropolar dusty fluid in Zone-II can be numerically obtained 

at the fourth step of MCB-DQM. 

 

3.2 Skin friction coefficient 

 

As fluid moves over the plates, it creates friction on their 

edges, which inhibits forward motion and causes skin friction 

drift on the surface. This impact is measured using the skin 

friction coefficient. The expression of skin friction coefficients 

at both plates are calculated as 

At lower plate,  

 

(𝑪𝒇)𝒚=−𝟏
=
𝟐

𝑹𝒆
[(1 + 𝜂1)

𝝏𝑈1
𝜕𝒚

+ 𝜂1𝑁1]
𝒚=−𝟏

 (96) 

 

At upper plate,  

 

(𝑪𝒇)𝒚=𝟏
=
𝟐𝒓𝟏
𝒓𝟐𝑹𝒆

[(1 + 𝜂1)
𝝏𝑈1
𝜕𝒚

+ 𝜂1𝑁1]
𝒚=𝟏

 (97) 

 

3.3 Nusselt number 

 

The expression of the Nusselt number at both plates is 

calculated as: 

At lower plate, 

 

(𝑁𝑈)𝑦=−1 = (−
𝜕𝑇1
𝜕𝑦
)
𝑦=−1

 (98) 

 

At upper plate, 

 

(𝑁𝑈)𝑦=1 = (−
𝜕𝑇2
𝜕𝑦
)
𝑦=1

 (99) 

 

 

4. RESULT AND DISCUSSION 

 

The time-dependent unidirectional Couette flow of two 

immiscible micropolar and micropolar-dusty fluids under 

magnetohydrodynamic effect and heat transfer examined. The 

two-fluid flow coupled problem (Eqns. (17)-(24)) in the 

corresponding regions with stable and continuous interface 

have been numerically solved by modified cubic B-spline 

differential quadrature method, and velocity, microrotation, 

and temperature profiles of fluids, and dust particles have been 

calculated. The analysis of skin friction coefficient and Nusselt 

number are also explored. The results are discussed in the 

following set of fixed values of all parameters, Ge=5, 𝑡 =
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0.5, 𝜂1 = 0.5, 𝜂2 = 0.5, 𝐻𝑎2 = 2, 𝐵𝑒 = 2, 𝐵𝑖 = 2,Re=2, R=2, 

𝑟1 =0.5, 𝑟2 =0.5, 𝑟3 =100, 𝐶𝑟 =0.5, 𝐸𝑐 =0.5,  𝐾𝑟 = 0.5, 𝑃𝑟 =
2, 𝛿1 = 2, 𝛿2 = 2, 𝐶𝑟𝑟 =0.5. The simulation outputs are 

validated for velocity profile by comparing them with the one 

fluid case (the non-MHD, non-dusty, single Newtonian 

Couette flow 𝐻𝑎2 = 0, 𝐵𝑒 = 0, 𝐵𝑖 = 0, R=0, 𝜂1 = 0, 𝜂2 = 0, 
𝑟1=1, 𝑟2=1 Ge=0). The limiting case numerical result and the 

exact solution (Appendix) have a strong agreement, as seen in 

Figure 2. 

 

 
 

Figure 2. Comparison of numerical solution with the exact 

solution 

 

4.1 Analysis of velocity profiles 

 

Figures 3a-3i represents the effect of various fluid 

parameters on fluids and particle velocity and it is cited from 

Figure 3a that both fluid and particle velocity increasing with 

time and it became stable for a higher value of time. Hall 

parameter (𝐵𝑒 = 𝜎𝛽𝐵0)  and Ion-slip parameter (𝐵𝑖)  also 

affect the velocity but the magnitude is little less as compared 

to time; Hence the magnetic resistive force is decreased as 𝐵𝑒 

and 𝐵𝑖 are increased, creating an acceleration in the main flow, 

which increases fluid and particle-phase velocities the profile 

slightly and get stable for higher values (see Figure 3b and 

Figure 3c). If the flow is induced by constantly applied 

pressure from x-direction then it is known as the generalized 

Couette flow. The Reynold’s number 𝑅𝑒 =
𝜌1𝑈0ℎ

𝜇1
 is the non-

dimensional parameter which is defined as the ratio of inertial 

to viscous forces. Lower viscous forces are referred to higher 

𝑅𝑒 values in the fluid medium. As the Reynolds number rises, 

viscous forces decrease, causing an increasing correlation of 

fluid velocities (See Figure 3d- generalized Couette flow with 

Re). Figure 3e shows that if there is no external pressure on 

fluids then rising the Re value decreases the velocity profiles. 

The parameter Hartmann number 𝐻𝑎2 =
𝜎𝐵0

2𝑘2

𝜇1
 calculates the 

results of a transverse magnetic field. According to Figure 3f, 

increasing 𝐻𝑎2the allows the velocity fields in both regions to 

decrease. This may be attributed to the effect of an applied 

transverse magnetic field on both plates, which causes 

resistance to fluid movement through the Lorentz force, which 

appears to draw fluid velocities down. Increasing the 

micropolar parameters 𝜂1 =
𝜅1

𝜇1
,  𝜂2 =

𝜅2

𝜇2
 of both fluids, 

increase the vortex viscosities 𝜅1and 𝜅2; hence the velocity 

profiles of the fluids and particle-phase increase slightly in 

respective regions (see Figure 3g, Figure 3h). Figure 3i 

indicates that only the dust particle velocity increases with an 

enhancement of particle concentration parameter 𝑅 , and no 

variation in fluid velocities is observed. 

 
(a) Velocity with time 

 
(b) Velocity with hall parameter 

 
(c) Velocity with Ion-slip parameter 

 
(d) Velocity of generalized Couette flow with Re 

 
(e) Velocity with Reynolds number 

Exact Solution 
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(f) Velocity with Hartman number 

 
(g) Velocity with lower fluid micropolar parameter 

 
(h) Velocity with upper fluid micropolar parameter 

 
(i) Velocity with particle concentration parameter 

 

Figure 3. The effect of various fluid parameters on velocity 

profiles of micropolar and micropolar dusty fluid 
 

4.2 Analysis of micropolar profiles  
 

Figures 4a-4h represents the effect of various fluid 

parameters on microrotations (angular velocities) and it is 

observed from Figure 4a, that the microrotation decreasing 

with time and reaching a steady state after a higher value. 

According to Figure 4b, increasing Ha2 microrotation increase 

in both regions. Figure 4c and Figure 4d show that enhancing 

the Hall (Be) and Ion-slip parameter (Bi) decreases, 

microrotation in both region fluids. Figure 4e shows that 

increasing the micropolar parameters η1 of micropolar fluid, 

microrotation profiles in both regions increase slightly while 

profiles get significant increment with the micropolar 

parameters η2 of micropolar dusty fluid (see Figure 4f). 

Figure4g exhibits that the Microrotation profiles in both 

regions decrease with Reynold’s number 𝑅𝑒 when the flow is 

induced by constant pressure while the profiles increase with 

𝑅𝑒 in the absence of applied pressure (see Figure 4h). 

 

 
(a) Microrotation with time 

 
(b) Microrotation with Hartman number 

 
(c) Microrotation with hall parameter 

 
(d) Microrotation with Ion-slip parameter 
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(e) Microrotation with lower fluid micropolar parameter 

 
(f) Microrotation with upper fluid micropolar parameter 

 
(g) Microrotation of generalized Couette flow with Re 

 
(h) Microrotation of Couette flow with Re 

 

Figure 4. The effect of various fluid parameters on 

microrotation profiles of Micropolar and Micropolar dusty 

fluid 

 

 

 

4.3 Analysis of temperature profiles 

 

The nonlinear and flow-dependent viscous dissipation terms 

are not skipped during the simulation. Figure 5a to 5l exhibits 

the effect of various fluid parameters on heat transfer profiles 

of micropolar and micropolar dusty fluids and it is observed 

from Figure 5a, Figure 5b, Figure 5e, Figure 5j, Figure 5k and 

Figure 5l that the temperature profiles of both region fluids 

increase with time, Hartman number 𝐻𝑎2 (effect transverse 

magnetic field applied to both plates), Eckert number (𝐸𝑐- 

which provides the ratio of the advective mass transfer to the 

heat dissipation potential), the micropolar parameter of 

micropolar dusty fluid η2, and the ratio of viscosity r1 and 

density r2. The increment in the Ion-slip parameter (Bi), Hall 

parameter (Be) and micropolar parameter of micropolar fluid 

η1 cause a decline in the temperatures in both regions (see 

Figure 5g, Figure 5h, and Figure 5i). Figure 5c shows that if 

the flow is carried out by upper plate movement (Couette flow) 

increasing Reynold’s number 𝑅𝑒  reduces the temperature 

profiles in both the regions while Figure 5d shows that if the 

flow is carried out by constant pressure increasing Reynold’s 

number 𝑅𝑒  reduces the viscous force hence temperature 

profiles of both fluids have increasing nature. It is cited from 

Figure 5e, increasing the Prandtl number (Pr) which is the 

ratio of viscous diffusivity to thermal diffusivity, enhanced the 

temperature profiles of fluid and particle in the upper region, 

and changes its nature from increasing to decreasing in the 

lower region.  

 

 
(a) Temperature with time 

 
(b) Temperature with Hartman number 
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(c) Temperature of Couette flow with Re 

 
(d) Temperature of generalized Couette flow with Re 

 
(e) Temperature with Eckert number 

 
(f) Temperature with Prandtl number 

 
(g) Temperature with Ion-slip parameter 

 
(h) Temperature with Hall parameter 

 
(i) Temperature with lower fluid micropolar parameter 

 
(j) Temperature with upper fluid micropolar parameter 
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(k) Temperature with the ratio of viscosities 

 
(l) Temperature with the ratio of viscosities 

 

Figure 5. The effect of various fluid parameters on 

temperature profiles of Micropolar and Micropolar dusty 

fluid 

 

4.4 Analysis of skin-friction coefficient  

 

As fluid flows over the plates, the flow becomes chaotic at 

some point in the flow path. The existence of vortices indicates 

that turbulent flow has a fluctuating and unstable pattern of 

flow. So frictional forces are applied to the plate surface 

preventing fluid moves; this is known as skin friction drag. 

Table 1 shows that at the lower plate of the channel, skin 

friction increases with time (t), the micropolar parameter 𝜂1 of 

lower region fluid, micropolar parameter η2, Hall (Be) and Ion-

slip parameter (Bi). It shows a slight decrement with Reynolds 

number (Re), Hartman number Ha2 but remains constant with 

increasing values of particle concertation parameter R. 

On the upper plate, the skin friction coefficient is declined 

by rising values of time, η1, η2, Be, and Bi. When, and Ha2 and 

Re increased, the co-efficient improves slightly and it does not 

change with R.  

 

4.5 Analysis Nusselt number  

 

The Nusselt number, which is equal to the dimensionless 

temperature gradient at the plates and is calculated at the 

channel wall only, is a measure of convection heat transfer at 

the surface. Table 2 shows that the Nusselt number increases 

at the upper plate and decrease at the lower plate with time (t), 

Eckert number (Ec), Hartman Number Ha2, the micropolar 

parameter (η2) of micropolar dusty fluid. The Nusselt number 

decreases at the upper plate and increases at the lower plate 

with Reynold’s number (Re), Hall (Be), and Ion-slip parameter 

(Bi). micropolar parameter (η1). It remains constant at both the 

plates with particle concertation parameter (R). The Nusselt 

number changes at the upper plate and shows decreasing 

nature with the ratio of thermal conductivity kr and does not 

change at the lower plate. The effect of Prandtl number (Pr) 

shows that at both plates the Nusselt number enhanced.  
 

Table 1. Skin friction coefficients at the channel walls with 

fluid parameters 
 

t Lower Plt Upper Plt η2 Lower Plt Upper Plt 

0.1 0.001994 2.53042 0.1 0.011379 1.808388 

0.2 0.011004 1.91909 0.2 0.021177 1.759846 

0.4 0.031873 1.67237 0.3 0.029698 1.715515 

0.8 0.091465 1.55249 0.4 0.03718 1.674432 

            

Re Lower Plt Upper Plt Ha2  Lower Plt Upper Plt 

2 0.043806 1.63595 1 0.045328 1.523962 

3 0.024719 1.71059 2 0.043806 1.635953 

4 0.016142 1.80477 3 0.042338 1.744747 

5 0.011009 1.91909 4 0.040922 1.850523 

            

η1 Lower Plt Upper Plt Bi Lower Plt Upper Plt 

0.1 0.006325 1.68128 1 0.042807 1.709937 

0.2 0.014167 1.66972 2 0.043806 1.635953 

0.3 0.023194 1.65831 3 0.044512 1.583959 

0.4 0.033144 1.64705 4 0.044976 1.549814 

            

Be Lower Plt Upper Plt R Lower Plt Upper Plt 

0 0.031701 2.571262 1 0.043807 1.635974 

1 0.041652 1.795886 2 0.043806 1.635953 

2 0.043806 1.635953 3 0.043806 1.635947 

4 0.04521 1.532623 4 0.043806 1.635944 

 

Table 2. The Nusselt number value at channel walls with 

fluid parameters 
 

t Lower Plt Upper Plt Ha2 Lower Plt Upper Plt 

0.5 -0.42518 0.42597 1 -0.68843 0.39078 

1 -0.70544 0.53587 2 -0.70544 0.53587 

1.5 -0.8997 0.59438 3 -0.72334 0.67768 

2 -1.07893 0.6605 4 -0.74205 0.8164 

            

Ec Lower Plt Upper Plt Pr Lower Plt Upper Plt 

0.1 -0.14109 -0.69332 2 -0.70544 0.535872 

0.2 -0.28217 -0.38602 3 -0.61494 0.900611 

0.4 -0.56435 0.22858 4 -0.518 1.23576 

0.8 -1.1287 1.45776 5 -0.42919 1.532756 

      

Be Lower Plt Upper Plt R Lower Plt Upper Plt 

0 -0.90402 1.78722 1 -0.70512 0.535481 

0.2 -0.82619 1.35921 2 -0.70544 0.535872 

0.4 -0.7845 1.10391 3 -0.70561 0.536065 

0.8 -0.7435 0.82678 4 -0.70574 0.536196 

            

η2 Lower Plt Upper Plt Kr Lower Plt Upper Plt 

0.1 -0.45811 0.23199 0.1 -0.70544 2.628016 

0.2 -0.51394 0.30794 0.2 -0.70544 1.535872 

0.3 -0.5746 0.38419 0.4 -0.70544 0.721003 

0.4 -0.63875 0.46024 0.8 -0.70544 0.256391 

      

Re Lower Plt Upper Plt Bi Lower Plt Upper Plt 

2 -0.70544 0.53587 1 -0.71746 0.63221 

3 -0.53386 0.47905 2 -0.70544 0.535872 

4 -0.41561 0.41503 3 -0.69736 0.468403 

5 -0.32323 0.33214 4 -0.69223 0.424198 
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η1 Lower Plt Upper Plt 

0.1 -0.95923 0.934201 

0.2 -0.87888 0.813828 

0.3 -0.8114 0.709249 

0.4 -0.75421 0.617364 

 

 

5. CONCLUSIONS 

 

Two immiscible non-Newtonian magnetohydrodynamic 

micropolar and micropolar dusty fluids are considered in the 

horizontal duct with heat transfer. The flow is induced by 

upper plate movement (Couette flow). Modified cubic B-

spline differential quadrature method (MCB-DQM) is applied 

to get the numerical results for velocity, Microrotation, and 

temperature profiles of fluid and particle phase. The effects of 

important fluid parameters have been identified. The main 

outcomes of the current study are summarized as 

1) The Modified cubic B-spline differential quadrature 

method is in good agreement with obtained numerical 

results in the limiting case of fluid flow, with the exact 

solution. 

2) Fluid velocities, microrotation, and temperature profiles 

of fluids and particles are accelerating with time. 

3) The micropolar parameters η1 and η2 of both fluids 

affects the velocities and temperatures. 

4) The Hall (Be) and Ion-slip (Bi) parameters are increasing 

the velocity, and lessening the temperature of both fluids. 

The angular velocity of micropolar dusty and micropolar 

fluids is found to be in decreasing nature. 

5) Hartmann number (Ha2) is inversely proportional to the 

velocities of the fluid and particle phases. 

6) Reynold’s number (Re) affects the fluid and particle 

velocities and their temperatures with an inversely 

proportional relation. While if an external pressure is 

applied then it changes its nature decreasing to increasing. 

7) Dust particle and fluid temperatures increase with an 

enhancement in Eckert number (Ec), the ratio of 

viscosities r1, the raito of densities r2. 
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NOMENCLATURE 

 

∅ volume fraction function  

𝜎 electrical conductivity of fluids 

𝑗0 current density 

𝐵𝑢 magnetic field 

𝐵𝑖 Ion slip parameter. 

𝐵𝑒  hall parameter. 

𝑇ℎ1, 𝑇ℎ2 temperatures of lower and upper plates 

𝑈0 The velocity of the upper plate 

𝑈1, 𝑈2 Velocities of lower and upper region fluids 

𝑈𝑝 Particle phase velocity 

𝑁1, 𝑁2 Microrotations of lower and upper region fluids 

𝑇1, 𝑇2 Temperatures of lower and upper region fluids 

𝑇𝑝 Particle phase temperature 

𝜌 1, 𝜌 2 the density of lower and upper region fluids 

𝜌 𝑝 Particle density 

𝑚𝑝 The average mass of particles 

𝜇1, 𝜇2 viscosity co-efficient  

𝑉1, 𝑉2 vortex viscosities  

𝑖1, 𝑖 2 gyration parameters 

K1, K2 thermal conductivities 

CP1, CP2 specific heat capacities 

𝐺𝑣1 , 𝛽1 
Gyro-viscosity coefficients of lower region 

fluid 

𝐺𝑣2, 𝛽2 
Gyro-viscosity coefficients of upper region 

fluid 

𝑐𝑝 specific heat capacity of the particles 
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𝐾 Stokes drag coefficient 

𝑁 the number density of the dust particles 

𝛾𝑇𝑒𝑚𝑝 temperature relaxation parameter  

𝑅𝑒 Reynolds number  

 𝜂1,  𝜂2 Micro polarity parameters of fluids  

𝐻𝑎2 Hartman Number 

𝐸𝑐 Eckert number 

𝑃𝑟 Prandtl number 

𝑅 Particle concentration parameter 

𝑟1 Ratio of viscosities  

𝑟2 Ratio of densities 

𝑟3 Particle and fluid density ratio 

𝐶𝑟 The ratio of specific heat capacities 

𝐾𝑟 The ratio of thermal conductivities 

𝐶𝑃𝑟 Particle and fluid specific heat capacities ratio 

𝐶𝑓 skin friction coefficients 

𝑁𝑢 Nusselt number 

APPENDIX 

The non-MHD, non-dusty, single Newtonian Couette flow 

through the horizontal channel governing equations for 

velocity are simplified under appropriate initial and boundary 

conditions as 

𝜕𝑈

𝜕𝑡
=  

1

𝑅𝑒
 [
𝜕2𝑈

𝜕𝑦2
 ] (100) 

U (-1, t) =0, U (1, t) =0, U (y, 0) =sin𝜋𝑦 (101) 

The exact solution to the above problem is 

𝑈 = 𝑒−
𝜋2𝑡
𝑅𝑒 . 𝑠𝑖𝑛𝜋𝑦 (102) 
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