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 A mathematical framework has been designed to speculate the physical aspects of a binary 

chemical reaction (BCR) and Arrhenius activation energy (ACE) on magnetohydrodynamics 

Williamson micropolar nanofluid flow through a vertical stretching sheet. The fluid viscosity, 

electrical and thermal conductivity are presumed as reliant temperature function. Furthermore, 

the Lorentz force is deployed with an angle to the normal of the fluid flow. The natural 

transformations have been chosen to determine the non-dimensional regular expressions of the 

model. A conditionally stable finite difference analysis (explicit) is implemented to establish 

the computational analysis of the transfigured non-linear system of PDEs. The precision of the 

present numerical solution has been enriched by accomplishing analysis of stability as well as 

system convergence of finite difference analysis. The graphical representation, along with the 

tabular depiction, has been done for narrating the physical behaviour of important parameters 

extensively on various flow fields. The fluctuation of the boundary layer thickness is traced 

out with the assistance of streamlines, isotherms, and iso-concentration for the impression of 

the buoyancy ratio parameter and Lewis number. To draw perfection, achieved consequences 

of the current solution have been contrasted with some subsisting literature. 
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1. INTRODUCTION 

 

First and foremost, the conventional regular fluids 

specifically toluene, ethylene glycol, water, and engine oil 

typically suffer from the shortcoming of substantial thermal 

resistance, which is likely to be trimmed with the negligible 

suspension of nanoparticles namely oxides (CuO, Al2O3, SiO2 

TiO2), metals (Al, Cu) or nano-metals like Graphite, carbides 

(SiC) etc. Moreover, in these cases, the unprecedented 

advancement was accomplished by the renowned scientists 

Choi and Eastman [1] in scattering the nanoparticles into the 

pore fluids, where the dispersion of such particles is 

amounting with volume fraction less than 1 %. It is needless 

to mention that the nanofluids-oriented research is a subject 

undergoing intense study due to its diversified real-world 

implementations, which are respectively power generation, 

nuclear reactor, optical and electronic field, vehicle thermal 

management, plastic and polymer industry etc.  

On the other hand, the Navier Stokes equations being less 

non-linear than that of non-Newtonian [2-13] governing 

equations, it is, sometimes, unlikely for the Navier Stokes 

balances to delineate the rheological properties of fluids. Also, 

to raze this impediment, the microrotation of the fluid particles 

is magnificently treated in modern research works. Eringen 

[14] initially modelled the concept of micropolar fluid since 

the classical study of fluid dynamics can seldom discuss the 

characteristics of the Newtonian fluid. Rahman et al. [15] 

measured how much-differentiated heat generation and 

electric conductivity affect micropolar fluid and also 

elaborated their outcomes, taking the variable fluid viscosity 

along with variable thermal conductivity into account. 

Another worth noting approach was addressed by Rup and 

Nering [16] to scrutinising three water-based nanofluids (TiO2, 

Al2O3, and Cu), occupying the diameter approximately 10–

38.4 nm, considering as single-phase fluids. On the other hand, 

an extended approach was also made by Nering and Rup [17], 

where water-based and ethylene-glycol mixed nanofluids were 

crucially utilised to determine the volume fraction solutions. 

Arifuzzaman et al. [18-19] also documented micropolar fluids 

with diverse physical features. 

A variety of fluid models such as Carreras, Power law, Ellis, 

Cross and Williamson etc. have already been prescribed to 

forecast and unearth the rheological characteristics of 

pseudoplastic fluids. Williamson [20] formulated a concept to 

elucidate the pseudoplastic fluids, which was used by many 

researchers. In contrast, the investigation associated with the 

pseudoplastic Williamson fluid on a stretched surface was 

carried out by Nadeem et al. [21], where the velocity was 

observed portraying a descending trend owing to the rising 

value of Williamson parameter. Following the recent practice, 

the Williamson fluid model, with the assistance of various 

flow diagrams, was adequately probed by these authors [22-

24]. It is obvious to be briefly mentioned that Williamson 

fluids are effectively employed in numerous industrial 

purposes like food mixing and to analyse the chime movement 

in the intestine. 

The most pioneering role was played by Bestman [25] in 

innovating a concept, analytically examining the effects of 
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activation energy debunked by Arrhenius [26], with the direct 

implementation of Perturbation method. The former one 

established a simple mathematical formula to analyse heat-

mass transfer in fluid flow. Again, it was articulated by 

Maleque [27], that the activation energy blazons an increasing 

tendency in the concentration profiles. Similarly, considering 

the impressions of activation energy, Mustafa et al. [28] 

perceived that the heat flux at the boundary envisaged a 

deteriorating figure with both chemical reactions and fitted 

constant. The upshots of the chemical reaction and activation 

energy in various situations were arrayed by the respective 

authors, Ramzan et al. [29] and Zeeshan et al. [30]. It is 

noteworthy to mention that the activation energy can be further 

implicated in versatile industrial sectors, to illustrate the 

recovery of hot oil, cooling of nuclear reacting and reservoir 

engineering.  

To culminate, the principal purpose of the study, inspired 

by the above-stated literature survey, is to envisage the MHD 

Williamson micropolar nanofluid with the impression of 

thermal and electrical conductivity, variable viscosity, ACE 

and BCR, which has not been yet studied. Nevertheless, the 

micropolar nanofluid was inspected by Atif et al. [31] and 

Muthtamilselvan et al. [32], nonetheless, the Carreau and 

Williamson fluids were individually used as a supplement 

respectively to boost their research effectiveness.  

 

 

2. PROBLEM FORMULATION 
 

In this segment, the time-dependent two-dimensional 

laminar flow of a Williamson micropolar nanofluid through a 

stretching sheet for imitating conjectures is considered. The 

coordinate system is adopted as Cartesian to inspect the stream 

which means that x-axis is captured as a stretching sheet with 

a velocity u = U0 = ɑx, where ɑ is constant, and y-axis usurped 

normal to it. In addition, the assuming values of angular 

velocity, temperature and nanoparticle concentration inside 

the boundary layer are N̅= ─ ∏(∂u/∂y), Tw and Cw. Here, ∏ is 

a boundary parameter and anticipates the microgyration vector 

to the shear stress. Also, ∏=0.5 is assumed as Rahman et al. 

[9] prescribed that, at the wall, the particle spin is as same as 

the fluid velocity in a subtle particle suspension. The 

Williamson micropolar nanofluid is taken into consideration 

as electrically conducting and a Lorentz force is practised an 

inclined angle Λ in accordance with the normal to the fluid 

flow as flaunted in Fig. 1. In the light of these hypotheses and 

elevating the boundary layer estimates, the flow 

manifestations of momentum, angular momentum, energy and 

concentration for Williamson micropolar nanofluid can be 

formulated as below [24, 29, 32], 

Continuity equation, 

 

                                  (1) 

 

Momentum equation, 

 

  (2) 

Angular momentum equation, 

 

      (3) 

    

Energy equation, 

 

      (4) 

 

Concentration equation, 

 

      

(5) 

 

The appropriate prescribed boundary circumstances for the 

current problem are 

 

   

(6) 

 

         
(7) 

 

 
 

Figure 1. Boundary layer flow diagram 

 

To reduce the dimensionless structure of prevailing PDE 

with associated borderline conditions (1) - (7), the following 

non-dimensional variables are inaugurated, 
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On substituting the upstairs demarcated quantities into 

equations (1) - (7), one can achieve the impending system of 

transfigured governing manifestations.  

Continuity equation,  

 

                                
(8) 

 

Momentum equation, 

 

  

(9) 

 

Angular momentum equation, 

 

      

(10) 

Energy equation, 

 

  

(11) 

 

Concentration equation, 

 

         

(12) 

 

where, 

  

are respectively the parameters due to radiation, variable 

thermal conductivity, Brownian motion, thermophoresis, heat 

source, radiation absorption, Eckert number, Lewis number, 

chemical reaction, temperature relative and activation energy. 

Consequently, the dimensionless frames of correlated 

peripheral terms are as, 

 

      

(13) 

 

        
(14) 

 

In addition, the continuity equation is identically satiated by 

taking a stream function ψ, as it would be, 

 

                                

(15) 

 

The natural attributes of inimitable engrossment of the 

subsistent inquisition are the local skin friction coefficient Cf, 

Nusselt number Nu and Sherwood number Sh. The 

dimensionless Cf can be, mathematically articulated as,  

 

        

(16) 

 

The dimensionless local Nusselt number can be, 

mathematically asserted as [31]. 

 

                    

(17)

 
 

The dimensionless local Sherwood number can be, 

mathematically enunciated as [15, 24, 32]. 

 

                                

(18)

 
   

 

3. NUMERICAL PROCEDURE 

 

 
Figure 2. Sketch of the finite difference spacing grid 

 

An EMDM approach is adapted to perceive the numerical 

evaluation of time-dependent non-similar coupled partial 

differential expressions in conjunction with the characterised 

boundary circumstances. To make sure the proper utilisation 

of an exact procedure, a quadrangular domain of the flow field 

is pondered and the area is dissected into a mesh of striae 
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parallel to the X and Y coordinates (Figure 2). 

In our exploration, the following things have been 

considered as,  

Grid space: m=100, n=400, Plates height: Xmax=20, 

Ymax=50 as Y→∞,  

Mesh size:

and Δτ = 0.001. 

Now equations (8)-(12) subjected to the boundary 

conditions (13)-(14) takes the following form after 

implementing finite difference analysis. 

 

Continuity equation,  

 

  

                

(19) 

  

Momentum equation, 

 

    

(20) 

 

Angular momentum equation, 

 

    (21) 

 

Energy equation, 

 

            

(22) 

Concentration equation, 

 

 (23) 

 

The resultant boundary circumstances in a succeeding way 

as, 

 

 

(24) 

 

  
(25) 

 

 

The analysis of finite difference stability provides the 

following conditions, 

Momentum equation, 

 

  

(26) 

 

Angular momentum equation, 
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Energy equation, 
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Concentration equation,  
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Furthermore, the criteria of the system convergence are 

found as Pr ≥ 0.162 and Le ≥ 0.128. 

 

 

4. UPSHOTS AND ARGUMENT 

 

The landmarks of the relevant factors on the elicited 

expressions for the mated maze are reckoned through tabular 

and graphical explication with the boost of a compatible 

software bundle, Compaq Visual Fortran 6.6a. Ultimately, the 

characterise parameters addressed in this manuscript are 

mostly conjectured from the illustrating literature (Khan et al., 

[34]; Ramzan et al., [29]; Muthtamilselvan et al., [32]). 

Besides, Table 1 and Table 2 illustrate the validation of the 

outcomes with the mentioned authors.  

 

Table 1. Numerical Comparison of Cf with the outcomes of 

Rup and Nering [16] and Nering and Rup [17] 

 
Pr Γ Ω Skin Friction 

Cf [16-17] 

Present Result Cf 

3.000 5 1 0.22234 0.22232 

3.253 2.580 2.238 0.27699 0.27680 

3.4599 2.310 2.515 0.28093 [16] 0.28096 

3.8347 1.375 4.102 0.31111 [16] 0.31140 

56.310 5 1 0.0691 0.06913 

60.052 2.290 2.798 0.09164 0.09166 

87.187 0.940 6.999 0.09924 0.09930 

 

Table 2. Numerical Comparison of Nu with the outcomes of 

Rup and Nering [16], Nering and Rup [17] 

 
Pr Γ Ω Nusselt Number 

Nu [16-17] 

Present Result, 

Nu 

3.000 5 1 0.58602 0.58637 

3.253 2.580 2.238 0.64371 0.64362 

3.4599 2.310 2.515 0.6601 [16] 0.66057 

3.8347 1.375 4.102 0.70548 [16] 0.70588 

56.310 5 1 1.1311 1.13115 

60.052 2.290 2.798 1.2402 1.24022 

87.187 0.940 6.999 1.45053 1.45053 

 

 
 

Figure 3. Influence of η on velocity 

 

It is worth mentioning here that Figures. 3-18 are 

manifested for velocity, microrotation, temperature, 

concentration, streamlines, isotherms, and iso-concentration to 

assess the fascinating features of the current problem. Figures. 

3-4, in some respects, exhibit the velocity and micro-rotation 

outlines for various values of η. It can be seen from Figure 3, 

that the nanofluid velocity increase (see the open circle and the 

enlarged zone) due to the rise in the value of η. 

 
 

Figure 4. Influence of η on the angular velocity. 

 

Furthermore, Figure 4 indicates that augmenting values of 

η depreciates the micro-rotation in the domain 0≤Y≤1.6 and 

enhances the micro-rotation in the domain 1.6≤Y≤5. For 

several values of variable electrical conductivity parameter ε, 

the features of velocity are, in some respects, bestowed in 

Figure 5. It is pointedly surveyed that, both the fluid velocity 

ordinations are an elevating feature of ε. Figure 6 signifies the 

impression of ω on velocity profiles. In point of fact, ω 

demarcates the contribution of relaxation time to specific 

process time. Ergo, a more substantial value of ω inflates the 

relaxation time of the nanofluid which retards the movement 

of nanoparticles. It is conspicuous from Figure 6 that, as the ω 

accelerates, the fluid velocity annihilates.  

 

 
 

Figure 5. Influence of ε on velocity 

 

 
 

Figure 6. Influence of ω on velocity 

 

The aftermaths conceived for ω on velocity field in this 

dissertation is in an excellent bargain with the evaluated 
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upshots of Nadeem et al. [21], Hayat et al. [22], Malik et al. 

[23]. Williamson parameter, ω, has a little influence on the 

nanofluid velocity; however, the velocity tendency has never 

been changed. And therefore, an arbitrary region (open circle) 

has been enlarged to identify clearly where the velocity 

profiles get influenced (decreases with an increase in ω). That 

blue arrow is indicating the enlarged view of the open circle 

zone. 

 

 
 

Figure 7. Influence of  on velocity 

 

 
 

Figure 8. Influence of on velocity 

 

 
Figure 9. Influence of on angular velocity 

 

The upshots of Lorentz angle (Λ) on velocity is strategised 

in Figure 7. From the graphs, it is noticed that the upturning 

values of Λ deplete the fluid velocity; that is because Lorentz 

force generates a hindrance to the movements of the fluid 

velocity. The upshot of inclined angle Λ on the velocity field 

in our investigation is similar to the examined outcomes of 

Khan et al. [24]. Figures. 8-9, in some respects, demonstrate 

the impact of Γ and Ω on the fluid velocity and micro-rotation 

fields. From Figures. 8-9, It is identified that an escalating of 

Γ and Ω causes a decrease and an increase in velocity and 

angular velocity respectively, which is analogous with the 

recorded consequences of Rup and Nering [16], Nering and 

Rup [17]. Micropolar Parameter, Γ, has much influence on the 

velocity field than Micro-inertia parameter, Ω. As it is evident 

from Figure 8 that, due to the same value of Γ = 0.5, the impact 

on velocity are insignificant although Ω values were dissimilar. 

Influence of Γ and Ω on the velocity and angular velocity are 

different although they both possess similar condition Γ = 0.5, 

Ω = 0.05 and Γ = 0.5, Ω = 0.10”. This can be attributed because 

an increment in the micropolar parameter, Γ, causes an 

increment in the viscosity of the fluid, which results in a 

significant increment in the angular velocity. Furthermore, 

increasing Γ leads to rising total coherence of the flow, which 

thus retards the flow. 

The attributes of parameter γ on fluid temperature profiles 

portrayed in Figure 10. Additionally, it is patently scrutinised 

that, larger values of γ aggrandises the fluid temperature. The 

consequence of thermal conductivity parameter on 

temperature features in this analysis consents with the upshot 

unmasked by Rahman et al. [15] and Malik et al. [23]. 

 

 
 

Figure 10. Influence of γ on temperature layer 

 

 
 

Figure 11. Influence of Nb on angular velocity 

 

Also, it is translucent from Figure 10 that, the temperature 

features increase with the increment of 0 ≤ γ ≤6. Figure 11 

scrutinise the effect of Nb on micro-rotation fields.  Accrual in 

Nb aggravates the promiscuous movement and percussion 

among the nanoparticles of the fluid which fabricates more 

heat; ultimately it upshots emaciate in nanoparticle 



and 

and 
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concentration. Furthermore, it can be substantiated from 

Figure 11 that, the micro-rotation outlines descend in the 

precinct 0≤Y≤1.2 and ascend in the precinct 1.2≤Y≤4 with a 

climb in Nb. 

 

 
 

Figure 12. Influence of Nt on angular velocity 

 

 
 

Figure 13. Influence of E on velocity 

 

 
 

Figure 14. Influence of E on temperature layer 

 

The micro-rotation field for several values of Nt is 

addressed in Figure 12. It can be sighted that, micro-rotation 

has an ebbing attitude in the realm 0≤Y≤2 and a thriving 

outlook in the realm 2≤Y≤10 for flourishing values of Nt.  

Figures 13-15, convey the characteristics of E on boundary 

layer flow. It is because of the sooth that more lavish values of 

E accumulate compressive chemical reaction rate, in this 

fashion concentration exacerbated. The behaviour of δ on rate 

and micro-rotation are publicised in Figures. 16-17. Moreover, 

it is incontestably evinced that, heavier values of temperature 

relative parameter δ dwindle the fluid velocity outlines. 

Alongside, we can gaze from Figure 17 that, the increment of 

δ upturns the micro-rotation in the bailiwick 0≤Y≤1.6 and 

descends in the bailiwick 1.6≤Y≤6. 

The upshot of Le on streamlines, isotherms, and iso-

concentration are captured in Figures. 18a-c. As a matter of 

fact, Le stipulates the fraction of thermal and mass diffusivity, 

which is deployed to dilate the fluid drifts. Figure 18a 

demonstrates the impacts of Le on streamlines; evidently, an 

increment in Le leads to an ascent in the velocity profile. 

Furthermore, Lewis number appraises temperature and 

volume fraction profiles. It is worth noting that, the 

temperature patterns usurping due to the large number of Le. 

From the Figure 18c, it is conspicuously spotted that the 

enhancing rates of Le slacken concentration profiles. 

 

 
 

Figure 15. Influence of E on nanoparticle concentration layer 

 

 
 

Figure 16. Influence of δ on velocity 

 
        (a) 
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    (b) 

 

 
(c) 

 

Figure 17. (a) Streamlines, (b) Isotherms and (c) 

Isoconcentration for Buoyancy ratio parameter λB=0 (Red 

dashed line), λB=1 (Green solid line) and λB=4 (Blue long-

dashed line). 

 

 
 (a) 

 

 
     (b) 

 

 
    (c) 

 

Figure 18. (a) Streamlines, (b) Isotherms and (c) 

Isoconcentration for Lewis number Le=5 (Red dashed line), 

Le=10 (Green solid line) and Le=15 (Blue long-dashed line) 

 

 

5. CONCLUDING REMARKS 

 

The authenticity of the present numerical solution is 

prevailed by making a comparison with the existing literature 

and is detected to be an exquisite accent. Conclusively, the 

principal findings are given below: 

i). The velocity is contemplated as an abating function 

of variable viscosity, inclined Lorentz angle, 

temperature relative and Williamson parameters 

while it acts as a developing function for activation 

energy and variable electrical conductivity 

parameters. 

ii). The angular momentum aggravates for upsurging 

values of variable viscosity, micropolar and micro-

inertia parameters while micropolar and micro-

inertia parameter diminishes the velocity fields. 

iii). Temperature profiles increase with increasing E and 

γ, respectively. 
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iv). Angular velocity profiles first decrease, and after 

time variation, it increases for Brownian, and 

thermophoresis parameters. 

v). Developing values of buoyancy ratio parameter 

increases the thickness of momentum boundary 

layers and diminish the temperature, and nanofluid 

volume fraction distributions, whereas rising data of 

Lewis number showed reverse phenomena on the 

respective fields. 

The steady-state explication of our present problem is 

procured for a non-dimensional time τ≥20. 
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