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 In this paper, we propose two algorithms for joint power allocation and bit-loading in 

multicarrier systems using discrete modulations. The objective is to maximize the data 

rate under the constraint of a suitable Bit Error Rate per subcarrier. The first algorithm 

is based on the Lagrangian Relaxation of the discrete optimization problem in order to 

find an initial solution. A discrete solution is found by bit truncation followed by an 

iterative modulation adjustment. The second algorithm is based on Discrete Coordinate 

Ascent framework with iterative modulation increment of one selected subcarrier at 

each iteration. A simple cost function related to the power increment per bit is used for 

subcarrier selection. A sub-optimal low complexity Discrete Coordinate Ascent 

algorithm is proposed that overcome the limitations of the Hughes-Hartogs algorithm. 

The Lagrangian Relaxation algorithm provides a suboptimal solution for non-coded 

system using M-QAM modulations, whereas the low complexity Discrete Coordinate 

Ascent algorithm provides a near optimal solution for coded as well as for non-coded 

system using an arbitrary modulation set. Numerical results show the efficiency of the 

proposed algorithms in comparison with traditional methods. 
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1. INTRODUCTION 

 

Emerging wireless systems increasingly require high data 

rates for various applications. This challenge faces multiple 

obstacles such as limited channel bandwidth and limited 

transmission power. Different Quality of Service (QoS) is 

required depending on the application. For example, voice and 

video communications tolerate errors more than file transfer 

[1]. Hence, the need for an efficient transmission system with 

a high spectral efficiency and controllable QoS is justified. 

Multicarrier system is widely adopted in many standards [2, 

3], such as OFDM due to its robustness against channel fading 

and its flexible resource allocation. 

The problem of maximizing data rate and minimizing 

transmission power is widely investigated in the literature. 

Since the objective of data rate maximization is controversial 

with the objective of total transmission power minimization, 

research papers followed three directions. The first direction 

focuses on margin maximization where the primary objective 

is to reduce the total transmitted power for a given data rate. 

An adaptive power loading algorithm with uniform bit 

allocation is proposed for constant data rate [4]. Other works 

[5, 6] proposed bit-loading algorithm with a fixed rate is 

proposed based on the Gap Approximation [7]. 

The second direction focuses on rate maximization under a 

fixed power constraint. Water-Filling (WF) power-allocation 

solution [8] is the famous example for this direction where the 

channel capacity is maximized. Adaptive Modulation and 

Coding (AMC) schemes are used to exploit the channel 

capacity in order to increase the data rate for a given bit error 

rate (BER) requirements. An incremental bit loading 

algorithm is proposed to maximize the data rate under a target 

mean BER constraint [9]. However, uniform power allocation 

for all subcarriers is assumed. Hughes-Hartogs (HH) [10] 

proposed an iterative algorithm which is referred herein as the 

HH algorithm. In HH algorithm, the modulation order is 

incremented for the subcarrier that minimize the marginal 

incremental power per bit at each iteration until the total power 

is exhausted. It is asymptotically optimal for large number of 

subcarriers. However, it cannot be applied for an arbitrary set 

of modulations. A low complexity variant of the HH algorithm 

is proposed for a constant BER threshold for all subcarriers 

[11]. 

The third direction focuses on finding a trade-off between 

high data rate and low total transmitted power. The multi-

objective optimization problem is transformed by linear 

combination between bitrate and power objectives. Different 

solution can be found for different linear coefficients. Works 

are examples for this type of optimization. In general, this 

approach suffers from scaling problem between different 

objective functions [12, 13]. Therefore, there is no clear 

quantitative measure on how to choose the linear combination 

coefficients. In addition, convergence problems can be 

encountered for extreme values of these coefficients. 

This paper follows the second direction where the primary 

goal is to achieve the maximum possible data rate. In practical 

systems, the absolute achievable data rate is limited by the 

highest modulation order supported by the system. When the 

absolute data rate is achieved in good channel conditions, the 

first direction is taken by minimizing the transmission power 

as a secondary objective. The main contribution in this paper 

is the proposal of two algorithms for discrete joint power 

allocation and bit-loading with comprehensive derivation. The 

first algorithm presents a comprehensive method with water-

filling analogy for non-coded systems using an arbitrary M-

QAM modulation set. The second algorithm is a generalization 
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of the HH algorithm for coded and non-coded systems with an 

arbitrary modulation set. By pointing to the limitation of the 

HH algorithm for some constellation sets, we propose a 

heuristic cost function that overcomes this limitation. 

The rest of the paper is organized as follows: In Section 2, 

the adopted system model is introduced. Then the formulation 

of the discrete optimization problem is given in Section 3. The 

two proposed algorithms are then described in Section 4 and 

Section 5 respectively. After that, a low complexity discrete 

algorithm is proposed in section 5. Finally, numerical results 

are shown in section 7. 

 

 

2. SYSTEM MODEL 

 

The considered system is a multicarrier system with N 

independent parallel fading channels. For each subcarrier 𝑖 =
1,2, … , 𝑁,  the transmitter modulates 𝑏𝑖  bits into a complex 

symbol 𝑠𝑖  taken from a constellation 𝐶𝑘  having 2𝑏𝑖  symbols 

and unit average power. 𝐶𝑘 is selected from a set of complex 

constellations {𝐶𝑘: 𝑘 = 0,1, … , 𝐾}  according to an adopted 

bit-loading strategy. The size of 𝐶𝑘 is 2𝑚𝑘  symbols which can 

carry 𝑚𝑘 bits. In this paper, we assume that the constellation 

𝐶0 is always included in the set and corresponds to the null 

constellation with 𝑚0 = 0. In addition, we assume that the 

constellation set is ordered in the increasing order of the 

number of carried bits with 𝑚0 < 𝑚1 < ⋯ < 𝑚𝐾 . For 

example, a possible choice for the constellation set can be 
{𝐶0: 𝑁𝑢𝑙𝑙, 𝐶1:4-QAM, 𝐶2:16-QAM,  𝐶3:64-QAM} . In this 

example, the number of modulated bits 𝑏𝑖  takes one of the 

following values: {𝑚0 = 0, 𝑚1 = 2, 𝑚2 = 4, 𝑚3 = 6} . The 

index k of the selected constellation is called herein the 

modulation index. The modulated symbol 𝑠𝑖 is multiplied by a 

power factor √𝑝𝑖  before being transmitted over subcarrier i.  

The received signal 𝑟𝑖 on subcarrier i is modeled as   

 

𝑟𝑖 = 𝑔𝑖√𝑝𝑖𝑠𝑖 + 𝑤𝑖 ;   𝑖 = 1, … , 𝑁, (1) 
 

where, 𝑔𝑖 is the complex channel gain, and 𝑤𝑖  is an Additive 

White Gaussian Noise (AWGN) with power of 𝜎𝑛
2 . The 

received signal to noise ratio 𝑆𝑁𝑅𝑖 on subcarrier i is given by 

 

SNR𝑖 = 𝑝𝑖

|𝑔𝑖|
2

𝜎𝑛
2

= 𝑝𝑖𝛾𝑖 (2) 

 

where, 𝛾𝑖  ≡ |𝑔𝑖|
2/𝜎𝑛

2. 

 

 

3. PROBLEM FORMULATION 

 

The objective in this paper is to maximize total data 

throughput in a multicarrier system using a discrete 

modulation set with a limited total power budget 𝑃𝑚𝑎𝑥 under 

the constraint of a given QoS per subcarrier. In other words, 

the objective is to maximize the spectral efficiency in the 

system by sending the maximum number of bits per 

transmission with the lowest possible power that guarantees 

the required QoS. The QoS constraint is expressed by a given 

bit error rate threshold BER𝑖,𝑡ℎ per subcarrier. 

The optimization problem can be formulated as 
 

Maximize
𝑏𝑖,𝑝𝑖

 𝐵𝑇 ≡ ∑ 𝑏𝑖

𝑁

𝑖=1

 (3) 

Subject to 

  BER𝑖 ≤ BER𝑡ℎ,𝑖, 𝑖 = 1, … , 𝑁, 

  𝑃𝑇 ≡ ∑ 𝑝𝑖
𝑁
𝑖=1 ≤ 𝑃𝑚𝑎𝑥;  

  𝑝𝑖 ≥ 0;   𝑖 = 1, … , 𝑁; 

  𝑏𝑖 ∈ ℳ = {𝑚0, 𝑚1, … , 𝑚𝐾};  
where, BER𝑖 is the BER for subcarrier i, and ℳ is the set of 

possible transmitted bits per symbol. This is a discrete 

optimization problem with inequality constraints. A possible 

approach to solve this problem is to relax the last constraint in 

(3) related to 𝑏𝑖  values by allowing 𝑏𝑖  to take real positive 

values in order to use Lagrange multipliers method to find an 

initial solution [13]. The initial founded solution for 𝑏𝑖  by 

Lagrangian relaxation (LR) is then rounded to nearest integers 

with additional heuristic readjustments steps which are applied 

on the optimization variables 𝑏𝑖  and 𝑝𝑖 . This is the adopted 

approach for the first proposed algorithm in the next section, 

we propose a near optimal, yet simple algorithm that removes 

all the previous disadvantages of the LR approach. 

 

3.1 Lagrangian relaxation 

 

Relaxing the last constraint in (3) on the number of loaded 

bits by allowing 𝑏𝑖 to take real values, this constraint becomes 

 

0 ≤ 𝑏𝑖 ≤ 𝑏𝑖,𝑚𝑎𝑥 (4) 

 

where, 𝑏𝑖,𝑚𝑎𝑥 is the maximum allowable loaded bits on carrier 

i. 

For M-QAM modulation, BER for subcarrier i can be 

approximated as in [4], 

 

BER𝑖(𝑏𝑖 , 𝑝𝑖 , 𝛾𝑖) ≈ 0.2exp (−
1.6𝑝𝑖𝛾𝑖

2𝑏𝑖 − 1
) (5) 

 

This approximation is tight within 1 dB for BER ≤ 10−3. 

The required power to achieve the target bit error rate BER𝑖,𝑡ℎ 

must be greater than a specific threshold [13, 14] 

 

𝑝𝑖 ≥ −ln(5 × BER𝑖,𝑡ℎ)
2𝑏𝑖 − 1

1.6𝛾𝑖

= 𝑃𝑡ℎ,𝑖 (6) 

 

𝑃𝑡ℎ,𝑖 ≡ (2𝑏𝑖 − 1)
𝛼𝑖

𝛾𝑖

 (7) 

 

where, α is defined as 𝛼𝑖 ≡ −ln(5 × BER𝑖,𝑡ℎ)/1.6. 

In addition, the BER constraint can be replaced with the 

following constraint 

 

𝑃𝑡ℎ,𝑖 − 𝑝𝑖 ≤ 0 (8) 

 

The new optimization problem can be formulated as 

 

Maximize
𝑏𝑖,𝑝𝑖

 𝐵𝑇 ≡ ∑ 𝑏𝑖

𝑁

𝑖=1

 (9) 

 

Subject to 

  𝑃𝑡ℎ,𝑖 − 𝑝𝑖 ≤ 0; 𝑖 = 1, … , 𝑁; 

  𝑃𝑇 ≡ ∑ 𝑝𝑖
𝑁
𝑖=1 ≤ 𝑃𝑚𝑎𝑥 ;  

  𝑝𝑖 ≥ 0;   𝑖 = 1, … , 𝑁; 
  0 ≤ 𝑏𝑖 ≤ 𝑏𝑖,𝑚𝑎𝑥 ;  𝑖 = 1, … , 𝑁;  

The objective function in (9) is a convex and the problem 

can be solved using Lagrange multipliers method. By 
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transforming inequality constraints in (9) into equality 

constraints by using slack variables, the Lagrange function can 

be expressed as 

 

ℒ(𝐛, 𝐩, 𝜆, 𝚯, 𝛀, 𝑥, 𝒚, 𝒛)

= ∑ 𝑏𝑖

𝑁

𝑖=1

− 𝜆 (∑ 𝑝𝑖

𝑁

𝑖=1

− 𝑃𝑚𝑎𝑥 + 𝑥2)

− ∑ 𝜃𝑖 ((2𝑏𝑖 − 1)
𝛼𝑖

𝛾𝑖

− 𝑝𝑖 + 𝑦𝑖
2)

𝑁

𝑖=1

− ∑ 𝜔𝑖(𝑏𝑖 − 𝑏𝑖,𝑚𝑎𝑥 + 𝑧𝑖
2)

𝑁

𝑖=1

 

(10) 

 

where, 𝐛 = [𝑏1, … , 𝑏𝑁]𝑇 , 𝐩 = [𝑝1 , … , 𝑝𝑁]𝑇  are the 

optimization variables, 𝜆 is a constant, 𝚯 = [𝜃1, … , 𝜃𝑁]𝑇, 𝛀 =
[𝛺1, … , 𝛺𝑁]𝑇  are the multipliers variables, x represents the 

non-used power, 𝒚 = [𝑦1, … , 𝑦𝑁]𝑇 , 𝒛 = [𝑧1, … , 𝑧𝑁]𝑇  are the 

slack variables which are squared to ensure non-negative slack 

values. 

A stationary point can be found by solving 

 

∇ℒ(𝐛, 𝐩, 𝜆, 𝚯, 𝛀, 𝑥, 𝒚, 𝒛) = 0 (11) 

 

which leads to the following equations 

 
𝜕ℒ

𝜕𝑏𝑖

= 1 − 𝛺𝑖 − ln(2)𝜃𝑖

𝛼𝑖

𝛾𝑖

2𝑏𝑖 = 0 (12a) 

 
𝜕ℒ

𝜕𝑝𝑖

= −𝜆 + 𝜃𝑖 = 0 (12b) 

 

𝜕ℒ

𝜕λ
= − (∑ 𝑝𝑖

𝑁

𝑖=1

− 𝑃𝑚𝑎𝑥 + 𝑥2) = 0 (12c) 

 
𝜕ℒ

𝜕𝜃𝑖

= −(𝑃𝑡ℎ,𝑖 − 𝑝𝑖 + 𝑦𝑖
2) = 0 (12d) 

 
𝜕ℒ

𝜕𝛺𝑖

= −(𝑏𝑖 − 𝑏𝑖,𝑚𝑎𝑥 + 𝑧𝑖
2) = 0 (12e) 

 
𝜕ℒ

𝜕𝑥
= −2𝑥𝜆 = 0 (12f) 

 
𝜕ℒ

𝜕𝑦𝑖

= −2𝜃𝑖𝑦𝑖 = 0 (12g) 

 
𝜕ℒ

𝜕𝑧𝑖

= −2𝛺𝑖𝑧𝑖 = 0 (12h) 

 

Eqns. (12a)-(12h) form 6N+2 equation with 6N+2 

unknowns. The solutions of these equations can be determined 

by distinguishing two cases starting from resolving the Eq. 

(12f). 

 

3.1.1 Case-1: Active Total Power Constraint 

When 𝜆 > 0 and 𝑥 = 0, the total power constraint is called 

active or binding constraint. This corresponds to the allocation 

of the whole available power 𝑃𝑚𝑎𝑥 . From (12b), we have 𝜃𝑖 =
𝜆. By substituting this value in (12a), we get  

 

𝛺𝑖 = 1 − ln(2)𝜆
𝛼

𝛾𝑖
2𝑏𝑖 . (13) 

 

Since 𝜆 > 0, meaning that 𝜃𝑖 > 0, which leads from (12g) 

to 𝑦𝑖 = 0. By substituting the value of 𝑦𝑖  in (12d), allocated 

powers become related to loaded bits after using the definition 

of 𝑃𝑡ℎ,𝑖 in (7) by 

 

𝑝𝑖 = 𝑃𝑡ℎ,𝑖 = (2𝑏𝑖 − 1)
𝛼𝑖

𝛾𝑖

 (14) 

 

For convenience, and to simplify notations in the remaining 

analysis, a new variable η is defined as 

 

𝜂 ≡
1

ln(2)𝜆
 (15) 

 

From (12h), two subcases are discussed depending on the 

values of 𝛺𝑖. 

When 𝛺𝑖 = 0 and 𝑧𝑖 > 0, i.e subcarrier i is not maximally 

loaded (𝑏𝑖 < 𝑏𝑖,𝑚𝑎𝑥), the solution of the optimization problem 

can be deduced from (14) and (16) as 

 

𝑏𝑖
∗ = log2 (𝜂 ×

𝛾𝑖

𝛼𝑖

) (16) 

 

𝑝𝑖
∗ = 𝜂 −

𝛼𝑖

𝛾𝑖

 (17) 

 

where, 𝜂 ≡
1

ln(2)𝜆
. This a valid solution if 0 ≤ 𝑏𝑖 < 𝑏𝑖,𝑚𝑎𝑥 , 

which gives the following validity interval on the values of 
𝛼𝑖

𝛾𝑖
. 

 
𝜂

2𝑏𝑖,𝑚𝑎𝑥
<

𝛼𝑖

𝛾𝑖

≤ 𝜂 (18) 

 

• For 
𝛼𝑖

𝛾𝑖
> 𝜂 , the only valid solution is 𝑏𝑖

∗ = 0 , and 

𝑝𝑖
∗ = 0. 

When 𝛺𝑖 ≥ 0 and 𝑧𝑖 = 0, i.e the subcarrier i is maximally 

loaded (𝑏𝑖 = 𝑏𝑖,𝑚𝑎𝑥 ), the corresponding power allocation is 

given by (14), Thus the optimal solution in this case is given 

by 

 

𝑏𝑖
∗ = 𝑏𝑖,𝑚𝑎𝑥 (19) 

 

𝑝𝑖
∗ = (2𝑏𝑖,𝑚𝑎𝑥 − 1)

𝛼𝑖

𝛾𝑖

 (20) 

 

Which is valid for 

 
𝛼𝑖

𝛾𝑖

≤
𝜂

2𝑏𝑖,𝑚𝑎𝑥
 (21) 

 

Finally, by reassembling the previous results, the optimal 

solution in the case of active power constraint is given for each 

subcarrier as follows 

• For 
𝛼𝑖

𝛾𝑖
> 𝜂 (inactive subcarriers) 

 

𝑏𝑖
∗ = 0 (22) 
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𝑝𝑖
∗ = 0 (23) 

 

• For 
𝜂

2
𝑏𝑖,𝑚𝑎𝑥

<
𝛼𝑖

𝛾𝑖
≤ 𝜂 (partially loaded subcarriers) 

 

𝑏𝑖
∗ = log2 (𝜂 ×

𝛾𝑖

𝛼𝑖

) (24) 

 

𝑝𝑖
∗ = 𝜂 −

𝛼𝑖

𝛾𝑖

 (25) 

 

For 
𝛼𝑖

𝛾𝑖
≤

𝜂

2
𝑏𝑖,𝑚𝑎𝑥

 (fully loaded subcarriers) 

 
𝑏𝑖

∗ = 𝑏𝑖,𝑚𝑎𝑥 (26) 

 

𝑝𝑖
∗ = (2𝑏𝑖,𝑚𝑎𝑥 − 1)

𝛼𝑖

𝛾𝑖

 (27) 

 
As it will be seen in the next subsection, the parameters 𝜂 

represents a threshold value, which can be calculated from the 

active power constraint using an iterative algorithm. 

 

3.1.2 Case-2: Inactive Total Power Constraint 

This is the case when 𝜆 = 0 and 𝑥 ≥ 0. This means that the 

used power is less than 𝑃𝑚𝑎𝑥. From (12b) we have 𝜃𝑖 = 0 for 

all subcarriers. By substituting 𝜃𝑖  in (12a), we get 𝛺𝑖 = 1 . 

Again, by substituting 𝛺𝑖 in (12h), we get 𝑧𝑖 = 0, meaning that 

all subcarriers are maximally loaded and a power margin 𝑥2 is 

available. In this case, we have an infinity number of solutions 

with different values for slack variables 𝑥 and 𝑦𝑖 . The solution 

with the minimum total power is the same as given by (24) and 

(25). 

For applications with a constant total power, the remaining 

power margin can be distributed on subcarriers in order to 

reduce BER on some selected subcarriers or to enhance the 

SNR on all subcarriers by the same factor. In the former, the 

power allocation per subcarrier can be increased by a specific 

ratio 𝜀 

 

𝑝𝑖 = 𝑃𝑡ℎ,𝑖 + 𝜀𝑃𝑡ℎ,𝑖 (28) 

 

The value of ε can be determined in order to have a total 

allocated power equal to 𝑃𝑚𝑎𝑥 by 

 

𝜀 =
𝑃𝑚𝑎𝑥−∑ 𝑃𝑡ℎ,𝑖

𝑁
𝑖=1

∑ 𝑃𝑡ℎ,𝑖
𝑁
𝑖=1

. (29) 

 

It can be easily verified that the total power is 𝑃𝑚𝑎𝑥 , and the 

SNR enhancement factor is (1 + 𝜀), However this does not 

guarantee equal BER over all subcarriers. A more 

sophisticated solution can be established for this purpose, but 

this is out the scope of this paper. 

 

3.2 Analogy with water-filling principle 

 

The obtained results are similar to the water filling 

algorithm with an additional constraint on maximum bit load. 

Figure 1 illustrates the water filling principle with unbounded 

bit load where subcarriers are reordered in the increasing value 

of 𝛼𝑖/𝛾𝑖 . Figure 2 shows the water-filling principle with an 

arbitrary bounded bit load for each subcarrier. Bounding the 

bit load on a subcarrier, and consequently the allocated power, 

will increase the threshold level in comparison with the 

unbounded case. The increased threshold results in an 

increased power allocation for other subcarriers. This may 

result in loading new subcarriers, which are not loaded in the 

unbounded case as it can be seen for subcarrier 7 on the same 

figure. 

 
 

Figure 1. Water-Filling with unbounded bit load 

 

 
 

Figure 2. Water-Filling with bounded bit load 

 

3.3 Threshold value 𝜼  

 

As mentioned before, the threshold value can be calculated 

from the total power constraint 

 

∑ 𝑝𝑖

𝑁

𝑖=1

= 𝑃𝑚𝑎𝑥  (30) 

 

Let 𝒮1 the set of subcarriers with 𝑏𝑖 = 𝑏𝑖,𝑚𝑎𝑥, and let 𝒮2the 

set of subcarriers with 0 < 𝑏𝑖 < 𝑏𝑖,𝑚𝑎𝑥 . The total power 

constraint can be rewritten as 

 

∑(2𝑏𝑖,𝑚𝑎𝑥 − 1)
𝛼𝑖

𝛾𝑖
𝑖∈𝒮1

+ ∑ (𝜂 −
𝛼𝑖

𝛾𝑖

)

𝑖∈𝒮2

= 𝑃𝑚𝑎𝑥  (31) 

 

From (30), the threshold 𝜂 is given by 

 

𝜂 =
1

𝑁2

(𝑃𝑚𝑎𝑥 − ∑(2𝑏𝑖,𝑚𝑎𝑥 − 1)
𝛼𝑖

𝛾𝑖
𝑖∈𝒮1

+ ∑
𝛼

𝛾𝑖
𝑖∈𝒮2

) (32) 

 

where, 𝑁2 is the cardinality of 𝒮2. 

Inspired from the analogy with water filling principle 

presented in the previous subsection, the proposed algorithm 

to determine 𝒮1 and 𝒮2 works in two scans over subcarriers. 

The first scan operates in the same manner as a classical water 

filling algorithm with unbounded bit load in order to find an 

initial set of loaded subcarriers. The corresponding threshold 

value 𝜂1 is a lower bound for the final threshold. The second 

scan applies the bounding constraint on the bit load for each 

subcarrier in the increasing order of power bound. The 

obtained excess of power resulting from a single bounding 

operation is used to update the bit load and power-allocation 
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for other remaining subcarriers. This operation continues until 

the upper bound is above the threshold value. 

Instead of using rounding operation on real bit load to the 

nearest integers in the set ℳ , a truncation operation is 

performed to the lower integers in ℳ  and reducing the 

allocated power accordingly 

 

𝑏𝑖
∗ = ⌊𝑙𝑜𝑔2 (𝜂 ×

𝛾𝑖

𝛼𝑖

)⌋
ℳ

 (33) 

 

𝑝𝑖
∗ = (2𝑏𝑖 − 1)

𝛼𝑖

𝛾𝑖

 (34) 

 

with ⌊. ⌋ℳ  denoting the truncation operation to the lower 

integer in ℳ. Finally, the residual power resulting from the 

truncation operation is used to increase the modulation index 

of subcarriers in an iterative manner. At each iteration, the 

modulation index of a selected subcarrier is increased by one. 

The selection criterion is based on the minimization of which 

is inspired from the discrete solution presented in Section 5 

and given by 

 

𝐶𝑖(𝑘𝑖) = {
𝑃𝑡ℎ,𝑖(𝑘𝑖 + 1),  𝑘𝑖 < 𝑘𝑖,𝑚𝑎𝑥

∞,  𝑘𝑖 = 𝑘𝑖,𝑚𝑎𝑥
 (35) 

 

where, 𝑃𝑡ℎ,𝑖(𝑘𝑖 + 1) = (2𝑚𝑘𝑖+1 − 1)
𝛼𝑖

𝛾𝑖
. 

The iterative operation continues until the total power 

reaches 𝑃𝑚𝑎𝑥  or all carrier are maximally loaded. The iterative 

algorithm will be discussed in details in Section 5. The 

proposed algorithm is given as follows.  

 

Algorithm 1. LR algorithm 

1: INPUT 𝑃𝑚𝑎𝑥 , 𝛼𝑖/𝛾𝑖, 𝑏𝑖,𝑚𝑎𝑥 

2: Initialize 

 𝑚 = 𝑁, 𝑆 = ∑ 𝛼𝑖/𝛾𝑖
𝑚
𝑖=1 , 𝒮1 = {∅}, 𝒮2 = {1, … , 𝑁} 

3: Sort 𝛼𝑖/𝛾𝑖 in the increasing order 

4: Calculate 𝜂 = (𝑃𝑚𝑎𝑥 + 𝑆)/𝑚 

5: while 𝛼𝑚/𝛾𝑚 > 𝜂 do   

6:      𝑆 = 𝑆 − 𝛼𝑚/𝛾𝑚,  

7:      Remove 𝑚 from 𝒮2 

8:      𝑚 = 𝑚 − 1 

9:      Update  𝜂 = (𝑃𝑚𝑎𝑥 + 𝑆)/𝑚 

10: end while 

11: Sort of 2𝑏𝑖,𝑚𝑎𝑥𝛼𝑖/𝛾𝑖 in the increasing order and save 

indices in a vector 𝐈  
12: Initialize 𝑗 = 1, 𝑃 = 𝑃𝑚𝑎𝑥 , 𝑖 = 𝐈(𝑗) 

13: while 2𝑏𝑖,𝑚𝑎𝑥𝛼𝑖/𝛾𝑖 < 𝜂 do  

14:     𝑃 = 𝑃 − (2𝑏𝑖,𝑚𝑎𝑥 − 1)𝛼𝑖/𝛾𝑖 

15:     𝑆 = 𝑆 − 𝛼𝑖/𝛾𝑖 

16:     Move i  from 𝒮2 to 𝒮1 

17:     Update 𝜂 = (𝑃 + 𝑆)/(𝑚 − 𝑗) 

18:     while 𝛼𝑚+1/𝛾𝑚+1 < 𝜂  then 

19:          𝑚 = 𝑚 + 1 

20:         𝑆 = 𝑆 + 𝛼𝑚/𝛾𝑚 

21:          Add 𝑚 to 𝒮2 

22:          Update 𝜂 = (𝑃 + 𝑆)/(𝑚 − 𝑗) 

23:     end while 

24:     𝑗 = 𝑗 + 1 

25:     𝑖 = 𝐈(𝑗) 

26: end while 

27: For 𝒮1 calculate 𝑏𝑖
∗ , 𝑝𝑖

∗  from (23) and (24) 

respectively. 

28: For 𝒮2 calculate 𝑏𝑖
∗ , 𝑝𝑖

∗  from (20) and (21) 

respectively. 

29 Increment iteratively modulation indices in 𝒮2 using 

the cost function (35) until 𝑃𝑚𝑎𝑥  or all carrier are 

maximally loaded  

30: OUTPUT 𝑏𝑖
∗, 𝑝𝑖

∗ 

 

 
 

Figure 3. Power-allocation and bit-loading at different stages 

in the LR algorithm 

 

Figure 3 shows and example of the obtained power 

allocation and bit-loading at each stage of the LR algorithm 

for N=128 subcarriers. The complexity of the LR algorithm 

without the last adjustment performed after bit truncation is 

𝒪(𝑁log(𝑁)) [14], due to the sorting operation in steps 3 and 

11. The complexity of the last adjustment operation will be 

analyzed in the next Section. 

The LR approach leads in general to a suboptimal solution 

and has some disadvantages: 

A unified closed form expression for BER𝑖 (for all possible 

modulation schemes) is required to solve the problem. 

Resorting to some approximations is required in order to 

simplify the analytical derivation. Thus, it is limited to non-

coded systems. 

The rounding operation does not necessarily lead to an 

optimal discrete solution. The situation becomes worse when 

not using a greedy modulation set, i.e. the difference of loaded 

bits between two consecutive modulations is more than one bit. 

In the next section, a direct discrete solution using linear 

programming for the optimization problem (3) is presented. 

The proposed solution overcomes the previous limitations of 

the Langrangian approach with a comparable complexity. 
 

 

4. DISCRETE COORDINATE ASCENT 
 

The principle of the discrete algorithm is to sequentially 

distribute bits on subcarriers with the lowest possible 

consumed power per bit until the total power threshold 𝑃𝑚𝑎𝑥  

is reached or all carriers are maximally loaded. A power cost 

is associated with each transmitted bit. If transmitted bits are 

allocated in the increasing power cost, the obtained solution is 

asymptotically optimal for a large number of subcarriers. 

Starting from the null state where no subcarrier is loaded, the 

allocation is performed by gradually increasing the modulation 

index of subcarriers in a specific order as shown by the 
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following analysis. 

For a given subcarrier i with modulation index 𝑘𝑖 ∈
{1, … , 𝐾}, the BER performance is function of received SNR, 

i.e. 

 

𝐵𝐸𝑅𝑖 = 𝑓𝑘𝑖
(𝑆𝑁𝑅𝑖), (36) 

 

where, 𝑓𝑘𝑖
 is usually a waterfall shaped monotonically 

decreasing function, which depends on the selected 

constellation 𝐶𝑘𝑖
. The SNR threshold to achieve the target 

BER𝑖,𝑡ℎ is given by 

 

𝑆𝑁𝑅𝑡ℎ,𝑖(𝑘𝑖) = 𝑓𝑘𝑖

−1(𝐵𝐸𝑅𝑡ℎ,𝑖) (37) 

 

From (33) and (2), the minimum required power to achieve 

(with equality) the target BER𝑖,𝑡ℎ for a given modulation index 

𝑘𝑖 is 

 

𝑝𝑖(𝑘𝑖) = 𝑃𝑡ℎ,𝑖(𝑘𝑖) = 𝑆𝑁𝑅𝑡ℎ,𝑖(𝑘𝑖)/𝛾𝑖   (38) 

 

with the assumption 𝑃𝑡ℎ,𝑖(0) = SNR𝑡ℎ,𝑖(0) = 0  for the null 

modulation (𝑘𝑖 = 0), i.e. when a subcarrier is not loaded. 

When increasing modulation index of a subcarrier i by one, the 

number of loaded bits increase by  

 

𝛥𝑏𝑖(𝑘𝑖) = 𝑚𝑘𝑖+1 − 𝑚𝑘𝑖
,  𝑘𝑖 < 𝑘𝑖,𝑚𝑎𝑥  (39) 

 

In order to keep the BER at the target level, the allocated 

power is increased by 

 

𝛥𝑝𝑖(𝑘𝑖) = 𝑃𝑡ℎ,𝑖(𝑘𝑖 + 1) − 𝑃𝑡ℎ,𝑖(𝑘𝑖),  𝑘𝑖 < 𝑘𝑖,𝑚𝑎𝑥 (40) 

 

The cost in term of power for each of the additional Δ𝑏𝑖 bits 

is then 

 

𝐶𝑖(𝑘𝑖) = {

𝛥𝑝𝑖(𝑘𝑖)

𝛥𝑏𝑖(𝑘𝑖)
,  𝑘𝑖 < 𝑘𝑖,𝑚𝑎𝑥

∞,  𝑘𝑖 = 𝑘𝑖,𝑚𝑎𝑥

 (41) 

 

where, 

 
Δ𝑝𝑖(𝑘𝑖)

Δ𝑏𝑖(𝑘𝑖)
=

1

𝛾𝑖

SNR𝑡ℎ,𝑖(𝑘𝑖 + 1) − SNR𝑡ℎ,𝑖(𝑘𝑖)

𝑚𝑘𝑖+1 − 𝑚𝑘𝑖

 

 

Minimizing the cost function means the maximization of 

data rate profit per power unit. Let 𝐤 = [𝑘1, 𝑘2, … , 𝑘𝑁]𝑇 ∈
{0,1, … , K}𝑁 be the modulation indices for all subcarriers. The 

optimization problem (3) can be rewritten as an optimization 

problem with respect to the vector 𝐤 as 

 

Maximize
𝑘𝑖

 (𝐵𝑇 = ∑ 𝑚𝑘𝑖

𝑁

𝑖=1

) (42) 

 

Subject to 

  ∑ 𝑃𝑡ℎ,𝑖(𝑘𝑖)
𝑁
𝑖=1 ≤ 𝑃𝑚𝑎𝑥   

  𝑘𝑖 ≤ 𝑘𝑖,𝑚𝑎𝑥  
This is a discrete linear programming problem. In linear 

programming, it is well known that the optimum value of a 

concave (or convex) function is always attained on the 

boundary of the constraint set [15].  

The proposed approach to solve this problem is based on the 

Coordinate Ascent (CA) framework where only one selected 

coordinate is stepped toward the optimum. The stepping 

strategy is performed by line search method where the 

maximization function is always increased at each iteration t, 

i.e. 𝐵𝑇
(𝑡)

> 𝐵𝑇
(𝑡−1)

. 

Initially, all subcarriers are not loaded. At each subsequent 

iteration, the modulation index for a selected subcarrier is 

increased by one. The criterion for coordinate (subcarrier) 

selection is based on cost minimization. The selected 

subcarrier is given by 
 

𝑖 = arg min
1≤𝑗≤𝑁

C𝑗(𝑘𝑗) (43) 

 

Iterations continue until reaching the stopping condition 

defined by the power constraint or the maximum bit-load. This 

procedure allows for continuously increasing the bitrate in the 

feasible set while being away from borders as far as possible. 

The corresponding algorithm is given as follows 

 

Algorithm 2. Discrete Coordinate Ascent (DCA) algorithm 

1: INPUT 𝑃𝑚𝑎𝑥 , 𝛾𝑖, 𝑘𝑖,𝑚𝑎𝑥, BER𝑡ℎ,𝑖 , ℳ 

2: initialize 𝑘𝑖 = 0,  𝑝𝑖 = 0,  
Calculate 𝐶𝑖 , 𝑖 = 0, … , 𝑁 using (41) 

3: repeat 

4:    Select coordinate 𝑖 according to (43) 

5:    if 𝑃𝑇 + Δ𝑝𝑖(𝑘𝑖) ≤ 𝑃𝑚𝑎𝑥 then 

6:       𝑃𝑇 = 𝑃𝑇 + Δ𝑝𝑖(𝑘𝑖) 

7:       𝑘𝑖 = 𝑘𝑖 + 1 

8:       Update 𝐶𝑖 using (41) 

9:    end if 

10: until 𝑃𝑚𝑎𝑥  is reached or all subcarriers are maximally 

loaded2 

11: Calculate 𝑝𝑖(𝑘𝑖) using (38) 

12: OUTPUT 𝑘𝑖, 𝑝𝑖  

 
The advantage of the Discrete Coordinate Ascent (DCA) in 

comparison with the LR that only SNR thresholds at the 

desired BER values are needed. This allows the use of DCA 

algorithm for coded systems as well as for non-codes systems. 

In addition, no approximation or rounding is performed. It is 

asymptotically optimal for large number of subcarriers. Sub-

optimality may occur only in the last few iterations just before 

reaching 𝑃𝑚𝑎𝑥 . For example, if in the last iteration, there is a 

subcarrier 𝑗 other than the select subcarrier 𝑖 with Δ𝑏𝑗(𝑘𝑗) >

Δ𝑏𝑖(𝑘𝑖) such that 𝑃𝑇 + Δ𝑝𝑗(𝑘𝑗) ≤ 𝑃𝑚𝑎𝑥 , the selection of the 

subcarrier j leads to a better data rate while satisfying the 

power constraint. In other words, the subcarrier j fills the 

remaining power gap to 𝑃𝑚𝑎𝑥  without being the more efficient 

in term profit. However, this has a minor effect on the overall 

throughput performance. 

It is worth to note that the cost function given in (41) is the 

same cost function proposed in [10]. Consequently, the DCA 

algorithm leads to same solution as in HH algorithm. The 

previous derivation presents a comprehensive analysis for the 

HH method, which was proposed for a specific set of M-QAM 

modulations. In Section 6, we generalize the HH algorithm for 

an arbitrary modulation set by mean of a modified cost 

function.  
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5. LOW COMPLEXITY DISCRETE COORDINATE 

ASCENT (LC-DCA) ALGORITHM 

 

In the DCA algorithm, the maximum number of iterations 

is 𝐾𝑁. The complexity in each iteration is 𝒪(𝑁) due to step 4 

that searches for the best stepped subcarrier. Thus, the overall 

complexity of DCA is 𝒪(𝐾𝑁2). 

A low complexity variant of the DCA algorithm can be 

implemented when the cost function C𝑖(𝑘𝑖)  for a given 

subcarriers is an increasing function with 𝑘𝑖 = 0, … , 𝐾 . 

Instead of searching for subcarrier that minimizes the cost 

function at each iteration, all values of C𝑖(𝑘𝑖) for 𝑖 = 0, … , 𝑁 

and 𝑘𝑖 = 0, … , 𝐾 − 1  are pre-calculated and sorted in the 

increasing order. The corresponding indices (𝑖, 𝑘𝑖) are saved. 

 The strict monotonicity per subcarrier guarantees that the 

modulation index is sequentially increased by one for each 

subcarrier so that (𝑖, 𝑘𝑖)  precedes (𝑖, 𝑘𝑖 + 1)  after ordering. 

This is necessary because the cost function in (43) is defined 

for a single increment. Thus, the sequence of subcarrier indices 

at subsequent iterations in the DCA algorithm becomes 

identical to the sequence of subcarrier indices of the ordered 

values of the cost function. Using this alternative for subcarrier 

selection, the complexity of the DCA algorithm reduces to 

𝒪(𝐾𝑁log(𝑁)) [14] which is the complexity of the ordering 

operation of N vectors each contains K ordered values. This is 

the main idea in the HH algorithm and there are some works 

that confuse it with the DCA algorithm when speaking about 

its complexity [16, 17]. 

The HH algorithm in [10] is proposed for the M-QAM 

modulation set with ℳ1 = {0, 2, 4, 5, 6, 8} . The cost 

function is calculated based on the asymptotic BER 

performance (free distance between the constellation points). 

For unit free distance, the average power of M-QAM 

constellations is 𝑃𝑄𝐴𝑀 = {2, 6, 10, 20, 42, 82, 170}  for ℳ =

{2, 3, 4, 5, 6, 7, 8} . This leads for ℳ1  to C𝑖 =
𝑃𝑡ℎ,𝑖(2){0.5, 2, 5, 11, 32}  which is monotone with the 

modulation index. However, adding the 8-QAM modulation 

in ℳ1 results in a violation the strict monotonicity property of 

the cost function which becomes C𝑖 =
𝑃𝑡ℎ,𝑖(2){0.5, 2, 2, 5, 11, 32} . In addition, the proposed set 

does not verify the monotonicity property for precise SNR 

threshold values.  

Table 1 gives the values of SNR𝑡ℎ obtained by simulation 

for various M-QAM modulations using Gray mapping at 

different levels of BER𝑡ℎ . The SNR thresholds for a coded 

system using the convolutional code (CC) with the generator 

polynomial (171,131) are also reported where Viterbi 

algorithm was used for decoding with hard decision. It can be 

easily verified that for the complete M-QAM set 

{0,2,3,4,5,6,7,8} the monotonicity property does not hold for 

a non-coded system. 
 

Table 1. SNRth(dB) for M-QAM modulations with Gray 

mapping, for non-coded and coded system using 

CC(171,131) 
 

 Non-coded CC(171,131) 

𝐁𝐄𝐑𝒕𝒉 → 𝟏𝟎−𝟑 𝟏𝟎−𝟒 𝟏𝟎−𝟓 𝟏𝟎−𝟑 𝟏𝟎−𝟒 𝟏𝟎−𝟓 

4-QAM 9.8 11.4 12.6 4.9 5.9 6.9 

8-QAM 14.4 16.0 17.3 9.4 10.2 11.0 

16-QAM 16.6 18.3 19.5 11.1 12.1 12.8 

32-QAM 19.6 21.2 22.4 14.9 16.2 17.0 

64-QAM 22.6 24.2 25.5 16.4 17.6 18.7 

128-QAM 25.4 27.2 28.5 19.6 21.0 22.1 

256-QAM 28.5 30.3 31.6 21.2 22.6 23.6 

The exception is the 8-QAM modulation. For the coded case, 

the modulations with odd number of bits have to be excluded 

in order to keep the monotonicity property. As example, for 

BER𝑡ℎ=10−5, the calculated cost values are C𝑖 =
𝑃𝑡ℎ,𝑖(2){0.5, 1.45, 1.26, 5.40, 3.76, 15.30, 11.63} . By 

conclusion, the HH algorithm can’t be used for an arbitrary 

modulation set and cannot be unconditionally extended to 

coded systems. 

In order to overcome this limitation a modified cost function 

that is unconditionally monotone is heuristically searched and 

the obtained solution are checked by mean of numerical 

simulations. The best cost function found is a simple one 

which is given by 

 

𝐶̂𝑖(𝑘𝑖) = {
𝑃𝑡ℎ,𝑖(𝑘𝑖 + 1),  𝑘𝑖 < 𝑘𝑖,𝑚𝑎𝑥

∞,  𝑘𝑖 = 𝑘𝑖,𝑚𝑎𝑥
 (44) 

 

Accordingly, the subcarrier with the smallest power 

threshold for the next modulation index is selected. The 

monotonicity property of the new cost function Ĉ𝑖 is usually 

verified in practice under the model assumption of ordered 

modulation set by number of carried bits 𝑚𝑘 . As it will be 

shown in numerical results, the obtained solutions are 

incredibly close to those obtained by the original cost function 

defined in (41). Since the cost function is only used for 

subcarrier selection, the good results obtained with the new 

cost function indicate that the order of power thresholds is 

highly correlated with the order of incremental power per bit. 

The corresponding DCA algorithm using the proposed cost 

function given in (44) is referred herein as the Low 

Complexity DCA (LC-DCA) algorithm. 

 

Algorithm 3. Low Complexity-DCA (LC-DCA) algorithm 

1: INPUT 𝑃𝑚𝑎𝑥 , 𝛾𝑖, 𝑘𝑖,𝑚𝑎𝑥, BER𝑡ℎ,𝑖, ℳ 

2: Initialize 𝑘𝑖 = 0,  𝑝𝑖 = 0, 𝑡 = 1. 

Order 𝐶̂𝑖(𝑘𝑖), 𝑘𝑖 = 0, … , 𝑘𝑖,𝑚𝑎𝑥 − 1, 𝑖 = 1, … , 𝑁 

increasingly and save subcarrier indices in a vector I 

3: repeat 

4:    𝑖 = 𝐈(𝑡) 

5:    if 𝑃𝑇 + Δ𝑝𝑖(𝑘𝑖) ≤ 𝑃𝑚𝑎𝑥 then 

6:       𝑃𝑇 = 𝑃𝑇 + Δ𝑝𝑖(𝑘𝑖) 

7:       𝑘𝑖 = 𝑘𝑖 + 1 

9:    end if 

    𝑡 = 𝑡 + 1 

10: until 𝑃𝑚𝑎𝑥  is reached or all subcarriers are maximally 

loaded 

11: Calculate 𝑝𝑖(𝑘𝑖) using (34) 

12: OUTPUT 𝑘𝑖, 𝑝𝑖  

 

 

6. RESULTS 

 

In order to show the performance of the proposed algorithm, 

numerical simulations are performed by considering an 

OFDM system over frequency selective channels. The gain for 

each subcarrier 𝑔𝑖  is modeled as an independent complex 

Gaussian random variable with unit variance. The channel is 

normalized in order to a have a unit average power, i.e. 

∑ |𝑔𝑖|
2𝑁

𝑖=1 = 𝑁 . In practice, neighboring subchannels are 

usually correlated. However, this model allows for fast 

averaging of simulated performance. Unless otherwise 

mentioned, the simulation parameters are as follows. The 

number of subcarriers is N=1024. The constellation set is 
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ℳ = {0, 2, 3, 4, 5, 6}. The target BER threshold is set to 

10−3 for all subcarriers. The maximum bit-load is set to 6 for 

all subcarriers. 

Figure 4 shows the average bitrate per subcarrier for 

different algorithms including: uniform power allocation with 

adaptive modulation, Water-filling with adaptive modulation, 

LR algorithm, and DCA algorithm. Figure 5. shows the 

average total allocated power per subcarrier, and Figure 6 

shows the BER performance for different algorithms. 

 

 
 

Figure 4. Average data rate performance for different 

algorithms 

 

From Figure 4, it can be seen the superiority of the DCA 

algorithm over all other algorithms. The LF algorithm has a 

slight lower data rate at medium SNR values. The water-filling 

power allocation with adaptive modulation gives only a slight 

improvement for low SNR values in comparison with uniform 

power allocation. 

From Figure 5, it can be seen that both DCA and LF 

algorithm have similar power performance where they use the 

total available power for SNR below 30dB, then the total 

power decreases because all active subcarriers are maximally 

loaded, and the remaining power is insufficient to activate new 

subcarriers.  

Form Figure 6, it can be seen that only the DCA algorithm 

match exactly the BER threshold, whereas the LF algorithm 

overestimates the allocated power due the underlying 

approximations, and the WF algorithm does not optimizes the 

allocated power discrete bit-load. This results in a lower BER 

values than the target BER threshold. 
 

 
 

Figure 5. Average total power performance for different 

algorithms 

 
 

Figure 6. BER performance for different algorithms 

 

Figure 7 shows the difference in performance between the 

DCA algorithm and the proposed LC-DCA using the proposed 

heuristic cost function. It can be seen that the LC-DCA 

produces a too close solution with very small data rate 

reduction of 0.04 bits/subcarrier at medium SNR. Sometimes, 

the difference is positive due to borders effects as it can be 

seen for SNR=20dB. 

 

 
 

Figure 7. Difference of data rate (upper) and average total 

power (lower) between LC-DCA and DCA 

 

 
 

Figure 8. Bit error rate (upper), average allocated bits 

(middle), average allocated power (lower), for a given non-

uniform QoS profile at different SNR values 
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Finally, Figure 8 shows the ability of the proposed 

algorithm to satisfy different QoS requirements for different 

subcarriers. The number of subcarriers is N=128. The BER 

threshold is set to 10−3 for subcarriers 1-64 with maximum

bit-load of 6 bits. For the remaining subcarriers, the BER 

threshold is set to and 10−4 with maximum bit-load of 4 bits.

Similar results were obtained for a coded system using a rate-

1/2 convolutional code. 

7. CONCLUSIONS

In this paper, we proposed two different algorithms 

following two different approaches to solve the optimization 

problem of data rate maximization in multicarrier system 

using a discrete modulation set.  

• The first algorithm is the LR algorithm which is based

on the LR approach. This is a suboptimal algorithm

which operates in similar manner as water-filling

method with bounded bit-load. It is specific to non-

coded systems using a set of M-QAM modulations.

• The second algorithm is the LC-DCA algorithm

which is based on discrete linear programming using

coordinate ascent framework. This is a suboptimal

algorithm which operates in iterative manner. It is a

generic algorithm which is suitable for coded as well

as non-coded systems with an arbitrary modulation

set. This algorithm overcomes the limitation of the

HH algorithm with the help of a simple heuristic cost

function without scarifying the bitrate performance.

• The performance of the LC-DCA algorithm is better

than the performance of the LR algorithm with

slightly higher complexity. Future works are directed

to extend the obtained results for MIMO system with

precoding.

REFERENCES 

[1] Liu, H., Ma, H., El Zarki, M., Gupta, S. (1997). Error

control schemes for networks: An overview. Mobile

Networks and Applications, 2: 167-182.

https://doi.org/10.1023/A:1013676531988

[2] Hwang, T., Yang, C., Wu, G., Li, S., Ye Li, G. (2009).

OFDM and its wireless applications: A survey. IEEE

Transactions on Vehicular Technology, 58(4): 1673-

1694. https://doi.org/10.1109/TVT.2008.2004555

[3] Fu, I., Chen, Y., Cheng, P., Yuk, Y., Yongho Kim, R.,

Kwak, J. (2010). Multicarrier technology for 4G WiMax

System [WiMAX/LTE Update]. IEEE Communications

Magazine, 48(8): 50-58.

https://doi.org/10.1109/MCOM.2010.5534587

[4] Liu, K., Tang, B., Liu, Y. (2009). Adaptive power

loading based on unequal-BER strategy for OFDM

systems. IEEE Communications Letters, 13(7): 474-476.

https://doi.org/10.1109/LCOMM.2009.082158 

[5] Chow, P.S., Cioffi, J.M., Bingham, J.A.C. (1995). A

practical discrete multitone transceiver loading algorithm

for data transmission over spectrally shaped channels.

IEEE Transactions on Communications, 43(2/3/4): 773-

775. https://doi.org/10.1109/26.380108

[6] Mahmood, A., Belfiore, J. (2010). An efficient algorithm

for optimal discrete bit-loading in multicarrier systems.

IEEE Transactions on Communications, 58(6): 1627-

1630.

https://doi.org/10.1109/TCOMM.2010.06.0800482

[7] Cioffi, J.M. (1991). A multicarrier primer. Clearfield,

USA, Tech. Rep. ANSI Contribution T1E1, 4: 91-157.

[8] Proakis. (2001). Digital Communication Systems, 4th Ed.

McGraw Hill.

[9] Wyglinski, A., Labeau, F., Kabal, P. (2005). Bit loading

with BER constraint for multicarrier systems. IEEE

Transactions on Wireless Communications, 4(4): 1383-

1387. https://doi.org/10.1109/TWC.2005.850313

[10] Hughes-Hartogs, D. (1989). Ensemble modem structure

for imperfect transmission media. U.S. Patent No.

4679227.

[11] Zhang, H., Fu, J., Song, J. (2010). A Hughes-Hartogs

algorithm based bit-loading algorithm for OFDM

systems. 2010 IEEE International Conference on

Communications, Cape Town, South Africa, pp. 1-5.

https://doi.org/10.1109/ICC.2010.5502109

[12] Bedeer, E., Dobre, O.A., Ahmed, M.H., Baddour, K.E.

(2012). Optimal bit and power loading for OFDM

systems with average BER and total power constraints.

IEEE Global Communications Conference

(GLOBECOM), Anaheim, CA, pp. 3685-3689.

https://doi.org/10.1109/GLOCOM.2012. 6503689

[13] Bedeer, E., Dobre, O.A., Ahmed, M.H., Baddour, K.E.

(2015). A systematic approach to jointly optimize rate

and power consumption for OFDM systems. IEEE

Transactions on Mobile Computing, 15(6): 1305-1317.

https://doi.org/10.1109/TMC.2015.2465393

[14] Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.

(2001). Introduction to Algorithms. Higher Education,

2nd edition. McGraw-Hill Inc.

[15] Benson H.P. (1995). Concave Minimization: Theory,

Applications and Algorithms. In: Horst R., Pardalos P.M.

(eds) Handbook of Global Optimization. Nonconvex

Optimization and Its Applications, 2, 43-148. Springer,

Boston, MA.

[16] Iraqi, Y., Al-Dweik, A. (2020). Adaptive bit loading with

reduced computational time and complexity for

multicarrier wireless communications. IEEE

Transactions on Aerospace and Electronic Systems,

56(3): 2497-2506.

https://doi.org/10.1109/TAES.2019.2946505

[17] De Souza, J.H.I., Abrão, T. (2018). Hybrid Hughes-

Hartogs power allocation algorithms for OFDMA

systems. IET Signal Processing, 12(9): 1185-1192.

https://doi.org/10.1049/iet-spr.2018.5080

634

https://doi.org/10.1109/
https://doi.org/10.1109/TWC.2005.%20850313
https://doi.org/
https://doi.org/10.1109/GLOCOM.2012.%206503689
https://doi.org/10.1109/



