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This paper proposes the UmNet model based on convolutional neutral network (CNN), 

aiming to improve the ability to recognize and classify concrete cracks in a background 

complicated by construction seams and seepage traces. The model was derived from the 

famous CNN AlexNet. Without changing the receptive field, large convolutional kernels 

were replaced with small ones to reduce the parameters, deepen the network, and increase 

nonlinear transforms. Next, convolutional block attention module (CBAM) was introduced 

to highlight the key information in images and focus on high-weight channels. Finally, 

Bayesian network (BN) layer and L2 regularization were added, and the number of nodes in 

fully connected layer were reduced. A series of comparative experiments were carried out 

on three datasets D, P, and W. The results show that the proposed UmNet surpassed AlexNet 

in the recognition accuracy on D, P, and W by 3.74%, 3.17%, and 5.74%, respectively, and 

reduced the number of parameters by 75.04%. Therefore, our model is an effective means 

to recognize and classify of concrete cracks under strong interference. 

Keywords: 

concrete cracks, image classification, 

convolutional neural network (CNN), block 

attention module 

1. INTRODUCTION

Cracking is one of the most common diseases of concrete 

during long-term use. The manual detection of concrete cracks 

has several defects: long time consumption, lack of objectivity, 

and high risks. These defects can be overcome by applying 

image recognition techniques to identify the cracks in concrete 

images. 

In recent years, many researchers adopted convolutional 

neural network (CNN) to recognize concrete crack images. For 

instance, Zhang et al. [1] built and trained the first CNN model, 

and proved that deep learning outperforms traditional image 

recognition algorithms in crack detection. Cha et al. [2] 

improved their CNNs with sliding windows, so that the models 

can detect any crack image surpassing the training resolution. 

Li et al. [3] enhanced datasets with deep convolutional 

generative adversarial network (GAN), and presented an 

algorithm that effectively detects complex road scenes. 

Referring to SegNet, Chen et al. [4] proposed an encoder-

decoder structural model with a fully CNN, namely, PCSN, 

and verified its feasibility in crack detection. Lei et al. [5] 

developed an image recognition method for concrete crack 

detection, and demonstrated that the method can identify 

cracks in stained and moss-covered concretes. Deng et al. [6] 

employed region-based CNN (R-CNN) to detect bridge crack 

images containing handwritten traces, and observed that R-

CNN can automatically recognize the cracks in original 

images. Li et al. [7] put forward a deep neural network based 

on attention mechanism and feature fusion, which effectively 

enhances the detection accuracy of narrow cracks on airfield 

pavement images with complex background and low contrast. 

Laudable progress has been achieved on the image 

recognition of concrete cracks based on deep learning. 

However, most studies only deal with images with simple 

background and disturbances. Not many researchers have 

studied the recognition of concrete cracks with complex 

background involving pot holes, construction seams, and 

seepage traces. There is not yet a sufficiently precise model to 

recognize these cracks. To solve the problem, this paper 

acquires concrete crack image datasets with complex 

background, and derives an improved CNN model from 

AlexNet. In addition, the convolutional block attention 

module (CBAM) was improved from the attention mechanism, 

based on the existing channels and spaces. Then, CBAM was 

introduced to the improved CNN model, such that the latter 

focuses more on cracking and extract more details from 

images. Further, small convolutional kernels and nonlinear 

activation functions were adopted to reduce the number of 

parameters, while enhancing the learning of network features. 

In this way, the proposed model can accurately recognize and 

classify the surface cracks in concrete crack image datasets 

with complex background. 

2. METHODOLOGY

2.1 CNN 

With the development of computing technology, CNN has 

been extensively applied to image recognition [8-11]. This 

feedforward neural network [12] consists of input layer, 

convolutional layer, pooling layer, fully connected layer, and 

other supporting layers, as well as connection weights. 

2.1.1 Convolution 

Lying at the core of CNN, convolution layers aim to 
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perceive the local information of the input image through 

convolution. Each convolution layer contains multiple filters 

that learn the features from the input image. Convolution 

kernels of different sizes extract different types of features. 

Low-level kernels can extract simple features like edges and 

curves, while high-level kernels can obtain more abstract 

features. The convolution operation can be expressed as: 

 

𝑎𝑖,𝑗 = ∑ ∑ 𝑤𝑚,𝑛𝑥𝑖+𝑚,𝑗+𝑛 + 𝑤𝑏

2

𝑛=0

2

𝑚=0

 (1) 

 

where, xi,j is the element in the i-th row and j-th column of the 

image; wm,n is the weight of the filter in the m-th row and n-th 

column; wb is the bias of filter; 𝑎𝑖,𝑗 is the element in the i-th 

row and j-th column of the feature map.  

The convolution operation is explained in Figure 1. 

Addition and multiplication are carried out in turn on the value 

of a kernel and the value at the corresponding value in the 

sample, producing a numerical value containing image 

information. Then, a top-down sliding calculation is 

performed from left to right with a fixed step length. The 

outputs constitute the image feature corresponding to the 

kernel. 

To expand the receptive field and extract more global 

features from the input image, AlexNet adopts large kernels of 

the size 11×11, and 5×5. The large size brings a huge number 

of parameters and a huge computing load. For an input image 

of 28×28, the size of the feature map will be (28-5)/1+1=24, if 

ten large kernels (5×5) are arranged with the stride of 1 and 

padding of 0; the size of the feature maps will be (28-

3)/1+1=26, and (26-3)/1+1=24, if three small kernels (3×3) are 

arranged with the same stride and padding. Since the feature 

maps are of the same size, our model replaces the large kernels 

in AlexNet with multiple 3×3 small kernels, without changing 

the receptive field. In the above example, the convolution layer 

has 10×5×5+10=260 parameters in the presence of large 

kernels, and (10×3×3+10)×2=200 parameters in the presence 

of two small kernels. After the kernel replacement, both the 

number of parameters and computing load are reduced, and the 

network is deepened. In addition, the multiple small kernels 

lead to more nonlinear activation layers, which contribute to 

the overall recognition ability for concrete cracks under 

disturbance. 
 

2.1.2 Pooling 

Pooling is a down-sampling process that reduces the 

dimensionality of features. The input feature map is down-

sampled step by step to reduce the map dimensionality, the 

number of parameters, and computing load. This process 

enhances the fault tolerance of the model, and lowers the risk 

of overfitting. Pooling is typically arranged right after 

convolution. The common pooling strategies include max 

pooling and average pooling (Figure 1). Our model adopts 

max pooling, because it is the best strategy for image 

recognition [13, 14].

 

 
 

Figure 1. Illustration of convolution and pooling 

 

2.1.3 Fully connected layers 

 

 
 

Figure 2. Illustration of fully connected layer 

 

Fully connected layer is an ordinary layer of the neutral 

network. It is connected to all the nodes in the previous layer. 

As a classifier of the CNN, each fully connected layer 

encapsulates the previous local features into a weight matrix, 

and maps the learned distributed features to the sample 

labeling space. In this way, the local information of 

convolution and pooling layers can be integrated effectively. 

Coupled with the nonlinear mapping of activation functions, 

fully connected layer can theoretically simulate any nonlinear 

transform. This layer is illustrated in Figure 2. 

During the design of our model, the number of nodes in the 

first and second fully connected layers of AlexNet was 

changed from 4,096 per layer to 1,024, and that in the last fully 

connected layer was set to 2 according to the classification task 

of the model. Due to parameter redundancy, fully connected 

layer contributes the most parameters to the network model. 

Therefore, the modified fully connected layers in our model 

greatly reduce the total number of parameters. To prevent the 

common problem of overfitting in neural network training, 

Dropout technology was adopted in the fully connected layers 

of our model. Thus, the nodes are discarded at a certain 

probability. For stochastic gradient descent (SGD), a different 

network is trained in each batch, because the nodes are 

discarded randomly. Therefore, the risk of overfitting could be 

minimized. 
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2.1.4 Activation functions 

The essential task of our neural network model is function 

fitting. The activation functions are normally nonlinear. 

Adding these functions introduces nonlinearity to the model, 

such that it could theoretically approximate any function. 

Common activation functions include sigmoid, rectified linear 

unit (ReLU), tanh, and Leaky ReLU. The curves of these 

functions are displayed in Figure 3. ReLU is a nonlinear 

activation function introduced by Nair and Hinton [15]. The 

value of ReLU either equals 1 or 0. The function achieves a 

fast speed and converges much faster than sigmoid and tanh, 

because it only needs to judge whether the input is greater than 

zero. If the input to ReLU is negative, however, the nodes will 

be unable to update parameters. To solve the problem, a Leaky 

value is introduced to the negative half of the interval of ReLU, 

which to a certain extent improves the function performance. 

Hence, our model adopts both ReLU and Leaky ReLU as 

activation functions: 

 

𝑓(𝑥) = max(0, 𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 (2) 

 

𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0
𝑎𝑥, 𝑥 < 0

 (3) 

 

 
 

Figure 3. Nonlinear activation functions 

 

2.1.5 Softmax layer 

The feature map matrix generated through the above 

convolution, pooling, and fully connected layers can be 

applied to classify concrete cracks. The most common 

classification layer is softmax layer, whose principle can be 

explained by: 

 

𝑃(𝑦(𝑖) = 𝑛丨𝑥(𝑖);𝑊) =

[
 
 
 
 𝑃(𝑦(𝑖) = 1 丨𝑥(𝑖);𝑊)

𝑃(𝑦(𝑖) = 2 丨𝑥(𝑖);𝑊)

⋮

𝑃(𝑦(𝑖) = 𝑛丨𝑥(𝑖);𝑊) ]
 
 
 
 

=
1

∑ 𝑒𝑤𝑗
𝑇

𝑛
𝑗=1

[
 
 
 
 𝑝

𝑤1
𝑇
𝑥(𝑖)

𝑝𝑤2
𝑇
𝑥(𝑖)

⋮

𝑝𝑤𝑛
𝑇
𝑥(𝑖)]

 
 
 
 

 

(4) 

 

where, i=1…m; P(y(i)=n|x(i); W) is the probability of the m-th 

training sample belonging to class n with weight W; 𝑝𝑤𝑛
𝑇
𝑥(𝑖) 

is the input of softmax layer, i.e., the feature map outputted 

from the previous pooling layer. For the i-th input, the sum on 

the right side always equals 1. Since the function values obey 

the normal distribution, the probability of each input belonging 

to each class will be returned. 

 

2.2 AlexNet 

 

The CNN AlexNet is the winner of the image classification 

competition ILSVRC (ImageNet Large Scale Visual 

Recognition Competition) 2012. It is 10% more accurate than 

the winner of ILSVRC 2011. The network operates in the 

following manner: the first and second layers perform 

convolution, pooling, and normalization, in turn; the third and 

fourth layers only perform convolution; the fifth layer perform 

convolution and pooling; the eighth layer (fully connected 

layer) performs classification with softmax. Local response 

normalization (LRN), ReLU, and Dropout are adopted by the 

network. 

 

2.3 CBAM 

 

CBAM is an important mechanism to enhance CNN 

performance. Hu et al. [16] proposed the squeeze-and-

excitation (SE) network (SENet), the first effective 

mechanism with channel attention. SENet establishes the 

spatial correlations between features, and effectively improves 

CNN performance. Later, CBAM was extended based on 

SENet [17]. The extended mechanism contains a channel 

attention module and a spatial attention module: 

 

𝐹′ = 𝑀𝑐(𝐹)⨂𝐹 (5) 

 

𝐹′′ = 𝑀𝑠(𝐹
′)⨂𝐹′ (6) 

 

where, F is the feature map; F' is the feature map of the channel 

attention module; F'' is the feature map of the spatial attention 

module; ⨂ is element-wise multiplication; Mc and Ms are the 

weight coefficients of channel attention module and spatial 

attention module, respectively. 

The channel attention module carries out global average 

pooling and max pooling of the feature map outputted from 

convolution operation. The pooled feature map is then 

imported to a two-layer neural network. The obtained features 

are processed by sigmoid activation function, producing a 

weight coefficient Mc. The product between Mc and the 

original feature F is a new feature F'. After that, the new 

feature is passed through the spatial attention module, and 

weighted into the final feature map. The spatial attention 

module carries out average pooling and max pooling of F'. The 

pooled results are stitched, convoluted, and processed by 

sigmoid to obtain a weight coefficient Ms. The product 

between Ms and F' is a new feature F''. 

In this paper, CBAM is added between convolution layers. 

The addition of the module makes feature learning focus more 

on cracks, and suppresses the effect of disturbances. In this 

way, the recognition model can acquire more details about 

cracks, and identify concrete cracks more effectively. 

 

2.4 UmNet structure 

 

Figure 4 illustrates the structure of our improved model 

UmNet. In our model, batch normalization (BN) replaces the 

original LRN. Bayesian network (BN) and ReLU are added 
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behind each convolution layer. After the first convolution 

layer, ReLU is replaced with Leaky ReLU. The original large 

kernels (11×11; 5×5) are changed into small kernels (3×3). L2 

regularization is adopted to regularize the network, and max 

pooling is selected for implementing pooling operations. 

 

 
 

Figure 4. UmNet structure 

 

Table 1. Sizes of model training data 

 
Layer Height Width Depth 

Input 227 227 1 

L1 27 27 96 

L2 13 13 256 

L3 13 13 384 

L4 13 13 384 

L5 6 6 256 

L6 1 1 1,024 

L7 1 1 1,024 

L8 1 1 2 

 

Table 2. Parameters of each convolution layer and pooling 

layer 

 
Operation Height Width Depth Step length Padding Output 

C1 3 3 96 4 0 96 

C2 3 3 96 1 0 96 

P1 3 3 - 2 0 - 

C3 3 3 256 1 1 256 

C4 3 3 256 1 1 256 

P2 3 3 - 2 0 - 

C5 3 3 384 1 1 384 

P3 3 3 - 2 0 - 

C6 3 3 384 1 1 384 

C7 3 3 256 1 1 256 

 

In the improved model, the first and second convolution 

layers perform convolution, BN, and pooling, in turn. The 

third to fifth layers perform convolution and BN. The fifth 

layer performs max pooling. Channel attention module and 

spatial attention module are introduced between every pair of 

convolution layers. The six and seventh layers (fully 

connected layers) perform Dropout. The eighth layer (fully 

connected layer) outputs class labels with softmax function. 

Table 1 presents the sizes of model training data. Table 2 lists 

the parameters of each convolution layer and pooling layer in 

the model. 

 

 

3. CONCRETE CRACK DATASETS WITH COMPLEX 

BACKGROUND 

 

3.1 Dataset acquisition 

 

   

   

   

(a) Crack images of D, P, and W (from top to bottom) 

   

   

   

(b) Non-crack images of D, P, and W (from top to bottom) 

 

Figure 5. Datasets D, P, and W 

 

Our experiments adopt the concrete crack image dataset 

SDNET2018 published by Sattar Dorafshan et al. The dataset 

consists of three parts: Bridge deck (D), Wall (W), and 

Pavement (P). Dataset D contains 13,620 images, including 

2,025 crack images and 11,595 non-crack images; Dataset W 

contains 18,138 images, including 3,851 crack images and 

14,287 non-crack images; Dataset P contains 24,334 images, 

including 2,608 crack images, and 20,826 non-crack images. 

As shown in Figure 5, the selected database has complex 

background disturbances (pot holes, construction seams, 

seepage traces, and shadows). There are fewer crack images 

than non-crack images in the dataset. In the presence of 
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disturbances, the non-crack images should cover as many 

disturbed backgrounds as possible. Considering the 

performance of graphics processing unit (GPU), the authors 

did not adjust the situation that the dataset contains more non-

crack images than crack images. 

 

3.2 Image preprocessing and dataset construction 

 

SDNET2018 provides color images of the resolution 

256×256. According to the needs of our model, the original 

images should be cropped into color images of the resolution 

227×227. Grayscale processing can accelerate image training, 

and save lots of memory. Therefore, the color images were 

subject to grayscale processing through the conversion from 

RGB to YUV: 

 

g=0.299R+0.587G+0.114B (7) 

 

where, R, G and B are the brightness of red, yellow, and blue, 

respectively; g is the synthetic brightness. Figure 6 shows the 

grayscale image. 

 

 

→ 

 

 

Figure 6. Grayscale processing of concrete crack images 

 

Table 3. Training set, verification set, and test set of each 

dataset 

 

 Dataset Type 
Crack 

images 

Non-crack 

images 

Total 

number 

Grayscale 

D 

Training set 1619 9275 10894 

Verification set 203 1160 1363 

Test set 203 1160 1363 

W 

Training set 3081 11431 14512 

Verification set 385 1428 1813 

Test set 385 1428 1813 

P 

Training set 2086 10332 12418 

Verification set 261 1291 1552 

Test set 261 1291 1552 

 

The color images in datasets D, W, and P were preprocessed 

through cropping and grayscale processing. After that, the 

preprocessed images of each dataset were divided into a 

training set, a verification set, and a test set by 8: 1: 1. To 

ensure the uniform distribution of crack and non-crack images 

across datasets, the ratio of crack images to non-crack images 

was kept the same as that in D, W, and P. The crack and non-

crack images were randomly selected from each dataset by a 

Python program. Finally, one-hot coding was performed on 

the crack and non-crack images (10 for each crack image, and 

01 for each non-crack image). Table 3 shows the training set, 

verification set, and test set. 

 

 

4. CLASSIFICATION EXPERIMENTS 

 

4.1 Experimental environment 

 

In terms of software, the operating system is Windows 10 

(64bit), the programming language is Python, the deep 

learning framework is TensorFlow 2.2. The dependencies 

mainly include CUDA 10.1 and CuDNN. In terms of hardware, 

our experiments adopt an Intel Core i7-10700 processor (eight 

cores), and a Nvidia GTX1660Ti (6G) GPU. 

 

4.2 Hyperparameter setting 

 

Our improved CNN model was trained through SGD. The 

loss function is categorical crossentropy. The learning rate was 

set to 0.01, the momentum to 0.9, the weight attenuation 

coefficient to 0.0001, the Dropout rate to 0.5, the number of 

iterations (epoch) to 50, the batch size to 32, and the size of 

input image to 227×227×1. 

 

4.3 Experimental procedure and results 

 

Our CNN model was constructed under the deep learning 

framework of TensorFlow 2.2, and applied to recognize the 

surface cracks of concrete members. The model was trained 

and tested by the above-mentioned datasets divided from D, P, 

and W. The following experiments were conducted to verify 

the effectiveness of each module of our model in the 

recognition and classification of concrete cracks. 

 

4.3.1 Effectiveness of small kernels 

The first experiment intends to compare the influence of 

large and small kernels on the classification of concrete cracks. 

The original AlexNet was defined as Model A. Then, the 

original large kernels (11×11; 5×5) in the first and second 

convolution layers were changed into small kernels (3×3), and 

the resulting model was defined as Model A1. After that, 

Model A and Model A1 (small kernels) were trained 

separately on D, P, and W. Table 4 records the test accuracies 

and losses. 

 

Table 4. Test accuracies and losses of Models A and A1 

 
Dataset Model Accuracy % Loss 

D 
A 87.31 0.5047 

A1 89.35 0.3497 

P 
A 89.69 0.4049 

A1 91.07 0.2647 

W 
A 85.33 0.4328 

A1 88.29 0.3672 

 

As shown in Table 4, the original AlexNet, after being 

trained by D, P, and W, achieved an accuracy of 87.31%, 

89.69%, and 85.33% on the test sets, respectively. Model A1 

improved the test accuracy to 89.35%, 91.07%, and 88.29%, 

respectively. Thus, small kernels can effectively enhance the 

recognition and classification performance of the model on 

datasets D, P, and W. The possible reasons for the 

enhancement are as follows: The replacement of large kernels 

with small kernels does not change the receptive field, but 

increases the depth of the network, which contributes to the 

network performance. Besides, small kernels bring more 

nonlinear transforms to convolution layers (nonlinear 

activation functions), further enhancing the generalization 

ability of the model. 

 

4.3.2 Effectiveness of CBAM 

The next experiment investigates the influence of CBAM 

on the recognition and classification of the network model. 

CBAM was added between convolution layers of AlexNet, 
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and the modified model was defined as Model A2. Then, 

Model A2 was trained by D, P, and W, respectively. Table 5 

records the test accuracies and losses of Models A and A2. 

 

Table 5. Test accuracies and losses of Models A and A2 

 

Dataset Model Accuracy % Loss 

D 
A 87.31 0.5047 

A2 88.41 0.3898 

P 
A 89.69 0.4049 

A2 91.17 0.3668 

W 
A 85.33 0.4328 

A2 86.93 0.3928 

 

As shown in Table 5, the original AlexNet, after being 

trained by D, P, and W, achieved an accuracy of 87.31%, 

89.69%, and 85.33% on the test sets, respectively. Model A2 

improved the test accuracy to 88.41%, 91.17%, and 86.93%, 

respectively. Thus, CBAM can effectively enhance the 

recognition and classification performance of the model on 

datasets D, P, and W. The possible reasons for the 

enhancement are as follows: CBAM includes a channel 

attention module and a spatial attention module. The former 

learns the weight of each channel, and assigns a high weight 

to key channels. The latter identifies the regions of interest in 

images through training, enhancing the focusing ability of the 

model. 

 

4.3.3 Effectiveness of UmNet 

The third experiment tries to verify the effectiveness of the 

proposed network model. For this purpose, the UmNet model 

was constructed by introducing small kernels, CBAM, BN 

layer, and L2 regularization to the original AlexNet, and 

changing the number of nodes in the first and second fully 

connected layers to 1,024. Specifically, a BN layer was added 

behind each convolution layer, and supported with L2 

regularization. Then, UmNet was trained on D, P, and W. The 

test accuracies, losses, and number of parameters are recorded 

in Table 6. The accuracy curves of Model A and UmNet are 

compared in Figure 7. 

As shown in Table 6 and Figure 7, the recognition and 

classification accuracies of UmNet on D, P, and W were 

3.74%, 3.17%, and 5.74% higher than those of original 

AlexNet. The most prominent improvement was realized on 

W. From the data volume of training sets, it can be learned that 

W provides more crack images than D and P, and has a more 

balanced ratio between crack images and non-crack images 

(background images). By reducing the number of nodes in 

fully connected layers, UmNet had 75.04% fewer training 

parameters than AlexNet. The experimental results fully 

demonstrate the effectiveness of the proposed UmNet model. 

 

Table 6. Test accuracies, losses, and number of parameters 

of Model A and UmNet 

 

Dataset Model Accuracy % Loss 
Number of 

parameters 

D 
A 87.31 0.5047 58,267,714 

UmNet 91.05 0.4142 14,545,652 

P 
A 89.69 0.4049 58,267,714 

UmNet 92.85 0.3659 14,542,652 

W 
A 85.33 0.4328 58,267,714 

UmNet 91.07 0.3815 14,542,652 

 

 
(a) Test accuracy on dataset D 

 
(b) Test accuracy on dataset P 

 
(c) Test accuracy on dataset W 

 

Figure 7. Test accuracy curves 

 

 

5. CONCLUSIONS 

 

Based on AlexNet, this paper puts forward a CNN model 

called UmNet for recognizing and classifying concrete cracks 

in complex backgrounds (including pot holes, construction 

seams, and seepage traces). 

(1) Small convolution kernels were adopted to deep the 

network, reduce parameters, and increase nonlinear transforms 

(nonlinear activation functions), without changing the 

receptive field. The effectiveness of small kernels was proved 

by an experiment on Model A1, which improved the test 

accuracies on D, P, and W by 2.04%, 1.38%, and 2.96%, 

respectively. 

(2) CBAM was introduced between convolution layers. The 

channel attention module of CBAM assigns a high weight to 

key channels, while the spatial attention module identifies the 

regions of interest in images. The effectiveness of CBAM was 

proved by an experiment on Model A2, which improved the 

test accuracies on D, P, and W by 1.1%, 1.48%, and 1.6%, 

respectively. 

(3) The proposed UmNet model combines multiple modules, 

including small kernels, CBAM, BN layer, and L2 

regularization, and reduces the number of nodes in fully 

connected layers. Experimental results show that the UmNet 
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improved the test accuracies on D, P, and W by 3.74%, 3.17%, 

and 5.74%, respectively, and reduced 75.04% of parameters. 

Therefore, the proposed UmNet model outshines the original 

AlexNet in classification and parameter volume. 
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