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One of the goals of neural decoding in neuroscience is to create Brain-Computer Interfaces 

(BCI) that use nerve signals. In this context, we are interested in the activity of nerve cells. 

It is possible to classify nerve cells as excitatory or inhibitors by evaluating individual extra-

cellular measurements taken from the frontal cortex of rats. Classification of neurons with 

only spike timing values has not been studied before, with deep learning, without knowing 

all of the wave properties and the intercellular interactions. In this study, inter-spike interval 

values of individual neuronal spike sequences were converted into recurrence plot images 

to analyze as point processing, image features were extracted using the pre-trained AlexNet 

with CNN deep learning method, and frontal cortex nerve cell type classification was made. 

Kernel classification, SVM, Naive Bayes, Ensemble, decision trees classification methods 

were used. The accuracy, sensitivity and specificity evaluate the proposed methods. A 

success of more than 81% has been achieved. Thus, the cell type is defined automatically. 

It has been observed that the ISI properties of spike trains can carry out information on cell 

type and thus neural network activity. Under these circumstances, these values are 

significant and important for neuroscientists. 
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1. INTRODUCTION

Neuroscience is based on the study of the nervous system.

It is an interdisciplinary field in which medicine, biology, 

psychology, chemistry, mathematics, physics and engineering 

sciences work together. Central and peripheral nervous system, 

brain, neuron, electrical potentials, synaptic connections, 

neural networks, nervous system development, sensory 

systems, motor control, learning, memory, language, 

cognition are some of the topics of interest to neuroscientists 

[1]. 

When a resting nerve cell is stimulated, a reaction called 

action potential (spike) occurs. Action potential is a potential 

change determined by differences in intracellular and 

extracellular chemical concentrations. The action potential 

(spike) measured from the nerve cell is a sudden electrical 

activity, as shown in Figure 1. Depending on the stimulus or 

situation, the spikes that are emitted into the neuronal cell, are 

generated or blocked. 

Figure 1. The action potential [2] 

With external sensory stimuli application such as light, 

sound, taste, odor and touch, sensory neurons show their 

activities with spike sequences in different temporal patterns. 

This sensory stimulus information is encoded and transmitted 

to the brain and its environment. This is considered the main 

way of transferring information in the nervous system [2]. 

Neuroscientists are studying the features of the sequence (time, 

propagation frequency, spiking rate, peak width, etc.) and the 

intercellular interactions to understand how the brain behaves 

(neuronal coding) depending on the stimulus or situation 

(sleep, wakefulness, hunger, thirst) to be analyzed. 

The frontal cortex is a region of the brain responsible for 

voluntary motor coordination and language. Studies are 

conducted to find out what type of neuronal activity these 

functions are involved we want to work with data acquired 

during one of these studies [3, 4]. 

In order to understand variable neural network architectures, 

it is important to know the basics of the methods of recording 

neural activities. The most invasive measures consist in 

placing electrodes in the brain and recording signals [5]. 

Figure 2. The basics of the methods of recording neural 

activities [6] 
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Extracellular multineural records are made using multi-

electrodes (Figure 2). At each electrode, the electrical activity 

of one neuron is measured as well as the electrical activity of 

neighboring neurons [7]. As can be seen in Figure 3A, two 

types of signals can be distinguished from the obtained 

measurements: The local field potential (LFP) and the action 

potential sequence (Figure 3B). Next, by a spike sorting 

process, a registered spike signal sequence is associated with 

each cell (Figure 3C) [7-10]. By using the individual neuronal 

signal and intercellular interactions, cell types are identified as 

excitatory or inhibitory. 

 

 

 

 

Figure 3. Extracellular multineural records. A: Obtaining spike sequences for all cells, from extracellular recording [10]. B and 

C: Spike sorting of three nerve cells [8] 
 

 
 

Figure 4. Neural decoding: Different neural input data (top) and prediction of many different outputs (bottom) [5] 

 

The raw waveform sequence is reduced to vectors time 

values. In this process, the presynaptic and postsynaptic 

interaction information of neurons, spike width and trough-to-

peak information are removed. This state of the data shows the 

spiking rate or time encoding, enabling the examination of the 

temporal structure in one or more cells. 

Spike sequences can help to understand the features of 

neural coding and decoding. In the coding process, neural 

activity is the result of a biological signal (stimulus). During 

decoding, the relationship is reversed and the signal (stimulus) 

is predicted from neural activity (Figure 4). 

One of the goals of neural decoding is to create brain- 

computer interfaces (BCI) that use nerve signals. This could 

allow, for example, patients with neurological or motor 

diseases to control a robotic arm. An additional objective of 

neural decoding is to better define the relationship between 

neural activity and the environment. To improve the accuracy 

of decoding, it is possible to compare work done with different 

experimental conditions (different brain regions, different cell 

types, different types of subjects). Neural decoding is used to 

predict movement, speech, vision, etc. [5]. As shown in Figure 

4 [5]. For example, in a decoding process, the spike sequence 

is sent to the decoder and an attempt is made to obtain the 

applied stimulus information. While the time coding of the 

sequence was used in the decoding process in previous works 

[11], there have not been many studies using deep learning [5]. 

The coding properties of spikes can convey information 

about the cell type. The classification of individual neurons 

informs us about the global state of activity (sleep or 

wakefulness) of the neural network (neural community) [12]. 

A neurotransmitter affects a neuron in three ways: with 

excitatory, inhibitory (Figure 5) or regulatory properties. In the 

excitatory nerve cells, pyramidal cells, the presynaptic neuron 

supports the generation of the action potential signal in the 

postsynaptic neuron, while this is blocked in the internal 

inhibitory nerve cells. Whether a neurotransmitter type 

depends on the receptor to which it binds [13]. Recognizing 

the excitatory or inhibitory properties of nerve cells in a 

particular area of the brain, provides information about the 

"learning" of the neural network [14]. In the measurements 

performed, the supposedly stimulating (excitatory-pyramidal 

cells) or suppressive (inhibitor-interneuron cells) properties of 

the cells must be highlighted. 
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Figure 5. Cell type: (left) excitatory or epsp (= excitatory 

post synaptic potential), (right) inhibitory or ipsp (inhibitory 

post synaptic potential [15] 

 

 
 

Figure 6. Classification of putative excitatory (pe) and 

putative inhibitory (pi) cells as a function of trigger 

frequency, spike width and trough-to-peak time using the raw 

waveform [3] 

 

By evaluating extracellular signals measured from the 

frontal cortex of laboratory animals, it is possible to classify 

nerve cells as either excitatory or inhibitory. This process has 

already been successfully carried out using the raw waveform 

or cross-correlogram method that evaluates intercellular 

interactions (Figure 6). Unfortunately, the latter method 

requires manual control of the result by the neuroscientist and 

is a laborious procedure [3].  

The trigger rate is higher in inhibitory neurons. This is due 

to the need for heavier measurement parameters than 

excitatory neurons. This explains the low amount of inhibitory 

cell measurement [14]. 

A fine analysis of the time structure in spike series can be 

used to find the characteristics of the cells. The classification 

of excitatory and inhibitory cells with only recorded spike 

timing sequences, without knowing their wave properties and 

inter-cellular interactions, has not been previously performed 

by deep learning. Can we now understand the neuronal activity 

of the frontal cortex through the temporal coding of spikes? 

Can we get information to decode this encoding? 

In probability theory and statistics, discrete series of events 

such as spike time sequences are analyzed as point processing. 

These time series are both dynamic and stochastic. Its 

properties therefore change over time. This signal is a series of 

binary values (0-1). Spike series are difficult to analyze and 

compare because there are few point processing analysis 

methods. 

Recently, many studies have attempted to determine the 

identity of neurons by evaluating the distance metric in spike 

timing [16]. One of them is the interval Inter-Spike (ISI) [12, 

17]. In neural coding, the distance between two spikes can 

contain important information [18]. The ISI value has been 

shown to be effective in classifying cell type in the brain [17]. 

In spike trains, a recurrence graph was used to visualize the 

dynamic changes of the ISI measurements. The recurrence 

graph converts each value into an Inter-Spike interval matrix 

[12]. This process allows to draw two-dimensional graphs, 

which allows to study many spike sequence properties such as 

serial dependence, chaos and synchronization [19]. In our 

study, the ISI values obtained from spike timing sequences 

will be converted into recurrence plot images. 

Over the past decade, deep learning has become the most 

successful method in many machine learning studies, from 

image segmentation to speech recognition. The popularity of 

deep networks in a variety of other fields has spawned a new 

generation of applications in neuroscience. Deep learning has 

proven to be an important tool for increasing the accuracy and 

flexibility of neural decoding in many areas. Further 

development of these areas of neuroscience can be expected 

in the future [5]. Deep learning techniques can also be 

considered effective with spike sequences converted into 

images. 

 

 

2. MOTIVATION 

 

Classifying nerve cells as excitatory or inhibitory using 

extracellular measurements of the frontal cortex of rats, 

Watson et al. [3] obtained about 90% accuracy in the 

waveform-based classification. He obtained this result using 

the raw spike waveform. Classification by the cross-

correlogram method, which is not fully automatic, requires 

intensive manual supervision by the neuroscientist and uses 

intercellular interactions, was close to 100%. In our study, we 

will use this output as ground truth in the classification of spike 

time sequences (without recognizing the intercellular 

interaction, spike width, trough-to-peak properties of the 

spike). 

In his study entitled "Computational classification approach 

to profile neuron subtypes from brain activity mapping data", 

Li et al. [17] classified pyramidal excitatory neurons and 

interneurons using spike wave, Inter-Spike interval and 

spiking rate. They developed two pyramidal cell types in the 

cortical and subcortical regions of awake and in slow wave 

sleep-SWS animals. This was done using the inter-spike 

interval. They also identified two types of dopaminergic (DA) 

neurons in the mesencephale-VTA (ventral tegmental region). 

In the classification of cell subtypes with the ANOVA and 

Tukey tests, he obtained high accuracy. 

Lazarevich et al. [12] in their paper "Neural activity 

classification with machine learning models on inter-spike 

interval series data", obtained 60% success in the classification 

of excitatory and inhibitory cells with the machine learning 

method, kNN (k-nearest neighbors). With the manual feature 

extraction method (tsfresh, Python package), he obtained more 

than 65% accuracy by using several classification algorithms 

(random forest, trees, boost). We used the same dataset in our 

work.  

Glaser et al. [20] in his work entitled "machine learning for 

neural decoding", he tried to study the decoding of spike neural 

activity with machine learning methods. They used Neural 
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Networks, Boosted trees, Support Vector Machines, on spike 

sequences from the motor cortex, somatosensory cortex and 

monkey hippocampus. In this study, to determine the instant 

movement speed, about 80% accuracy was obtained for the 

motor cortex, by the Ensemble approach. This success was 

about 60% in the hippocampus.  

In 1995, Şeker et al., and Hinton et al. developed, using the 

wake-sleep algorithm, a network with hundreds of hidden 

layers, 6 of which were fully connected. They saw that this 

was possible, even though the training took two days [21, 22]. 

Chagas et al, in a study entitled "Functional analysis of ultra 

high information rates conveyed by rat vibrissal primary 

afferents", they were able to predict the position, speed and 

acceleration of the rat whiskers from spike sequences of 

rapidly adapting and slowly adapting afferent cells with an 

accuracy of 80-90% [23]. Fang et al. [18] in their study entitled 

"Spiking neural networks for cortical neuronal spike train 

decoding", obtained about 82% of accuracy in classification 

with the SNN approach in motion control encoding. Saif-ur-

Rehman et al. [24] with the application of SpikeDeeptector, 

performed a classification study to distinguish noise and 

spikes from raw neural signals. They obtained an accuracy of 

98.9% using CNN and FNN (Fully connected Neural 

Networks) deep learning methods [24]. In our study, the 

importance of temporal structure and spiking rate in cell type 

classification will be revealed by using only the spike 

sequence, and not the raw neural signal as in the study of Saif-

ur-Rehman et al. [24]. Jouty et al. [25] in his study entitled 

"Non-Parametric Physiological Classification of retinal 

ganglion cells in the mouse retina", he achieved great success 

in classifying 1000 different retinal ganglion cells by 

comparing two spike sequences. Markanday et al. [26] in his 

study entitled "Using deep neural networks to detect complex 

spikes of cerebellar Purkinje cells", succeeded in 

distinguishing complex and simple spikes from cortex signals 

with the CNN deep learning network. This study is in the 

framework of spike sorting. Racz et al. [27] in his study 

entitled "Spike detection and sorting with deep learning", 

applied the CNN method to the raw wave from the motor 

cortex and contributed to brain-computer interface (BCI) 

studies by predicting the activity of 20 neurons with an 

accuracy of 89%. Livezey and Glaser [28] in his work entitled 

"Deep learning approaches for neural decoding: From CNNs 

to LSTMs and spikes to fMRI", reviewed deep learning 

approaches for neural decoding. He stated that deep learning 

has proven to be a useful tool for increasing the success and 

flexibility of neural decoding in a wide variety of tasks, and 

that further development of these scientific fields can be 

expected in the future [5]. 

Lin et al. [29] in their study entitled "Evaluation of vertical 

ground reaction forces pattern visualization in 

neurodegenerative diseases identification using deep learning 

and recurrence plot image feature extraction", using deep 

learning, made five classifications of neurodegenerative 

diseases with recurrence plots and obtained an accuracy of 

almost 100% [28]. Garcia-Ceja et al., in their study entitled 

"Classification of Recurrence Plots' Distance Matrices with a 

Convolutional Neural Network for Activity Recognition", 

obtained 90.1% accuracy using the convolutional neural 

network (CNN) with the recurrence plot [30]. Afonso et al. 

[31], in their study entitled "A recurrence plot-based approach 

for Parkinson's disease Identification", converted the signals 

from the sensors, which are on the pen used, to plot a 

recurrence plot, for Parkinson's disease detection and they 

improved the accuracy rate in detecting the disease with 87% 

[32]. 

The use of recurrence plot and CNN to classify spike 

sequences was not found in the literature. 

Neuroscientists are trying to understand more about how the 

different areas of the brain are connected to the external world. 

This might be useful, for example, to control human-computer 

interface devices by predicting the code for cerebral activity 

[20, 27]. One of the objectives of neural decoding is to provide, 

in a sick individual who has had treatment, a result similar to 

that of a healthy individual. For example, it may be aimed at 

developing a treatment that provides, in a patient with various 

complications of neuronal activity during sleep, results 

obtained from a healthy individual. Neuronal decoding is a 

classification used to associate nervous signals with certain 

variables [20]. To date, in deep learning techniques have been 

very successful in decoding neuronal activity (stimulus 

prediction from a spike sequence) [33] or in neural coding 

(prediction of neural activity from a stimulus) [34]. 

Well, can neural network models in deep learning help us to 

understand the neural networks of the brain? With these 

models, can temporal structure be used without all the 

characteristics of the neural signal? As in the brain, in the 

execution of the model in question, can we process few data to 

obtain the information required? 

Knowing whether cells are excitatory or inhibitory can help 

us understand how individual cells interact with each other, 

and thus learn about the activity of the neural network 

(neuronal community) in order to understand the neuronal 

code. Some properties of spike trains may contain information 

about the cell type [12]. 

As a hypothesis, a fine analysis of the temporal structure can 

be considered useful to find the properties of cells with spike 

trains. This is thought to be decisive in the analysis of an 

individual neuron. Can we understand the neuronal activity of 

the frontal cortex with an analysis of the temporal coding of 

the spike? The spiking rate is higher in inhibitory neurons than 

in excitatory neurons [14]. In the study, we can see that the 

temporal structure is distinctive. With just the temporal 

sequence of the spike, can we still classify the cells as 

excitatory or inhibitory? What accuracy values can we achieve 

under such conditions, even if the results of a raw signal are 

not achieved? 

In classification, studies using deep learning approaches on 

raw neural waveforms, have been very successful. However, 

in the literature, we have never encountered cell type 

classification with a temporal spike sequence studied with 

deep learning methods. During sleep and wakefulness 

situations, on measurements of the frontal cortex of the brain, 

statistical and machine learning models have been used to 

distinguish excitatory and inhibitory neurons. However, these 

classification studies have not been very successful. It may be 

possible to facilitate, accelerate and obtain new information 

with deep learning methods. With this type of data, can we use 

methods that have not been used before and improve 

accuracy? Can we use a small amount of data to have a 

significant result in our deep learning system? 

The temporal structure of spikes, the dynamic process of 

generating action potentials from individual neurons or the 

distance between spikes may have a significant role in the 

transfer of information via neurons [18]. The classification of 

excitatory and inhibitory cells with only temporal sequences 

and the Inter-Spike interval, without knowing all the features 

of the raw signals and cellular interactions, has not been 
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previously performed by deep learning. How can we carry out 

the work in this context? Deep learning techniques are thought 

to be effective with the conversion of signals into images. The 

aim of this study is to classify cell types by converting the ISI 

values of the individual neuronal sequence into a recurrence 

plot image, extracting the image features with deep learning, 

as shown in Figure 9. The sleep-wake state is not taken into 

consideration in this study in which we want to see the 

applicability of the methods in question.  

The computational neuroscience aims at developing 

mathematical computational models inspired by the 

neurosciences [35]. With these models, artificial intelligence, 

machine learning and deep learning solutions used in 

engineering have been developed. In our work, convolutional 

neural networks can be used to better understand the brain's 

nerve cell activity. We will try to see if the inspired model can 

help to further our understanding of the source of inspiration. 

In addition, our work may eventually help us to understand the 

multiple issues involved in the interaction between the 

neurosciences and computer science. 

 

 

3. MATERIAL AND METHODS 

 

3.1 Data 

 

In our study, a high-quality dataset with recordings of neural 

firing activity is used. The open-access fcx-1 dataset, which is 

freely available from the Collaborative Research in 

Computational Neuroscience (CRCNS) repository 

(http://crcns.org/), will be used [36]. 

In the dataset fcx-1 [3, 4], 11 male Long Evans rats aged 4 

to 7 months without any particular behavior, task or stimulus 

were used. During sleep and wake states, multielectrode arrays 

installed on a microdrive allow for multineural extracellular 

recordings by accessing the frontal cortex region. For this 

purpose, 256-channel Amplipex recording implants were 

used. Spiking activity and LocalField Potential (LFP) signals 

are distinguished from recordings. The Local Field Potential 

(LFP) is derived from the obtained signals using a 20 kHz low-

pass filter. LFPs are thought to be the sum of the input 

activities of local neurons [5]. With the 800 Hz high-pass 

filter, the action potential signals are separated and 

thresholded. The spike sorting applications, KlustaKwik and 

Klusters, allow the identification of the spike train of each 

individual neuron by the clustering or classification process. 

In general, cells with a firing rate of < 5 Hz and a width of > 

300 µs are excitatory, cells with a firing rate of > 10 Hz and a 

width of < 250 µs are inhibitory cells [17]. 

Data from approximately 40 cells were considered for each 

animal. There were 27 recording sessions containing an 

average of 2 wake-sleep episodes wherein at least 7 minutes 

of wake are followed by 20 minutes of sleep. Measurements 

lasted between about 1 and 8 hours [5, 37, 38]. Sleep states are 

determined according to the properties of the LFP and EMG 

signals. Sleep or wakefulness was not addressed in this study. 

Again, in this study it is assumed that the time and amplitude 

properties of each action potential do not change. Vectors of 

spike times was used for each cell. 

Approximately 1121 stable units (neurons) were recorded, 

with 126 putative inhibitory cells and 995 putative excitatory 

cells. The spike times trains were classified into 

neuron/experiment/animal. 

Several classifications can be solved with this dataset: 

- classification of excitatory and inhibitory cells with spike 

trains with a similar mean neural firing rate, 

- classification of the status of sleep and wakefulness 

activity. 

In our study, the first point above will be discussed using 

the vectors of spike times. 

In this study, we want to show that success rate is high with 

deep learning methods using fewer data, without the necessity 

of all the data set. The reason why we want to work with less 

data is that the time saving is important as well in recording 

signals, in all signal processing steps, in the conversion of the 

signals into images and in the acceleration of the deep learning 

process. 

 

3.2 Tools 

 

The study was executed with Matlab2020a. A computer 

with an Intel CoreTM i5-3210M 2.5 GHz processor, 6 GB 

RAM and an NVIDIA GeForce GT640M GPU graphics board 

was used. 

 

3.2.1 Preprocessing 

The multitude of features can sometimes interfere with 

proper operation. Therefore, one of the most common pre-

processing techniques is downsizing or feature selection. 

Feature selection is the process of identifying and removing 

information that is irrelevant and unnecessary. The selection 

of features in our study will be done automatically by the 

convolutional neural network (CNN). By reducing the size of 

the data, the learning algorithms can work faster and more 

efficiently. 

A classification problem occurred with this dataset. The 

images of excitatory and inhibitory cells with the same firing 

rate patterns are similar. In our study, images that are likely to 

cause misclassification were not removed. 

The number of spikes and the recording time in the 

sequence of each neuron are variable, so the length of the 

sequence is not the same. One way to normalize the length of 

the chains is to divide them into equal parts. They can be 

divided into segments of equal time or segments of equal 

number of points. In this study, each series will be divided into 

equal segments of 25 points. In other words, each sequence is 

divided into windows of 25 ISI and the number of data is 

therefore increased. We did not choose the number of points 

less than 25 to have enough information on an image, and not 

more than 25 to not lose the resolution of the image. 

Deep learning techniques would be effective by converting 

spike trains into images. The spike train that we have, could 

be plotted as a raster plot. On Figure 7A neuronal spiking 

activity of an excitatory cell is plotted over a duration of about 

6 hours. On Figure 7B neuronal spiking activity of an 

inhibitory cell is plotted. However, since the temporal 

properties of the data are more marked, it was preferred to 

obtain images in the form of a recurrence plot using Inter-

Spike interval values. In Figure 8, 8A shows the Recurrence 

plot of 25 ISI of the excitatory cell recordings. The 8B shows 

Recurrence plot of the inhibitory cell recordings. 

The spike sequences were collected from 6 neurons, 3 

excitators and 3 inhibitors from 5 of the 11 animals in the 

dataset summarized in Table 1. As shown in Figure 10 and 

Figure 11, we obtained 100 recurrence plot images for each 

cell. As a result, 1500 recurrence plot images of excitatory 

cells and 1500 recurrence plot images of inhibitory cells are 

generated (Figures 11 and 12). The images to be trained with 
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CNN are in RGB 227x227x3 and jpeg format. 70% (2100 

images) of the 3000 images are used for training and 30% (900 

images) for the test. 

 

 
 

Figure 7. 0-22000 seconds of raster plot that we plotted in 

Matlab: A: Neuronal spiking activity of an excitatory cell 

(blue). B: Neuronal spiking activity of an inhibitory cells 

(red) 

 

 
 

Figure 8. Recurrence plot. A: Recurrence plot of 25 ISI of 

the excitatory cell recordings. B: Recurrence plot of the 

inhibitory cell recordings. (dark blue: close to 0 seconds, 

burgundy: 30 seconds or more) visualized in Matlab 

 

Table 1. Features of dataset (pe: Putative excitatory, pi: 

Putative inhibitory) [3] 

 

Animal 

name 

Anatomical 

Location 

Number 

of 

Sessions 

pe Units 

/ Session 

pi Units 

/ Session 

BWRat17 ACC 2 38.5 4 

BWRat18 M2 1 34 6 

BWRat19 M2 2 44 11.5 

BWRat20 ACC 2 38.5 5.5 

BWRat21 mPFC 3 19.7 2 

Dino mPFC, ACC 8 41.8 3.9 

B22 OFC 3 34 7.3 

Bogey mPFC 1 33 3 

Splinter OFC 2 33.5 5.5 

Rizzo OFC 2 57 2.5 

Templeton OFC 1 10 0 

 

3.2.2 Feature change: Recurrence plot 

According to Eckmann et al. [37] the Recurrence Plot (RP) 

is a means of visualizing repetitive behaviors in time series. 

Recently, the recurrence plot, initially proposed as a visual 

analysis tool, has been used to extract dynamic properties 

(dynamism, synchronization, regime changes) from time 

series data of complex systems [38]. The conversion of the 

original 1D (time domain) signal into a 2D image format 

shows the temporal structure. The ISI distance matrices 

composed of our data can be recorded as images [39]. The 

recurrence plot provides a series of points of size N × N in 

square shape. N is the number of cases considered (Table 2). 

The points of the table are placed in the coordinates (i, j) with 

the value 𝐷𝑖,𝑗(x) as shown in formula (1) [31]. 

 

𝐷𝑖,𝑗(x) = ||𝑥𝑖⃗⃗⃗  − 𝑥𝑗⃗⃗⃗   || (1) 

 

X = {𝑥1⃗⃗  ⃗ , 𝑥2⃗⃗⃗⃗ , ..., 𝑥𝑛−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑥𝑛⃗⃗⃗⃗ } are ISI values in the matrix. All 

values are entered symmetrically. If 𝐷𝑖,𝑗(x) is divided by the 

largest value of X, the data are normalized and all values are 

between 0 and 1. On the other hand, neural data are both 

dynamic and stochastic. Therefore, it was observed that the 

difference between the normalized excitatory and inhibitory 

images diminished. We therefore chose not to normalize the 

values. If the difference between 𝑥𝑖⃗⃗⃗   and 𝑥𝑗⃗⃗⃗   is too small, the 

pixel will be dark, and if it is large, the pixel will be lighter. In 

addition, with these tools, texture characteristics (texture) can 

be analyzed on recurrence plot. 

 

Table 2. Recurrence plot matrix of 5 ISI values points 

 
 1 2 3 4 5 

1 0 0.0524 0.5194 0.0383 0.0771 

2 0.0524 0 0.4670 0.0140 0.0247 

3 0.5194 0.4670 0 0.4811 0.4423 

4 0.0383 0.0140 0.4811 0 0.0387 

5 0.0771 0.0247 0.4423 0.0387 0 

 

 
 

Figure 9. Flowchart from recording to cell type γ  

classification 
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Figure 10. Obtaining recurrence plots from raster plots: 

bwrat21_121113 first inhibitory cell, 25 ISI, 3 images 

Figure 11. Obtaining recurrence plots from raster plots: 

bwrat21_121113, second excitatory cell, 25 ISI, 3 images 

 

 
 

Figure 12. From spike train to recurrence plot, from image processing to deep learning and classification 

 

 
 

Figure 13. Model construction: architecture of the convolutional neural network (CNN) 

 

3.2.3 Artificial intelligence, deep learning 

The fields of neuroscience and artificial intelligence (AI) 

have a closely related history. A better understanding of 

biological brains is found to play a key role in building 

intelligent machines. Neuroscience studies in humans and 

animals have led to the development of studies in artificial 

intelligence. Taking this further, intelligent algorithms have 

the potential to offer new insights into the foundations of 

intelligence in the human and animal brain. This general 

narrative curve shows how ideas are exchanged between 

neuroscience and artificial intelligence [40]. 

Deep learning is important for people who want to 

understand how perception and cognition are derived from 

neural activity. Neural network model systems are based on 

biological brains and use only biologically reasonable 

calculations. Advances in deep learning are bringing us closer 

to understanding the brain via the various fields of 

neuroscienced [40]. 

With deep learning techniques that have shown great 

success in image and natural language processing, much 

greater success can be achieved in this study. In deep learning, 

there is a structure based on learning several levels of data 

characteristics. Deep learning is essentially based on learning 

data representation [21]. 

The human brain can learn with much less data than deep 

learning. Moreover, deep learning uses many more neural 

layers than the human brain [11]. In the coming years, neural 

network learning will be possible with more robust and 

generalized performance by becoming less dependent on large 

labeled data sets [41]. In this work, we will use a reduced 

number of data sets for learning. 

 

3.2.4 Convolutional Neural Networks (CNN) 

The convolutional neural network (CNN) in fact imitates 

the human cerebral cortex. The CNN algorithm is inspired by 

the visual processing center of animals. 

CNN is a Multi Layer Perceptron-MLP. The convolution 

process is the response of a neuron to stimuli from its own 
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stimulation field. As shown in Figure 14, CNN consists of 

one or more fully connected layers, like a neural network [21]. 

 

 
 

Figure 14. Deep neural network with 3 inputs and 2 outputs 

 

The architecture of a CNN is designed to have a 2D input 

structure (image or signal). One advantage of CNNs is that 

they are simpler to train. CNNs have far fewer parameters than 

other fully connected networks [29]. 

In general, a CNN is composed of convolution, pooling and 

fully connected layers. The convolution layer consists of a 

series of filters that apply to the width and height of the input 

image. At the convolution layer, there is learning of 

hierarchical patterns, which is not the case for fully connected 

layers. The surface layers learn small local patterns, while 

subsequent layers learn more abstract patterns than the 

previous ones. The pooling layer divides the input image into 

non-overlapping rectangular subregions to which a function is 

applied. Pooling layers reduce the size of the data from the 

convolution layer, which reduces the number of parameters 

and makes the process of learning more computationally 

efficient [30, 39]. In image recognition tasks, feature detection 

is very important rather than the exact location of that feature. 

This is achieved at the level of the pooling layer which 

provides translation invariance. As a result, at the expense of 

spatial resolution, less significant data is eliminated and the 

detected features are preserved in a minimal representation.  

Max pooling and average pooling are the most commonly 

used reduction methods. Max pooling has shown more rapid 

convergence with improved performance [42]. Thus, current 

work tends towards max pooling. Max pooling is used in the 

Alexnet architecture.  

The overlapping window method at the pooling layers can 

reduce the risk of overfitting. This reduction can limit the 

depth of a network and ultimately its performance. This 

problem has prompted researchers to find alternative methods 

to improve or replace the pooling layer. One approach is to use 

"fractional filters instead of common filters" [43]. Another 

option is to remove the pooling layers and perform the 

reduction by increasing the pitch in the convolutional layers 

[44]. These solutions remain current research topics, and will 

not be addressed in our work. 

After stacking the convolution and pooling layers, the last 

layer is usually used to obtain the final classification [29]. 

 

3.2.5 Transfer learning 

With the knowledge acquired, human beings have an 

excellent ability to generalize or transfer learning to areas not 

previously seen. For example, a person who can drive a car 

can act when confronted with a vehicle that has never been 

used before. On this basis, artificial intelligence architectures 

that can show strong generalization or transference have been 

developed. In the neuroscience literature, one of the distinctive 

characteristics of transfer learning has been the ability to 

reason. AI researchers have made progress in building deep 

networks that meet these expectations [40]. With transfer 

learning, there can be rapid learning and connections can be 

made with other data [40]. In this study, an AlexNet pretrained 

model architecture was used because the ratio of processing 

time to classification accuracy performance is judicious [45]. 

A pre-trained AlexNet CNN is used with the MATLAB 

R2020a Deep Learning ToolboxTM [45]. Kirzhevsky et al. 

trained a deeply convolved neural network, called AlexNet. 

The latter, contains 1.2 million high resolution images from 

1000 different labels. The architecture consists of 25 layers, 

including an input layer, five convolution layers, seven ReLU 

layers, two cross-channel normalization layers, three 2D max-

pooling layers, three fully connected layers, two regularization 

layers, a softmax layer, and an output layer. The shallow layers, 

which generally produce fewer features, have higher spatial 

resolution and a greater number of activations. The deep layers 

contain higher level features created by features from the 

surface layers (Figure 13) [29]. 

In this work, a pre-trained AlexNet [45] was used to obtain 

a balance point between accuracy performance and 

computation time. Indeed, with Alexnet, the classification 

accuracy is much better than classical CNNs such as LeNet. 

Moreover, AlexNet consumes less time compared to advanced 

CNNs such as GoogLeNet or ResNet) [29]. 

 

3.2.6 Image classification 

The purpose of image classification is to classify images 

into several classes, according to a labeling. We can list the 

steps of the operation as follows: 

- Input: consists of N images, each labeled by one of the K 

different classes. These data are called training sets. 

- Training: learns what the classes look like using the 

features of the input data. 

- Evaluation: As a result, the classifier is asked to guess the 

labels of a new set of images that has never seen before. It is 

then compared to the actual labels, so the classifier is evaluated 

[28]. 

In our study, among data mining methods, decision trees 

and Support Vector Machine (SVM), collective models 

(ensemble methods), Naive Bayes and kernel classification 

methods have been tested. The hyperparameter optimization 

option is used in all classification algorithms. This option 

allows to find the best performance of the classifier by 

selecting the optimal value for the hyperparameters. For this 

purpose, 30 tests are performed. 

 

3.2.7 Decision tree 

Decision trees are one of the supervised learning algorithms 

and by extracting decision rules from the training dataset, they 

create a model to estimate the class or value of the target 

variables. Starting with the variable with the lowest entropy, 

they determine the variables as hierarchical decomposition 

nodes in a tree structure. In decision tree learning, repeated 

attempts are set to find a decision or a way to divide the classes 

that best separates them [46]. Once the decision tree and 

decision rules are created, data attribute values are tested on 

the decision tree to classify an unknown data. The class of the 

data is determined by running from the root to the leaf on the 

decision tree. There are many different algorithms [32]: 

Matlab uses the CART (Classification and Regression Tree) 

algorithm. The decision tree algorithm generally uses Eqns. 
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(2), (3) and (4). 

Knowledge gain: 

 

I(p,n) = 
−𝑝

𝑝+𝑛
𝑙𝑜𝑔2 (

𝑝

𝑝+𝑛
) −

𝑛

𝑝+𝑛
𝑙𝑜𝑔2 (

𝑛

𝑝+𝑛
) (2) 

 

The label attribute or result is checked by binary values (0,1) 

to find p and n. 

The entropy E (A) is essentially used to build a tree: 

 

E(A) = ∑
𝑝𝑖+𝑛𝑖

𝑝+𝑛

𝑣

𝑖=1
 (𝐼(𝑝, 𝑛)) (3) 

 

The gain is mainly used to find training features [47]: 

 

Gain = I(p,n) – E(A) (4) 

 

3.2.8 Support Vector Machine (SVM) 

The support vector machine is a learning algorithm that 

studies how to draw boundaries between variables in order to 

better distinguish the classes to be predicted [48]. Support 

vector machines are divided in two according to the linear or 

non-linear separation of the data set. Assuming that the data 

are linearly distributed, the classes are separated from each 

other using a decision function determined using training data. 

For non-linear data, the curve separating the classes from each 

other is estimated [32]. In this study, there is a quadratic 

separation. By mapping the input space to a kernel space, a 

quadratic model is created on this space. 
 

3.2.9 Sample based ensemble learning 

Sample Based Ensemble Learning methods, one of the 

classification methods, are used to increase the success of 

training of base learner [49]. 

Individual learners working together to build an ensemble 

is called collective learning. Ensemble methods are meta-

algorithms that combine various machine learning techniques 

into a single predictive model to increase prediction power or 

reduce variance and bias error by using multiple classification 

models. With this approach, it is possible to produce better 

prediction performance than a single model. 
 

3.2.10 Naïve Bayes 

Naive Bayes is a simple probabilistic classifier based on the 

application of the Bayes theorem. It is a model that determines 

its own features. A Naive Bayes classifier assumes that the 

existence of a particular property of a class has no relation to 

the existence of another property. The advantage of the Naive 

Bayes classifier is that it requires only a small amount of 

training data to estimate the variances of the variables needed 

for classification. The Naive Bayes operator (Kernel) can be 

applied to numerical attributes. This can clearly be done using 

kernel density estimation and the Bayes theorem: 

 

�̂�(𝑦 = 𝑗|𝑥0) = 
�̂�𝑗 �̂�𝑗(𝑋0)

∑ �̂�𝑗 �̂�𝑗(𝑋0)𝐾
𝐾=1 

 (5) 

 

�̂�𝑗 is an estimate of the previous probability of class j; in 

general, �̂�𝑗 is the sampling frequency that falls into the jth 

category, 𝑓𝑗is the predicted density at 𝑥0 [50]. 

 

3.2.11 Kernel classification 

It allows the conversion of linearly inseparable data into 

linearly separable data. The kernel function is applied to the 

dataset to extract the original nonlinear observations in a 

higher dimensional area from which they can be separated [50]. 

This function moves the data from a small dimensional space 

to a large dimensional space. The linear model in a higher 

dimensional area is equivalent to a model with a Gaussian 

kernel in a lower dimensional space. The Gaussian kernel 

classification model is used for Big Data applications with 

large training sets by extending the random characteristics, but 

it can also 0be applied to smaller data sets that hold in memory 

[51]. 

Mathematical definition: 
 

K (x, y) = <f (x), f (y)> (6) 
 

Here, K is the function of the kernel, x, y, n-dimensional 

entries. f is the transition from an n-dimensional space to an 

m-dimensional space. Usually, m is much larger than n [50]. 

The Fitckernel function uses the Fastfood scheme for the 

extension of random features and applies a linear classification 

to form a Gaussian kernel classification model. Unlike the 

Fitcsvm function, which requires the calculation of the n x n 

Gram matrix, the Fitckernel solver only needs to form a matrix 

of size n x m [51]. 

The kernel solves the problem by using a given finite-

dimensional feature space. For large datasets, the kernel 

approach can be much faster and produce sufficiently good 

results. 

 

3.2.12 Evaluation methods 

For the performance evaluations of the algorithms used, the 

values of accuracy rate (7), confusion matrix (Table 3), 

sensitivity (8) and specificity (9) will be sufficient. 

For this study, accuracy has been defined as the ability of 

the algorithm to accurately detect the cells (excitatory or 

inhibitory) from which the data are derived. The accuracy can 

be calculated using formula 7. 

The confusion matrix is used to evaluate the accuracy of the 

model in the classification results. As can be seen in Figure 15 

and Figure 16, the TN, TP, FN, FP values may change 

depending on the location of the threshold selected by the 

classifier. 
 

Table 3. Results of the evaluation parameters 
 

 Accuracy Specificity Sensitivity 

Kernel 0.8044 0.8311 0.7778 

SVM 0.7678 0.7467 0.7889 

Naive Bayes 0.8133 0.7622 0.8644 

Ensemble 0.7978 0.7689 0.8267 

Tree 0.7478 0.7311 0.7644 
 

 
 

Figure 15. TN (True Negatif), TP (True Positif), FN (False 

Negatif), FP (False Positif) values in the classification of data 

according to a threshold 
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Figure 16. Confusion matrix, Predicted class vs. True class. 

EXCIT: excitatory, INHIB: Inhibitory 

 

The accuracy in the confusion matrix is calculated as 

follows: 
 

Accuracy = ((TP+TN)/(TP+TN+FP+FN)) x 100 

= (1 - 
misclassified

total 
) x 100 

(7) 

 

The confusion matrix helps to identify areas where the 

classifier is malfunctioning. In the table, the rows show the 

actual class and the columns show the predicted class. 

Diagonal cells show how well the actual and predicted classes 

match. 

 

Sensitivity = TP / (TP + FN) (8) 

 

Specificity = TN / (TN + FP) (9) 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Results 

 

In this study, the Inter-Spike interval values of each 

neuronal sequence were converted to a recurrence plot image, 

the image features were extracted by Alexnet CNN and the 

classification of nerve cell types in the frontal cortex was 

performed in rats. In the study, classification methods such as 

kernel classification, support vector machines, Naive Bayes, 

Ensemble, decision tree were used. Results can be obtained 

with the data from the confusing matrices in Figures 17-19. 

The precision, sensitivity and specificity of the proposed 

methods were measured as evaluation parameters. 

As can be seen in Table 3, the method that gave the best 

classification result was Naive Bayes with an accuracy of 

81.33%, specificity of 76.22% and sensitivity of 86.44%. The 

best specificity value was obtained by Kernel classification 

with 83.11%. But its accuracy value is also important, but 

slightly lower than Naive Bayes. For the sensitivity, the result 

is among the lowest. With the best accuracy, after Naïve Bayes, 

we can use Kernel (80.44%) and Ensemble (79.78%) 

classifications. We can adopt the Naïve Bayes and Kernel 

classification for this work. The least suitable classifications 

are SVM and Tree. 
 

 
 

Figure 17. Kernel classification confusion matrix. TP=350; 

FN=100; FP=76; TN=374 

 
 

Figure 18. Naive Bayes confusion matrix. TP=389; FN=61; 

FP=107; TN=343 

 

This algorithm gave the most effective result in the 

Ensemble trial with the Bag method. 

 

 
 

Figure 19. Ensemble confusion matrix. TP=372; FN=78; 

FP=104; TN=346 

 

Table 4. Best test result with the hyperparameter 

optimisation 

 
 Value of the 

objective function 

Function evaluation 

time (seconds) 

Kernel 0.2176 175.9 

SVM 0.2390 15.1 

Naive Bayes 0.2081 273.41 

Ensemble 0.2005 352.4 

Tree 0.2452 23.81 

 

In the hyperparameter optimization study, 30 trials were 

conducted for each method. The best results of the trials are 

presented in Table 4 according to different classification 

methods. Considering the evaluation time, we have seen the 

most optimal values with Kernel classification. Looking at the 

optimization results on Table 4, we can see that the Kernel 

classification is the most suitable. In kernel classification, an 

optimization study was carried out to find the best 

hyperparameters. With 30 trials, the value of the estimated and 

observed minimum objective function was 0.22. Using the 

kernel scaling parameter, a random basis for the extension of 

random features was obtained, which was at best 44,813. 

Lambda determines the power of regularity and was estimated 

to be 0.00018685 at best. 

The most interesting function evaluation time is obtained by 

SVM, with 15.1 seconds. But with this, the value of the 

objective function remains relatively high (0.2390), which 

makes this algorithm less usable. The most interesting value 

of the objective function is obtained by Ensemble but with a 

very high function evaluation time (352.4 seconds). 

Considering both values, we can adopt the Kernel 

classification with a value of the objective function of 0.2176 

and a function evaluation time of 175.9 seconds. 

The classification of excitatory cells was, at best, obtained 

by Naive Bayes with 86.4%. The classification of inhibitory 

cells, on the other hand, was obtained by Kernel classification 

with 83.2% (Table 5). 

816



 

Table 5. Results of classification of excitatory and inhibitory 

cells (%) 

 
 Excitator cell 

classification 

Inhibitor cell 

classification 

Kernel 77.8% 83.2% 

SVM 78.9% 74.7% 

Naive Bayes 86.4% 76.2% 

Ensemble 82.7% 76.9% 

Tree 76.44% 73.11% 

 

With the Kernel classification of inhibitor cells, the best 

result is obtained with 83.2%, but for excitator cells, this 

classification is 77.8%. The classification of excitator cells is 

maximal using Naive Bayes (86.4%) but this classification 

remains a bit weak for inhibitor cells (76.2). The classification 

of excitatory cells is also relatively interesting with Ensemble 

as we have obtained 82.7%. Ensemble gave us a slightly 

higher classification result for inhibitor cells than what we 

obtained with Naive Bayes. In this framework, the poorest 

results were given by SVM and Tree classification. 

 

4.2 Discussion 

 

Statistics and machine learning models did not obtain a very 

good classification of excitatory and inhibitory neurons, with 

data from the frontal cortex of the brain in the sleep and 

wakeful state in rats. The deep learning methods, which have 

not been used before with this type of data, allowed to have a 

classification with better results. 

The classification of excitatory and inhibitory cells with 

only spike times sequences was performed by deep learning, 

without knowing all the properties of the raw signals (spike 

width, spike trough-peak length) and the intercellular 

interactions. More than 81% accuracy was obtained with 

respect to the Ground Truth. The best classification of 

excitatory cells was obtained by Naive Bayes with 86.4%. The 

best classification of inhibitory cells was obtained by Kernel 

classification with 83.2%. Using the same data set, but with 

more data, Lazarevich et al. [12] in their article "Neural 

activity classification with machine learning models on inter-

spike interval series data", had found 65% success in 

classifying excitatory and inhibitory cells with machine 

learning methods. Compared to this value, we obtained better 

success with deep learning methods. We have also seen that 

we can reduce the number of data, and therefore the processing 

time to get a good classification result. Thus, it has been 

observed that cells can be classified as either excitatory or 

inhibitory with great success using spike time series that do 

not contain all the characteristics with respect to the raw 

waveform, and this with less data. 

Although the success (> 90%) obtained with the raw wave 

based classification method cannot be achieved [3], these 

values are not far off. Consequently, the importance of 

temporal structure in neural data has been revealed. Under 

these conditions, we can say that such results are relatively 

important for neuroscientists. 

If our data were raw spike trains, we believe our success rate 

could increase. Like Saif-ur-Rehman et al. [24] with the 

application of SpikeDeeptector, the classification study to 

distinguish between noise and signal from raw neural signals 

had 98.9% success with deep learning. 

This dataset, which includes spike firing rate or time coding, 

made it possible to consider the temporal structure in an 

individual cell. The analysis of the fine temporal structure in 

the sequences was used to find the properties of the cells. It 

was observed that frontal cortex spike activity and 

classification of neuron types can be understood by spike times 

coding. We can say that the ISI properties of spike trains can 

carry information about the cell type and thus about the neural 

network activity. 

In neural coding, recurrence plot images using ISI values 

have increased the success of classification. Recurrence plot 

was used to extract dynamic properties (dynamics, 

synchronization, regime changes) from the spike sequence 

data of these complex systems [38]. Lin et al. [29] in his work 

"Evaluation of vertical ground reaction forces pattern 

visualization in neurodegenerative diseases identification 

using deep learning and recurrence plot image feature 

extraction", Garcia-Ceja et al. [30] in his book "Classification 

of recurrence plots 'distance matrices with a convolutional 

neural network for activity recognition", Afonso et al. [31] in 

his study entitled "A recurrence plot-based approach for 

Parkinson's disease Identification", we saw the improvement 

of results thanks to recurrence plot and deep learning methods. 

We have shown that the same methods increase the success of 

our own study. 

Recognizing the excitatory or inhibitory properties of nerve 

cells in a particular area of the brain, during sleep and 

wakefulness, helps to understand how individual cells interact 

and thus provides information about the "learning" of the 

neural network [14]. Concrete links have been established 

between neural network learning and spike-timing, which 

depends on plasticity [51]. It is promising to use deep learning 

methods to study learning in sleep and wakefulness with spike 

timing data. 

It can be said that the representations learned through deep 

learning are used to better understand the structure of neuronal 

information. In this study, convolutional neural networks are 

used to better understand the activity of brain nerve cells. The 

results may help to understand the inspired model and to 

update its architecture. 

 

 

5. CONCLUSION 

 

In this study, the Inter-Spike interval values of the 

individual neuron spike sequence were converted into a 

recurrence plot image, the characteristics of the image were 

extracted using the pre-trained Alexnet learning transfer 

method and the classification of nerve cell types of the frontal 

cortex was performed. In our study, classification methods 

such as kernel classification, support vector machines, Naive 

Bayes, Ensemble, and finally the decision tree were used. 

More than 81% success was obtained with Naive Bayes in the 

classification of excitatory and inhibitory cells with temporal 

spike sequences, from which some wave properties and 

intercellular interaction information were suppressed. Thus, 

the cell type is defined automatically. It has been observed that 

the ISI properties of spike trains can carry information on cell 

type and thus neural network activity. Learning whether cells 

are excitatory or inhibitory indicates how individual cells 

interact. Consequently, the importance of temporal structure 

in neuronal data was revealed. Under these circumstances, 

these values are significant and important for neuroscientists. 

In summary, deep learning neural network models help us, 

in part, to understand the neural networks of the brain. With 

these models, the temporal structure can be used without all 

the characteristics of the neural signal. As in the brain, in the 
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execution of the model in question, we were able to process 

little data to obtain the required information. 

In this study, we have seen the applicability of the methods 

used. In another study, we plan to do a more complete study 

and comparison using various trained networks, increasing the 

amount of data, modifying the pre-processing steps. 
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