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Selecting the relevant features from the electroencephalogram (EEG) data that can 

differentiate normal and epileptic classes of data with promising accuracy is a multifaceted 

problem. Feature selection accounts for recognize a subset of features and in consequence 

eliminate the irrelevant features. In this paper, we propose an optimization approach that 

performs the feature selection by considering the “chaotic” version of firefly optimizer, 

which is a swarm intelligence family of algorithms that mimics the nature inspired flashing 

lights mechanism of fireflies. The balance between exploration of the search space and 

exploitation of the best solutions is a challenge in multi-objective optimization, to maximize 

the eminence of the data-training fitting model with reduced feature set. In this paper, chaotic 

map is used to produce the chaotic sequence and used to control the feature optimization 

process. The purpose of chaotic maps is to determine the light absorption coefficient of the 

firefly algorithm (FFA). We propose Joint Logistic-tent map (JLTM) based improved 

chaotic firefly algorithm (ICFFA) to implement the feature selection followed by Multi-

Class Support Vector Machine (MSVM) for evaluating the classification accuracy. We 

generate the chaos streams using various chaotic maps. The results have shown that the 

JLTM is recognized as being the most important chaotic map to increase the overall quality 

of the ICFFA performance. The experimental results prove the JLTM based ICFFA leads to 

improved classification accuracies when compared with state-of-the-art methods. 

Keywords: 

MSVM, firefly optimization, seizure 

prediction, EEG, discrete wavelet transform 

(DWT), chaotic maps, JLTM 

1. INTRODUCTION

Epilepsy is a disorder that affects the absence of neural 

stimulation in patients [1]. More recent evidence [2] shows 

that approximately 40 million across the globe are affected by 

epilepsy problems in the United States. Earlier detection of 

this risk of uncontrolled seizures and curing epileptic seizures 

in the patient at the right time can save the patient’s life. For 

the past ten years, there has been a rapid rise in using clinical 

research trials based on epilepsy circumvention techniques are 

in progress. These are very useful for epilepsy patients and can 

enable them to take tentative action to care for them from 

damage or follow precautionary treatment. Current solutions 

to seizure prediction are inconsistent, even the best approaches 

suffer from an inconsistency between sensitivity (able to 

predict seizures) and accuracy (circumvention of false alarms). 

Similarly, various approaches have been proposed by Ji et al, 

and Xia and Leung [3, 4] towards the multi-channel EEG 

signals for epileptic seizure detection. Most studies have 

focused on machine learning (ML) and optimization 

algorithms to improve epilepsy detection accuracy and make 

the process automatic. However, there is still a need for 

improvement of estimation of epilepsy detection and for 

classification problems; the optimization methods of feature 

selection (FS) can achieve high classifying accuracy. By 

combining other non-linear features, they can further improve 

accuracy. To optimize the feature selection, it uses an 

optimization algorithm and several other methods for the 

selection of sub-sets with multiple search strategies and 

evaluation functions have been developed and used. Standard 

optimization algorithms recently developed to find global 

solutions for combinatorial optimization problems. Some 

feature selection optimization has recently proposed, which 

includes Grey Wolf Optimizer (GWO) [5]. However, it should 

be noted that it generates the initial population of unique GWO 

randomly that lacks the diversity for the wolf swarms during 

the search space which makes it computationally time-

consuming. Whale optimization algorithm (WOA) [6] is a new 

heuristic random intelligent algorithm based on population. 

However, whale optimization algorithm has the disadvantage 

of slow convergence speed because of its incapability of 

exploring the search space.  

The Butterfly Optimization Algorithm (BOA) [7] 

introducing the migrate operator, the created monarch 

butterfly will be adopted in the next generation as a new 

monarch butterfly, no matter if it is good or even worse. Since 

the search, strategy of BOA easily falls into local optima, 

results in the reduced performance and early convergence on 

several complex optimization problems. In addition, classical 

particle swarm optimization (PSO) is suggested by Adamczyk 

[8] for the problem of continuous optimization, does not fit for

issues of binary solution space feature selection. The principle

of ant colony optimization (ACO) is to imitate the way actual

ants find the best solution vector between their nest and a food

supply. The ACO algorithm [9] and its iterations have long

been considered resolving issues of combinatorial

optimization. However, ACO’s performance is undesirable as

each ant has to look for a valid solution, and the duration is
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large.  

By constructing a relatively minimal number of feature 

subsets for assessment, the above-discussed methods find an 

optimal solution. Using some pre-determined assessment 

measure, it then tests the candidate subsets. In addition, the 

algorithm’s output depends upon the proper tuning factor and 

iterations involved. The FFA population-based [10] that 

replicates the flashing properties of fireflies to search for 

potential search space features. Initial population selection 

plays a significant role both quantitatively and qualitatively in 

the speed of global convergence and the efficiency of swarm-

based optimization methods. 

This encourages our efforts to put forward an improved 

version of FFA to deal with the feature selection problems. 

This concept has therefore inspired us to create a diversified 

initial population of the problem using logistic map it uses 

based CFFA for optimal collection of subset features from the 

diversification population. Therefore, there is need of 

improving the traditional firefly optimization algorithm 

further that can solve the feature selection problem with 

minimal efforts. Since chaotic map alone cannot achieve wide 

range, we use CFFA with Joint logistic-tent map (JLTM) is 

suggested in this work by combining the discovery and 

exploitation to cope with further feature selection problems. 

 

 

2. RELATED WORKS 

 

Researchers for epilepsy diagnosis using optimization 

techniques on EEG data have proposed several approaches. It 

provides a quick overview of several significant contributions 

to the current literature in this portion. 

Slimen et al. [11] suggested a contemporary computational 

system for ML techniques to detect and classify EEG epileptic 

seizures. It consists of the autoregressive algorithm for feature 

extraction and firefly for optimization purpose, to achieve 

better accuracy in case of epileptic seizures classification. 

However, it uses the objective function to get the best 

candidate solution and classification by taking the help of 

support vector machine (SVM) model. In contrast, the 

implemented approach unsuccessfully to reach better 

detection accuracy in a dataset. 

Agboola et al. [12] suggested a patient-specific seizure 

prediction based on scalp electro encephalogram (SEEG) 

which involves a moving window analysis extracted from 

every event of EEG channels and relevant frequency sub-

bands considering the bivariate EEG feature called the 

Normalized Logarithmic Wavelet packet coefficient energy 

Ratios (NLWPCER). The validation is done using an Analytic 

Random Predictor (ARP). The results obtained are successful 

in predicting only simple seizures suitable for small dataset 

medical applications. Pramudita et al. [13] suggested a tool for 

improving the sensitivity of EEG motor imaging signals with 

hybrid firefly algorithm and SVM (FFASVM) classification. 

Using FFASVM, the spatial filter extracted a suitable channel 

from the EEG signal and the work reported the precision of the 

SVM classifier with an analytical method to refine firefly 

algorithms. One of the reasons that degraded the system's 

overall performance to achieve only average accuracy of 

93.20% is the low convergence rate. Anter et al. [14] choose a 

chaotic based binary GWO technique for elimination of 

irrelevant features, which tries for dimensionality reduction 

deprived of losing classification accuracy. Similarly, Abdel-

Basset et al. [15] suggested a GWO algorithm combined to 

form dual-phase mutant technique to overcome the reduction 

of features with wrapper techniques for classification tasks, by 

employing dual-phase mutant approach improves the system’s 

exploitability. In addition, for achieving improved 

performance of the system, it uses various optimization 

approaches for feature selection process. 

 

 

3. MATERIALS AND METHODS 

 

In this sub-section the proposed Epilepsy proposed epilepsy 

framework comprises of five phases such as dataset collection, 

signal pre-processing, feature extraction (FE), feature 

selection (FS) (i.e., optimization), and classification (see 

Figure 1). The first & second phases are the EEG dataset 

followed by the pre-processing phase with precise filtering 

strategies to remove artifacts. The third phase is a feature 

extraction of statistical features (SF1-SF9), entropy features 

(EF1-EF2) with the assistance of Power Spectral Density 

(PSD), Common spatial pattern (CSP), and Autoregressive 

(AR) model. The fourth phase CFFA performs the feature 

selection process that results in reduced feature subset (RFS1, 

RFS2, ..., RFSn) which can be used to build and test the multi-

class SVM classifier (M-SVM) in the final phase. 

 

3.1 EEG data selection 

 

In this paper, we used the publicly available data set [16] 

that comprises of 5 sets, namely (A, B, C, D, and E), each with 

23.6 seconds of EEG blocks with 100 individual channels. 

EEG recordings with severe artifacts like activity in eye 

muscles, and noise variations can be removed using Principal 

component analysis (PCA) with automatic target generation 

process (ATGP), and other artifact removal methods [17]. In 

this work, we are concerned with a three-class case that 

accompanies with the PSD, which provides us an energy 

distribution across frequency bins, whose frequency ranges 

differ and which can be very useful for extraction. The CSP 

procedure helps to separate the relevant and non-relevant 

channels from EEG signals (i.e. channel selection). Finally, 

the use of a prediction filter AR pattern improves EEG signal 

accuracy [18]. 

The first phase is the EEG dataset followed by the pre-

processing phase with precise filtering strategies to remove 

artifacts. The third phase is a feature extraction of statistical 

features (SF1-SF9), entropy features (EF1-EF2) with the 

assistance of PSD, CSP, and AR model. The fourth phase 

CFFA performs the feature selection process that results in 

reduced feature subset (RFS1, RFS2, ..., RFSn) which can be 

used to build and test the multi-class SVM classifier in the 

final phase. 

 

3.2 Preprocessing 

 

The preprocessing phase is customized to suit all 

requirements of artifacts and noise removal to preserve the 

EEG rhythms. All the specifications are provided in the 

proposed diagram. 

 

3.3 Feature extraction 

 

It is the process of decreasing the amount of data (i.e., 

dimension) for obtaining less computation time for further 

process. The epileptic EEG varies considerably with the 
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frequency, duration, intensity of the regular EEG signal, etc. 

Feature vectors Extraction using DWT: Each EEG signal 

is decomposed by discrete wavelet transformation (DWT) into 

5 constituent EEG sub-bands. We analysed the EEG epochs 

into different frequency bands using 4th-order wavelet feature 

Daubechies (db4) up to 4th level of decomposition as shown in 

Figure 2. The EEG signals were then decomposed into D1-D4 

information and one final approximation of A4. For each EEG 

segment, the first, second, third, and fourth-level detail-

wavelet coefficients (dk, k = 1, 2, 3, 4) in the order of (129 + 

66 + 34 + 18 coefficients) and fourth-level approximation 

wavelet coefficients (a4) (18 coefficients) were determined. 

Thereafter, 265 wavelet coefficients for each EEG section 

were obtained. The wavelet coefficients of the EEG signals 

formed the first diverse feature vector representing the EEG 

signals. 

 

 
 

Figure 1. Overview of proposed 5-phase framework 
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Figure 2. Arrangement of discrete wavelet transform (DWT) 

 

In this paper, we have extracted the statistical values like 

Standard deviation (SD), Entropy, Variance, Median, Kurtosis, 

Skewness, Co-variance, Energy of wavelet coefficients from 

each sub-band that were chosen to classify EEG signals. By 

removing the data redundancy that has been stored in 

continuous wavelet transformation, DWT enables 

computation simpler and more efficient. To evaluate both 

frequency components, DWT of a signal s[n] is considered as 

it passes through a series of low pass filter (LPF) and high-

pass filter (HPF). 

 

[ ] [ ] [ ] [ ]. [ ]low

k

Y n s n g n s k g n k



=−

=  = −  (1) 

 

[ ] [ ] [ ] [ ]. [ ]high

k

Y n s n h n s k h n k



=−

=  = −  (2) 

 

In Eqns. (1) and (2) the terms g[n] and h[n] indicate the 

impulse response of both filters (i.e. LPF and HPF). Although 

it undergoes down sampling the filter does not loss any 

information. 

 

[ ] [ ]. [2 ]downsample

k

Y n s k g n k



=

=−

−  (3) 
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In addition to boost the classifiers performance Shannon 

and Renyi entropies are used as parameters for classifier. 

Shannon entropy method: This is the strongest lossless 

compression available, which provides low and high values of 

entropies that can be formulated as 

 

( ) log 2 , 1
1

n
E S q pi pi q

i
= − =

=
 (4) 

 

where, S signifies the EEG signal, pi the average probability 

and n the total number of EEG signal vector count. 

Renyi entropy method: Renyi is the generalized from of 

Shannon entropy with α=1 and quadratic entropy with α=2, so 

their respective equation can be written as 

 

1
( ) log

11

n q
Eq S pi

iq
= 

=−
 (5) 

 

where, q≥0 and q≠1. Here, q in the Eq. (5) signifies the entropy 

order and variable n stand for total values of EEG data. 

 

3.4 Feature selection  

 

The primary goal of this work is to reduce the number of 

selected features and improve classification accuracy that can 

be treated to be multi-objective optimization problem. To take 

these two goals into consideration, so it can be formulated as 

a linear weighting solution to the fitness function as 

 

.FS
R

x E y
C

 = +  (6) 

 

and  

 

 No. of wrongly predicted instance

 Total number of instances
E =  (7) 

 

In Eq. (7) E denotes the classification error, R denotes 

selected features from the subset C denotes total number of 

features available in the dataset. The weights used in 

comparisons x and y meet two of these objectives. 

Firefly optimization Algorithm: The primary intention of 

the sub-section is twofold. First, to exemplify the improving 

firefly through the development of chaotic maps for chaotic 

FFA and second, to use logistic-tent maps (LTM) for faster 

convergence, and robustness to solve feature selection 

problem. According to Marie-Sainte' study [19] the flash 

frequency reduces as distance (r) rises with that of the equation  

 

( )
2

0
r

I r I e
−

=  (8) 

 

Attractiveness (β) is described in the map with an absorption 

coefficient (γ) and distance (r) as 

 

( )
2

0
r

r e


 
−

=  (9) 

 

The Cartesian distance between and two ith and jth fireflies 

at xi and xj respectively, the Cartesian distance is determined 

by  

 

( )
2

, ,1

d
r x xij i k j kk

= −
=

 (10) 

 

where, xi,k is the kth element of the x of ith firefly d space 

coordinate, the number of dimensions is. The firefly 

movement happens if it is drawn to another (brighter) jth firefly 

that is defined by the equation. 

 

( )
2

0

rij
x x e x xi i j i


 

−
= + − +   (11) 

 

( )
2

0

rij
e x xj i




−
−  is due to attraction.  

α ϵ is due to randomization. 

α is the randomization parameter. 

ϵ is a vector of random numbers drawn from Gaussian or 

uniform distribution. 

According to Gupta' study [20], the algorithm involves in 

decreasing the randomness gradually and incorporating the 

social dimension for every firefly (i.e., global best). The 

distance function (ri) put in the mathematical form as 

 

( ) ( )
2 2

,
r x x y yi ii best gbest best

= − + −  (12) 

 

The movement of ith firefly is determined by the equation 

 

( ) ( )( )
( )

2 2
, ,best

0 0
i j ir r

i i j i gbest i

i best

x x e x x e x x

x g

 
 

 

− −
= + − + −

+ +  −
 (13) 

 

Here ith because the firefly came up with the best solutions 

if there was no perfect local best solution in the neighborhood. 

This above algorithm thus decreases the algorithm 

randomness so that convergence is achieved rapidly and 

affects fireflies’ movement towards global optimal, thus 

decreasing the algorithm's probability caught in several local 

optima.  

In Eq. (13) α is the randomization parameter and ∈ is the 

random number vector. Although the algorithm has no specific 

selection criterion, it changes each firefly in each iteration step 

and ranks it by fitness value and then selects individual 

potential. The classifier learning accuracy decides the fitness 

value and the firefly with the higher value that is known as a 

potential individual. The fitness function considered here for 

evaluating the feature sub-set is seen in the updated Eq. (13)  

 

( )1

predictiveFitnessval acc

featureredu





= 

+ − 
 (14) 

 

In Eq. (14) η(1-η) and (1-η) are the parameters 

corresponding to weight of the learning accuracy. 

Chaotic Maps: Chaos is a stochastic movement defined by 

a deterministic equation which varies from the phenomena of 

irregularity and disorder. Chaos has a perfect internal structure. 

Random, ergodic and regular with three characters. Ergodic 

property can test all states in a certain range by its formulas. 

This has made chaos a technique accessible that keeps them 

from getting trapped in local optima and increases the search 

efficiency globally. In this paper, the firefly’s population is 
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instantiated and we substitute the continuous absorption of the 

coefficient value with chaotic maps (see Figure 3). 

 

 
 

Figure 3. Chaotic map processing 

 

Three parameters regulate an initial feature, i.e. the random 

movement step size α, attractiveness β and absorption 

coefficient γ. In Eq. (14), the first parameter affects the 

randomized term α  i, in which we set the randomized 

parameter  i using chaos time series. 

 

( )k
Ci i=  (15) 

 

Following chaotic-enhanced form, 

 

( )
0

k
Ci i =  (16) 

 

Remarkably, the firefly social factor of move can be 

specified by approximately overviews based on Yang' study 

[21]. The most commonly utilized chaotic activity is the 

logistic map and tent map. They are both close and exhibit 

chaotic dynamics. Chaotic sequences can rapidly and 

efficiently be produced and processed, without long sequence 

storage. In this paper, chaotic sequences incorporated in 

ICFFA is used to calculate the initial weight values where k 

shows the number of iterations and the logistic map and the 

tent map.  

Logistic maps are expressed as 

 

( )11 xx xk kk= −+  (17) 

 

where, [0,4]  and [0,1]x , xk takes any value from 0 to 

1 belongs to the feature-extraction input value. k is the number 

of iterations; μ is the interval control parameter (1, 4) to decide 

how many maps numbers to complete the function collection 

are needed. A number sequence provided by the iteration of a 

logistic map (orbit also) with μ = 4 is chaotic. For values above 

4 (μ > 4). The maps return negative values that reduce the 

efficiency of the algorithm. 

Tent Map: It is an iterated method that shapes a discreet 

dynamic system is in the shape of a tent. It begins on the actual 

line from a point xk and maps it to a different end. It is an 

equation with a certain value of the control parameter (μ). With 

chaotic behavior, it is rather dynamic. It describes the map of 

the tent as 

 

, 0.5,2
1

)(1
, 0.52

xk forxk
xk

xk forxk








= +
−



 (18) 

 

where, μ is in the range [0, 2] and it is a positive real constant. 

Tent map suffers from periodic window conflicts. 

Conversely, the classical chaotic systems such as the tent and 

logistic maps have certain inadequacies such as non-uniform 

data distribution. In the current article, we use Joint Logistic-

Tent Map (JLTM) to ease periodic window issues. The 

multiple chaotic map shows a stable chaotic distribution 

between 0 and 4. 

Similarly, Lyapunov’s exponent of multiple chaotic map 

like Logistic-Tent Maps (LTM) are seen in Figure 4(a) shows 

positive values that lies in the range of (0, 4), while in Figure 

4(b) and Figure 4(c), Lyapunov’s one-dimensional map 

exponent has a set of non-positive values for logistic map (LM) 

and tent map (TM). So we used Logistic-Tent Maps (LTM) in 

the current paper to study. 

Joint Logistic-Tent map (JLTM): It is multiple chaotic 

maps that can solve the problem of one-dimensional chaotic 

map can be inferred as stated earlier non-uniform distribution 

over output series that causes false selection in the features. To 

resolve we embed functions and weights to the model as (19a). 

 
( ) :1

( , ) ( )1 1 11
( )1 mod1, 0.51 2

( , ) ( )2 2 22
( ) )(11 mod1, 0.52 2

x xGk k

gFf x xk k

xk whenxk

gFf x xk k

xk whenxk



  




  
















=+

+

−
+ 

=
+

− −
+ 

 
(19a) 

 

 

Control parameter  Control parameter  Control parameter  
(a) (b) (c) 

 

Figure 4. Lyapunov Exponent of multiple and Single Chaotic Map (a) Logistic-Tent map (LTM) (b) Logistic map (LM) (c) Tent 

map (TM) 
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where, F(μ, xk) is Logistic map. In (19a), fi(x) and gi(x) (i = 1, 

2) for all the trigonometric functions. Correspondingly the 

terms, ωi, αi, ξi and βi (i = 1, 2) are real numbers and parameter 

μ   (0, 4]. For discrete time system (DTS) as (19a), the 

Lyapunov exponent for an orbit beginning with x0 is 

demarcated as  

 

11 '( , ) : ln ( )lim0
0

n
LE x G xi

n i
n

 

−
= 

=
→

 (19b) 

 

The degree of “sensitivity to initial conditions” measured 

with the help of the Lyapunov exponent. The pseudocode of a 

FFA with Joint Logistic-Tent map (ICFFA) for feature 

optimization (see Figure 5), the different parameter values for 

the ICFFA model (see Table 1). 

 

Table 1. Parameter settings for the ICFFA model 

 
Parameters Values 

Swarm size of ICFFA 30 

Number of generations for ICFFA 500 

Randomization 0.6 

Light absorption coefficient 0.6 

Attractiveness 1 

Chaotic parameter [1, 4] 

Chaotic map Logistic-Tent 

 

 
 

Figure 5. Pseudocode of an FFA with Joint Logistic-Tent 

map (ICFFA) 

 

3.5 Classification 

 

Several optimal feature subsets are supplied to the classifier 

to improve the performance. The viability of the framework is 

supported by comparison metrics with literature works. 

Taking advantage of extending binary classifier to multi-class 

classifier using SVM, we opted this for classification of EEG 

data. In this current study we dealt with three-class case, so the 

Multi-class SVM classifier is adopted by allocating code word 

with length N given as 

 

( ) { 1,0,1}Nt c  −  (20) 

 

( ) , ( ){0,1} { 1,1}N Nt c t c  −  (21) 

 

or for each class c. To eliminate over fitting problem in 

learning process some sort of slack terms is embedded with 

function f that can be written as 

 

{ }( arg )

1

M
Maximize f m inm

M m


+

=
 (22) 

 

To maintain the minimal distance between embedded 

function f, correct class target of interest t(y) and non-target of 

interest t(c). Then it can be generalized to optimized problem 

to the minimizing as  

 

{ }
1

M
Minimize fm

M m


+

=
 (23) 

 

From the above analysis, it is explicitly that MSVM 

classifier optimal problem is w.r.t the soft margin and distance 

function d.  

 

 

4. RESULTS AND DISCUSSION  

 

In this paper, we chose Matlab 2017b software for carrying 

simulation due to efficient toolboxes support for EEG signal 

analysis. The benchmark dataset used in this study is from 

Bonn University that contains 5 classes and 100 cases for each 

class. After artifact visual inspection, e.g. muscle activity or 

eye movements, these fragments were collected and 

segmented by continuous EEG multi-channel recordings. 

EEGs were selected for five patients, all of whom were 

correctly identified as an epileptogenic region following 

resection of any of the hippocampal structures. 

Performance metrics: The performance metrics are 

conducted to show the effectiveness of the framework like Sen, 

Spec, Acc, etc., 

During the experiment, five separate statistical parameters 

were measured and evaluated per each run. It provides 

specifics of the following parameters: 

Mean: It is the average of picking feature count form the 

total number of features taken after every iteration as 

 

( )1 *

1

M
iMean size g

M i

= 
=

 (24) 

 

where, g*i signifies optimal solution during the ith run. 

Best value: It is the process of getting the best (lowest) 

value among all the available fitness values that can be 

obtained throughout the iterations as  

 

( )*
min1

igi M   (25) 

 

Worst value: It is the process of getting the worst (highest) 

value among all the available fitness values obtained 

throughout the iterations as 
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( )*
max1

igi M   (26) 

 

Standard Deviation: It is the process of showing the 

reflection for variance/dispersion for the central value of data 

series, i.e. the concentration or dispersion of the multiple 

outputs about the mean value. It can be formulated as follows: 

 

( )
21 *

1

iSD Meang
M

= −
−

 (27) 

 

Analysis of Complexity after feature selection: The 

computation complexity of traditional firefly algorithm is (O 

(n2)) in which n signifies population and t iteration count. 

When n is large use it by taking the help of attractiveness β 

ranking with sorting mechanisms. Therefore, by global 

optimization mobility of chaotic firefly the complexity can be 

reduced to O(nt(log(n)). The computation complexity of 

statistical and entropy features is calculated and presented (see 

Table 2). 

 

Table 2. Computation complexity of statistical and entropy 

features 

 
Analysis Training time 

(in sec) 

Testing time 

(in sec) 

Statistical features + Multi-

class SVM 

220 140 

Statistical features + ICFFA+ 

Multi-class SVM 

203 130 

Entropy features + MSVM 240 160 

Entropy features + 

ICFFA+MSVM 

212 142 

 

The training and testing time of classifier on y-axis and 

statistical, entropy features with and without feature selection 

process along with type of approach on x-axis (see Figure 6). 

It is clear that both the training and testing time of (statistical 

features + ICFFA + Multi class SVM, Entropy features + 

ICFFA+ MSVM) is less as compared to (statistical features + 

Multi class SVM, Entropy features + MSVM) because 

overfitting problem is eliminated on applying feature selection 

technique and good learning model capability (i.e., ICFFA). 

The performance metrics considered in this study for 70%, 

80% and 90% training data in terms of Sen, Spec, Acc, Prec, 

Recall and JC with feature selection (FS) CFFA+ MSVM and 

without feature selection (FS) CFFA+ MSVM classifiers (see 

Tables 3-6). The average accuracy over three-class case with 

ICFFA+ MSVM classifier (see Figure 7(a)). It is evident from 

the figure; the accuracy is reached to 99.63%. Similarly, three-

class case (i.e., AB-CD-E) which results in poor performance 

in terms of accuracy, precision and Jaccard coefficient, 

without feature selection, due to suffering from overfitting or 

inefficient learning model; due to absence of feature selection 

and direct applying to the classifier (see Figure 7(b)). 

The better Sen, Spec values for three-class case with 

ICFFA+ MSVM classifier as compared to the MSVM 

classifier without ICFFA (see Figure 8(a)-(b)). The 

comparison of the works suggested in this paper (Average of 

three cases: Normal- Interictal-Ictal for 90% Training data). It 

shows that Chaotic FFA (ICFFA) +MSVM classifier 

outperforms as compared to its variants in three cases (i.e. 

Accuracy, Sensitivity and Jaccard coefficient). A bold font for 

a simple presentation illustrates the best values achieved from 

a specified method (see Table 7). 

 

 
 

Figure 6. Comparison of training and testing time of 

statistical and Entropy features 

 

 
(a) 

 
(b) 

 

Figure 7. Comparison of Acc, Prec and JC of three-class 

case (a) with ICFFA+ MSVM classifier (b) without ICFFA+ 

MSVM classifier 
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Table 3. Acc, Pre and JC with ICFFA+MSV 

 
With FS Accuracy (Acc) Precision (Prec) Jaccard coefficient (JC) 

Training in (%) 70 80 90 70 80 90 70 80 90 

Normal 98.88 99.53 99.63 84.1 85.2 87.3 97.3 98.3 98.8 

Interictal 95.3 96.01 97.92 83.2 84.5 85.13 95.8 96.2 97.1 

Ictal 94.23 95.12 96.77 83.1 84.1 84.89 94.3 95.6 96.2 

 

Table 4. Sen, Spec and F-measure with ICFFA+MSVM 

 
With FS Sen Spec F-measure 

Training in (%) 70 80 90 70 80 90 70 80 90 

Normal 77.17 77.72 76.49 88.9 89.6 87.9 0.80 0.85 0.92 

Interictal 77.16 82.46 82.09 88.9 70.9 80.17 0.79 0.81 0.82 

Ictal 70.37 72.58 74.58 90.23 91.94 92.44 0.75 0.76 0.81 

 

Table 5. Acc, Prec and JC with MSVM classifier 

 
Without FS Accuracy(Acc) Precision (Prec) Jaccard coefficient (JC) 

Training in (%) 70 80 90 70 80 90 70 80 90 

Normal 94.6 95.2 96.3 82.1 82.6 83.1 95.3 96.2 97.2 

Interictal 93.2 94.2 94.6 81.1 81.8 82.5 93.2 94.1 94.8 

Ictal 91.2 92.4 93.5 80.2 81.1 82.2 92.1 92.5 93.7 

 

Table 6. Sen, Spec and F-measure with MSVM classifier 

 
Without FS Sen Spec F-measure 

Training in (%) 70 80 90 70 80 90 70 80 90 

Normal 76.2 77.1 77.8 86.2 86.8 87.2 0.75 0.81 0.89 

Interictal 75.2 76.2 77.9 87.2 88.5 89.3 0.74 0.75 0.78 

Ictal 69.5 70.1 71.2 88.2 89.2 90.1 0.73 0.74 0.75 

 

  
(a) (b) 

 

Figure 8. Comparison of Sen, Spec of three-class case (a) with ICFFA+ MSVM classifier (b) without ICFFA+ MSVM classifier 

 

Table 7. Comparison of the average of three-class case: Normal-Interictal-Ictal for 90% Training data 

 
Performance metric SFFA+ MSVM classifier [19] MFFA+ MSVM classifier [20] ICFFA + MSVM classifier 

Accuracy (Acc) 96.23% 97.11% 98.11% 

Sensitivity (Sen) 83.51% 83.47% 85.76% 

Specificity (Spec) 85.84% 87.23% 86.84% 

Jaccard coefficient (JC) 94.27% 96.45% 97.27% 

Precision (Prec) 84.76% 85.03% 85.76% 

 

The three different methods of epilepsy detection for three-

class case in which Improved Chaotic FFA (ICFFA) + MSVM 

classifier outperforms as compared to other two methods in 

terms of performance metrics (see Figure 9). 

Assessment of Proposed ICFFA Algorithm: The overall 

performance of proposed ICFFA in terms of parameter tuning, 

we discuss statistical results. We know that a meta-heuristic 

algorithm is difficult to solve many optimization problems, 

particularly for identical parameter settings as per the No Free 

Lunch (NFL) principle. Therefore, important parameters are 

useful largely because it allows the optimization problem to be 

solved to get the best performance. 
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Figure 9. Comparison of different methods of detection of 

three-class case of epilepsy 

 

Table 8. Parameter tuning results of c in ICFFA 

 
Light absorption 

coefficient (c) 

Accuracy No. of 

Features 

Fitness 

value 

c=0.5 0.9830 8.26 0.0395 

c=0.6 0.9963 6.25 0.0312 

c=1 0.9897 9.66 0.0417 

c=2 0.9812 10.43 0.0456 

 

Table 9. Fitness values obtained by different chaotic maps in 

FFA 

 
Chaotic 

map 

Best 

value 

Worst 

value 

SD Mean CPU 

time in 

(Sec) 

Logistic 

map 

0.0846 0.1241 0.0108 0.897 155.41 

Tent map 0.0763 0.1183 0.0101 0.835 148.32 

Joint 

Logistic-

Tent map 

0.0689 0.1012 0.0998 0.786 161.23 

 

In addition, each combination runs for 30 times separately 

to eliminate arbitrary bias and it provides the cumulative 

results. We present the tuning effects of the parameter (see 

Table 8). Based on performance, ICFFA provides the best 

optimization results when it is c=0.6. Therefore, for all dataset 

instances, we use these parameter values. We have applied 

several statistical methods to better test the proposed ICFFA, 

and in this segment, it measures the fitness function values 

from different chaotic maps to explicitly demonstrate the 

efficiency of these approaches. The numerical statistical 

values for the best value, worst value, standard deviation (SD), 

we show average value and the CPU time of the various 

dataset approaches (see Table 9). A bold font for a simple 

presentation illustrates the best values achieved from a 

specified method. 

This table displays the best performance of the Joint 

Logistic-Tent Map (JLTM) in contrast to other chaotic maps. 

In comparison, ICFFA requires more CPU usage on certain 

datasets to solve feature selection problems. This is because 

incorporated improved variables need additional solutions that 

increase the experimental time. The best performance of the 

Joint Logistic-Tent Map (JLTM) in contrast to other chaotic 

maps is achieved (see Figure 10). The comparison of the 

literature of results for 90% Training Data done by several 

authors are listed along with their overall accuracy and 

features used for EEG seizure detection (see Table 10). 

From the Figure 11 it is evident that the Our proposed work 

shows superior performance when compared to literature of 

works due to adopting chaos which is best suitable for 

optimizing the output feature subset with less number of 

iterations and fast convergence. 

 

 
 

Figure 10. Comparison graph of different chaotic maps in 

FFA 

 

Table 10. Comparison of the literature of results for 90% 

training data 

 

Author Features used 
Overall 

Accuracy in (%) 

Method 1 [22] 

Shannon Entropy+ 

GRNN, DT-CWT + 

Energy, STD 

97.21% 

Method 2 [23] 
PEN + SVM, DT-

CWT + HE, FD 
98.22% 

Method 3 [24] 

DWT + Different 

Features + ANOVA-

FSFS +LS-SVM 

99.50% 

Our work 

Statistical, entropy 

(Shannon and Renyi 

entropy) and DWT 

99.63% 

 

 
 

Figure 11. Comparison graph of overall accuracy for our 

work with traditional works 
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5. CONCLUSIONS 

 

In this paper we proposed an integrated framework to Detect 

the epilepsy by proposing the framework of EEG signal 

exploration with the Multi-class SVM and Improved Chaotic 

Firefly algorithm (ICFFA). To accomplish the process of 

training/testing the classifier, this approach used the features 

obtained by statistical (DWT) and entropy-based examination 

for each subject of EEG data. After we built the feature set, a 

feature selection based on a chaotic mapping-based firefly 

version called ICFFA was used, which decreased the 

insignificant features to result in optimal feature subset. For 

obtaining this, two types of chaotic maps, a logistic map and a 

tent map, are used in combined form on FFA. However theses 

chaotic maps display different dynamic behavior between [0, 

1]. The behavior affects the search ability of ICFFA. Then an 

MSVM classifier was trained with 70%, 80%, and 90% of data 

and tested with 30%, 20%, and 10% of the data, respectively. 

The Experimental results shows that the proposed technique 

(ICFFA+MSVM) attained a satisfactory accuracy of 99.63% 

for Normal data (Set A and B) and an accuracy of 98.10%, 

97.3% of the JC, and 85.77% of precision (averaged for 

Normal, Inter-ictal and Ictal classes of data with 90% training). 

Also experimental results show that ICFFA with joint 

Logistic-tent map obtained higher success rate than CFFA 

alone with a logistic OR Tent map alone. 
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