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 In speech communication applications such as teleconferences, mobile phones, etc., the real-

time noises degrade the desired speech quality and intelligibility. For these applications, in 

the case of multichannel speech enhancement, the adaptive beamforming algorithms play a 

major role compared to fixed beamforming algorithms. Among the adaptive beamformers, 

Generalized Sidelobe Canceller (GSC) beamforming with Least Mean Square (LMS) 

Algorithm has the least complexity but provides poor noise reduction whereas GSC 

beamforming with Combined LMS (CLMS) algorithm has better noise reduction 

performance but with high computational complexity. In order to achieve a tradeoff between 

noise reduction and computational complexity in real-time noisy conditions, a Signed 

Convex Combination of Fast Convergence (SCCFC) algorithm based GSC beamforming 

for multi-channel speech enhancement is proposed. This proposed SCCFC algorithm is 

implemented using a signed convex combination of two Fast Convergence Normalized 

Least Mean Square (FCNLMS) adaptive filters with different step-sizes. This improves the 

overall performance of the GSC beamformer in real-time noisy conditions as well as reduces 

the computation complexity when compared to the existing GSC algorithms. The 

performance of the proposed multi-channel speech enhancement system is evaluated using 

the standard speech processing performance metrics. The simulation results demonstrate the 

superiority of the proposed GSC-SCCFC beamformer over the traditional methods. 

 

Keywords: 

multi-channel speech enhancement, 

generalized sidelobe canceller (GSC) 

beamforming, adaptive filters, fast 

convergence normalized least mean square 

(FCNLMS), signed convex combination of 

fast convergence (SCCFC) 

 

 

 
1. INTRODUCTION 

 

In multi-microphone array processing, environmental noise 

degrades the desired speech quality and intelligibility. This is 

a major issue in speech communication applications like 

teleconferences, mobile phones, etc. When the desired speaker 

is non-stationary [1], i.e., in a real-time noisy environment, 

reducing the noise becomes quite difficult. In these cases, for 

noise reduction and interference suppression [2], in the place 

of conventional Finite Impulse Response (FIR) filters which 

result in high computational complexities, the adaptive filters 

like, Least Mean Square (LMS), Normalized LMS (NLMS) 

are widely used for noise reduction. However, in the case of 

single-channel speech enhancement, noise from a specific 

direction cannot be found using these basic adaptive filters. So, 

in multi-channel speech enhancement, Griffiths and Jim [3] 

introduced a GSC beamforming structure that comprises three 

major blocks: fixed beamformer, blocking matrix, and an 

adaptive filtering block. In the fixed beamformer such as 

Delay and Sum Beamformer (DSB) [4], the microphone array 

receives the desired speech along with the noise. Delay from 

each microphone is calculated and then summed together to 

obtain the partially enhanced output [5, 6].  

The performance of a multi-channel speech enhancement 

system depends completely on the blocking matrix and the 

adaptive filtering [7] block, which eliminates the unwanted 

noise and increases the quality of the desired speech. The 

adaptive filter block in the GSC beamforming plays a crucial 

role in noise reduction performance [8]. In the time domain, 

the gradient descent adaptive algorithms are used to update the 

weight of the filter. One such algorithm is the LMS algorithm 

which has low computational complexity but not stable in real-

time noisy conditions when the filter tap gets increased [9-11]. 

Another popular adaptive algorithm is Recursive Least 

Squares (RLS) filter which is based on Hessian adaptive 

filtering. It gives faster convergence when compared to LMS 

whereas computational cost is high and is too expensive for 

real-time noisy environments [12, 13]. Fast convergence [14] 

algorithm has less computational complexity but gives less 

performance under various noisy conditions. And also when 

the positions of the source signal changes, the weight 

coefficient information used to update the adaptive filter will 

be lost, due to this, poor performance in the non-stationary 

environment combined adaptive filter [15-17] are designed, 

which give good convergence transition compared to the 

single adaptive filter. 

To improve the adaption performance, adaptive 

beamforming with an Affine Projection Algorithm [18] (APA) 

is introduced, which gives a better noise reduction when 

compared to the existing time-domain algorithms but fails in 

the case of a real-time noisy environment. In the combined 

adaptive beamforming method [19], a combination of LMS-

RLS adaptive filters in sidelobe canceller fails in real-time 

noisy conditions, and the computational burden is raised due 

to the mixing parameter. Another existing algorithm for noise 

reduction in recent times is, GSC beamformer with linear 

prediction filter [20] which is used in multichannel speech 

enhancement system addresses dereverberation and noise 
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reduction, but has high computation complexity. Barnov et al., 

in 2019 introduced GSC beamforming using controlled white 

Gaussian gain [21], where non-stationary environments are 

only limited to a single speaker. A modified change prediction 

[22] to GSC beamforming is applied which holds good for 

echo cancellation but fails in interference suppression.  

The above-mentioned algorithms give the motivation for 

the further improvement of the sidelobe canceller path of the 

GSC beamformer to achieve both noise reduction and less 

computational burden. To overcome these drawbacks, a robust 

beamforming method should be designed. In this paper, a GSC 

beamformer with SCCFC adaptive filters is proposed to 

address the above-mentioned issues. The novelty of the paper 

lies in the sidelobe cancelling path. In this paper, novelty is 

achieved in two steps. The first step is to consider FCNLMS 

as an adaptive filter in the convex combination algorithm to 

give a better noise reduction and a low computational 

complexity. The second step is to employ a signed algorithm, 

to further reduce the computational complexity in the mixing 

parameter design. In this way, using the signed algorithm with 

a convex combination of FCNLMS adaptive filters, both noise 

reduction, and low computational complexity are achieved 

under various real-time noisy conditions. The proposed GSC 

beamforming using the SCCFC algorithm shows better noise 

reduction and lower computation complexity when compared 

to the existing algorithms. 

 

The main contributions of the work are as follows: 

(1) To improve the sidelobe cancelling path of robust 

GSC beamformer a novel convex combination of fast 

convergence filter is proposed. 

(2) To maintain a trade-off between computational 

complexity and noise reduction a signed algorithm is 

introduced to the proposed filtering method. 

(3) Tested the proposed multi-channel speech 

enhancement system under various real-time noisy conditions. 

(4) The performance is shown in terms of computational 

complexity and noise reduction.  

The paper is structured as follows: In Section 2 the proposed 

multi-channel speech enhancement system is described. In 

Section 3, the Signed Convex Combination of Fast 

Convergence (SCCFC) adaptive algorithm is discussed 

besides the description of the signed algorithm. The simulation 

environment and performance evaluation of the proposed 

system is discussed in Section 4. Finally, the conclusions are 

summarized in Section 5. 

 

 

2. THE PROPOSED MULTI-CHANNEL SPEECH 

ENHANCEMENT SYSTEM 

 

This section describes the multi-channel speech 

enhancement system in a real-time environment as shown in 

Figure 1. GSC beamformer comprises of three major blocks: a 

fixed beamformer and Modified Blocking Matrix (MBM) and 

a sidelobe cancelling path where an SCCFC is proposed. The 

input to the proposed system is considered using a microphone 

array setup with real-time noisy conditions in a virtual 

conference room. 

The virtual conference room is designed based on the Image 

method [23] which takes the Room Impulse Response in the 

form of a Mex function in MATLAB. In this paper, DSB [10] 

is considered as a fixed beamformer.  

 

 
 

Figure 1. Proposed multi-channel speech enhancement 

system using GSC-SCCFC 

 

2.1 Fixed beamformer (DSB) 

 

The DSB is used to find the direction of arrival (DOA) of 

the unknown signal. It calculates the DOA based on the delay 

and distance from each microphone. An unknown noisy input 

signal with partial enhancement is found at the output of DSB. 

To further reduce the noise in the signal, we proposed an 

SCCFC in the sidelobe cancelling path of the GSC 

beamformer. The required steps involved in the overall design 

of the GSC beamformer with the proposed SCCFC is 

explained below. 

A microphone array with M microphones is considered in 

which xk(n) is the received signal by the kth microphone where 

k=1, 2, ..., M. It holds a delayed copy of the desired speech S(n) 

combined with the room impulse response, Rk, and real-time 

environment noise, Ek(n). Using the DSB beamformer 

principle, the delay from each microphone is calculated and 

summed up, so that the output of DSB will be a partially 

enhanced speech. 

This is referred to as a speech reference signal d(n). 

 

( ) ( )
1

M

k
k

d n x n
=

=   

( ) ( ) ( )
1

1 0

M N

k k k
k l

R n S N l E n
−

= =

= − − +   

(1) 

 

The length of the input signal is given by N. Delay from the 

input signal to the kth microphone is given by τk. Next is about 

blocking matrix explained as follows 

Griffiths [3] devised a standard blocking scheme based on 

the idea that "by summing the rows of a matrix, it becomes 

zero," when following the binary-valued Walsh function or 

similar patterns in a matrix. However, since the current matrix 

does not fully leverage spatial knowledge, we created a 

Modified Blocking Matrix (MBM), in which the number of 

columns in the matrix indicates the number of microphones.  

 

2.2 Modified blocking matrix 

 

The blocking matrix is very important in GSC beamforming. 

It is used to block the desired speech signal and only provide 

noise reference as input to the adaptive interference canceller, 

as stated below. The GSC beamformer's lower path contains a 

blocking matrix [3], which is used to block the desired signal 

d(n). Since the desired signal is the same for all microphones 

and in Eq. (1), blocking is verified if the blocking matrix's 

rows add up to nil. 
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If T
mb  is the mth row of blocking matrix 

1 0T
mb =  for all values of m 

 

Since bm is linearly independent, zq(n) it will have M-1 

linearly independent components. As a result, the blocking 

matrix's row dimensions must be M-1. 

If we assume that there are four microphones, M=4. 

Griffiths [3] defined two blocking matrices. 

The first is defined as follows: 

 

1

1 1 1 1

1 1 1 1

1 1 1 1

BM

− − 
 

= − − −
 
 − 

 

 

The second blocking matrix is similarly defined as 

 

2

1 1 0 0

0 1 10

0 0 1 1

BM

− 
 

= −
 
  

 

 

The rows in BM1 are mutually orthogonal and are elements 

of a binary-valued Walsh equation, while the difference 

between adjacent microphone outputs is represented by BM2. 

BM1 has different amplitude responses for each row, while 

BM2 has the same patterns. However, the spatial information 

is not fully used when these matrices are used. 

So, using adjacent microphones, the Modified Blocking 

Matrix (MBM) is designed to subtract the desired speech from 

the input noisy signal. By using similar patterns in the matrix, 

MBM is used in the proposed GSC beamformer to use full 

spatial information on adjacent microphones as well as on 

other microphones. 

MBM is designed as 

 

MBM =

(

  
 

 1 −1  0
 0   1 −1
 0   0   0

 
⋯
 

 0   0
 0   0
 0   0

 ⋮ ⋱ ⋮
 0   0   0
 0   0   0

…
−1  0
  0 −1)

  
 

 

 

The number of columns in the matrix indicates the 

microphone here with q=1,..., Q where Q=M - 1, where M is 

the number of microphones. 
MBM gives the details of the complete noise present in the 

target signal and blocks the desired speech and thus acts as 

noise reference for SCCFC. 

These constraints are considered to show the effectiveness 

of the proposed SCCFC in the GSC structure. The noise 

reference signals are adapted using the proposed SCCFC 

algorithm. The error at the output of the GSC beamformer is 

the difference between SCCFC output y(n) and speech 

reference d(n). Then, the GSC-SCCFC beamformer output is 

given by e(n)=d(n)-y(n). The error is updated using the 

proposed SCCFC algorithm until it is minimized. 

The derivation of the SCCFC algorithm is shown in the 

below section. Firstly, a convex combination of the FCNLMS 

adaptive filter is drawn and then the signed algorithm is 

applied using the transfer approach in the next section. 

 

3. SIGNED CONVEX COMBINATION OF FAST 

CONVERGENCE (SCCFC) ADAPTIVE ALGORITHM 

 

The proposed SCCFC block is a signed convex combination 

of two same fast convergence adaptive filters i.e., FCNLMS, 

as shown in Figure 2 with updating rule which is given by: 

 

( )( ) ( ) ( )( )
, 0, 1, 1,( ), ( ),..... ( )

T
l l ll N

n q q q N qH h n h n h n− =  (2) 

 

where, 
( )
,
l

n qH  is the vector with qth filter coefficients of lth 

system, with l=a,b at nth time instant, l=a implies first 

FCNLMS filter and  l=b second FCNLMS filter. qth noise 

reference vector is expressed similarly. 

 

( ) ( ) ( )( ), 1 .... 1
TN

n q q q qZ R z n z n z n N = − − +  (3) 

 

The combined adaptive filter is obtained by combining the 

two adaptive filter outputs using the mixing parameter. y(l)(n) 

is the output of combined adaptive filter which is defined as 

 

 
 

Figure 2. Proposed convex combination of fast convergence 

adaptive filter 

 

( ) ( )

1

( ) ( )
Q

l l
q

q

y n y n
=

=   (4) 

 

The convex combination of y(a)(n) and y(b)(n) is given by 

where, �̃�𝑁(𝑛) is dual Kalman gain [14], γN(n) is the Likelihood 

variable [14]. 

Dual Kalman gain is defined as: 

 
( ) ( )( ) ( ) ( ) (1 ( )) ( )a by n n y n n y n = + −  (5) 

 

where, λ(n) is a mixing parameter, and ranges from [0,1] [16]. 

When λ(n)=0 the small step size filter (slow filter) works 

effectively by maintaining low steady-state error. When 

λ(n)=1, the large step size filter (fast filter) works better with 

high convergence, to limit the λ(n) range between [0,1], the 
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mixing parameter is expressed by sigmoid function and an 

auxiliary parameter I(n). 

 

( )

1
( )

1 I n
n

e


−
=

+
 (6) 

 

The convex combined filter [16] error is minimized by 

adapting I(n) and is defined as: 

 
( )

( )

( )
( 1) ( ) ( ) ( )[1 ( )]

( )

a

I b

y n
I n I n e n n n

y n
  

 
+ = + − 

−  

 (7) 

  

To reduce the inactivity when λ(n) is equal to 0 or 1, the 

auxiliary parameter is limited to [-I+, I+], such that the mixing 

parameter is made to move in [1-λ+, λ+]. Here, I+ and λ+ are 

small positive constants. The update rule of the weight vector 

, ( 1)l
n qH n +  for lth an adaptive filter (l=a,b) is written as 

 
( )( ) ( )

, 1,( 1) ( ) ( ) ( )
ll l

n q q N Nn qH n H e n n C n −+ = −  (8) 

 

𝐶�̃�
,

2

( )
( )

1

n p

z o

Z n
n

c





= −

+
−

 
(9) 

 

where, co and λ is a small positive constant. Likelihood 

variable is defined as: 

 

1

1
( )

1 ( 1)
N N

k

n

v n k



=

=

− − +

 
(10) 

 

where, ( 1)
( ) ( )Nv n C x n

−
=  is the shifting component, 

( ) ( )l
qe n  in 

Eq. (8). is the error estimator of FCNLMS filter with qth error 

signal, expressed as 

 
( ) ( )( ) ( )l l
q qe d n y n= −  (11) 

 

where, 
( ) ( )l
qy n  is the FCNLMS filter output of qth filter and is 

expressed as 

 
( )( )

, 1,( )
ll T

q n q n qy n Z H −=  (12) 

 

where, l  is the step size of lth adaptive filter. 

The overall weight coefficient of the convex combination of 

the adaptive filters is expressed as 

 
( ) ( )

, , ,( ) ( ) [1 ( )]a b
n q n q n qH n H n n H = + −  (13) 

 

By updating the filter with the help of the mixing parameter, 

there is a decent trade-off between the convergence speed and 

steady-state error. However, such algorithms require fixing of 

mixing parameters while updating the weights resulting in the 

loss of information. Complexity burden increases due to I(n) 

in the update rule and also fails to work for real-time noises. 

To avoid these issues, a GSC beamformer for various real-time 

noise reductions with fewer operations in the I(n) update rule 

should be developed. 

To overcome the computational burden on mixing 

parameters and overall real-time noise reduction. In this paper, 

a signed algorithm is proposed for the convex combination of 

fast convergence adaptive filters, which is described in the 

next section. 

 

3.1 Signed algorithm to convex combination of fast 

convergence adaptive filters 

 

We propose the SCCFC algorithm in this section. By opting 

for this signed algorithm, the mixing parameter update rule is 

changed to limit the squared estimation error. 

 

21
( ) ( )

2
J n e n=  (14) 

 

The gradient ( ),I J n  is normalized and I(n), is updated 

recursively and is expressed as: 

 

( )
( 1) ( )

( )

I
I

I

J n
I n I n

J n



+ = −


 (15) 

 

Here I  is a step-size and is a small positive constant, 

( ),I J n  is defined as 

 

( ) ( )( ( ) ( )) ( )(1 ( ))I a bJ n e n y n y n n n  = − − −  (16) 

 

The normalized gradient ( )

( )

I

I

J n

J n




 in Eq. (15). can be 

expressed as 

 

( )
sgn( ( ))

( )

I
I

I

J n
J n

J n


= 


 (17) 

 

where, sgn(.)  is a sign function [16] and is defined as 

 

1 0

sgn(.) 0 0

1 0

if z
u

if z
z

if z




= = =
− 

.→  (18) 

 

Therefore, Eq. (15). can be written as 

 

( )

( )

( ) ( )
( 1) ( ) sgn

( ) ( )(1 ( ))

a

I b

e n y n
I n I n

y n n n


 

 
+ = +  

 − − 

 (19) 

 

As λ(n)>0 & 1-λ(n)>0the parameter I(n) in Eq. (19). can also 

be represented as 

 

( )( ) ( )( 1) ( ) sgn ( )( ( ) ( ))a b
II n I n e n y n y n+ = + −  (20) 

 

( )( ) ( )( 1) ( ) sgn ( )( ( ) ( ))a b
II n I n e n e n e n+ = + −  (21) 

 

The proposed SCCFC algorithm can reduce computational 

complexity and attain robustness by replacing 
( ) ( )( )[ ( ) ( )] [1 ( )]a be n y n y n n − −  it with normalized gradient 

𝛻𝐼𝐽(𝑛)

‖𝛻𝐼𝐽(𝑛)‖
. 
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To enhance the speech further with less computation, while 

maintaining high convergence, an instant transfer algorithm 

[16] can be used, 

 

if nmod 0oD =  and ( 1)I n I ++ =  then 

              
( ) ( )
, ,( 1) ( 1)b a

n q n qH n H n+ = +   

endif 

 

where, Do is the length of the window. During convergence 

transition, an instant transfer algorithm is applied only when 

the first FCNLMS is effective than the second FCNLMS filter. 

The computation cost of this algorithm is smaller compared to 

the traditional combination filters. Due to the predefined 

window length, the computation burden is still reduced so that, 

the proposed SCCFC works effectively for various real-time 

noises with low complexity in updating the adaptive filter. 

Overall steps involved in the proposed SCCFC algorithm is 

summarized as follows 

 

Summary of proposed SCCFC algorithm 

1. Initialize ,, , ( , ), ,o l ID l a b I  += 𝐶�̃�(0) = 0 

(0) 0, (0) 0, (0) 0.4,N I = = =  
( ) ( )
, ,(0) 0, (0) 0a b

n q n qH H= =   

2. Loop 1n = →  

3. 
( ) ( )( ) ( ) ( )a a
q qe n d n y n= −  

4. ( ) ( )( ) ( ) ( ) (1 ( )) ( )a by n n y n n y n = + −  

5. 

( )
,( )( )

, 1,

, ,

( )a
n q qaa

n q n q T
n q n q

Z e n
H H

Z Z



−= +

+
 

6. 

( ) ( )( 1) ( ) ( ) ( ) ( )

( )[1 ( )]

a b
II n I n e n y n y n

n n



 

 + = + −
 

−
 

7. 
( 1)

1
( 1)

1 I n
n

e


− +
+ =

+
 

Signed Algorithm 

if 

( 1)I n I++  −   

( 1)I n I++ = −  

( 1) 0n + =  

endif 

if 

 ( 1)I n I++  −   

  ( 1) 1n + =  

          if (mod( 1), 0)on D− =   

          
( ) ( )
, ,( 1) ( )( 1)b a

n q n qH n H n n+ = +  

endif 

else 

 
( )( ) ( )

, 1, ( ) ( ) ( )
bb b

n q q N Nn qH H e n n C n −= −  

 
( ) ( )

, , ,( ) ( ) [1 ( )]a b
n q n q n qH n H n n H = + −  

endif 

let n=n+1 

end 

 

The workflow of the proposed multi-channel speech 

enhancement system (GSC-SCCFC) is as shown in Figure 3. 

 

 
 

Figure 3. Workflow of proposed multi-channel speech enhancement system (GSC-SCCFC) 
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Table 1. Computational complexity 

 
Algorithms Multiplications Primary combinations Precise weight calculations Weight transfer 

LMS [11] 2N+1 - - - 

NLMS [13]  2N - - - 

FCNLMS [14]  2N - - - 

CLMS [16] 4N+2 6 2N 2N 

SCCFC (proposed)  4N 3 2N - 

 

3.2 Computational complexity 

 

The computational complexity of the LMS [11], NLMS 

[13], FCNLMS [14], CLMS [16], and the proposed SCCFC 

algorithms are compared in this section. Here the length of the 

adaptive algorithm is given by N. For a regular LMS algorithm 

takes 2N+1 multiplications to update the filter. The basic 

NLMS and FCNLMS algorithms require a 2N number of 

multiplications. The proposed SCCFC algorithm which is a 

combination of the two same filters FCNLMS requires 4N 

multiplications to update the filter components. According to 

Eq. (15). to update I(n) the proposed SCCFC required only 3 

multiplications, whereas the existing CLMS algorithm 

requires 6 multiplications to update the same I(n) parameter. 

Due to the usage of the signed algorithm with known window 

length, the proposed SCCFC algorithm reduces the 

computational operations compared to the conventional 

algorithms. Coming to stability, the relative variations in e(n) 

is maintained by taking μ as a small positive constant. Also, 

the mixing parameter I(n) is independent on J(n), I(n) becomes 

more stable when the ( )I J n  is small. 

Finally, the proposed GSC-SCCFC gives less computation 

complexity with 4N multiplications, where N=256 is the 

length of the filter and requires three primary combinations in 

the update rule which is very less compared to existing 

algorithms. The computational complexity of the proposed 

multi-channel speech enhancement system is compared with 

the existing algorithms as shown in Table 1. The proposed 

algorithm also gives good trade-off stability compared to the 

other algorithms. 

 

 

4. RESULTS AND DISCUSSIONS 

 

In this section, the simulation of the proposed GSC-SCCFC 

in real-time noisy conditions is evaluated and explained. The 

proposed GSC-SCCFC method considers the following 

simulation parameter as shown in Table 2. A multi-channel 

room impulse response is generated using a Mex function in 

MATLAB (rir-generator.cpp [24]) taking the above 

specifications. 

 

Table 2. Specification parameters 

 
Parameters Specifications 

Number of 

microphones(m) 
m=4 

Spacing to each 

microphone  
5cm 

Real-time noisy 

environment  

Car, Restaurant, Babble, Airport, Station, 

and Street 

Input SNR Levels  -10 dB, -5 dB, 0 dB, 5 dB, 10 dB, 15 dB 

Room dimensions  6 m X 5 m X 3 m (Image Method) [23] 

Database  DARPA TIMIT [25] and Noizeus [26, 27] 

Tools MATLAB and Python 

Processor  
Intel Core I7 Processor, Clock Speed-2.20 

GHz, 8 GB RAM 

The real-time noisy condition is created by adding desired 

speech and real-time noises from unknown directions. The 

desired speech is taken using the DARPA TIMIT [25] 

database. The database is maintained with a sampling 

frequency of 8 kHz which consists of 6300 male and female 

sentences where each of the 630 speakers speaks 10 sentences 

each. The real-time noises (Car, Restaurant, Babble, Airport, 

Station, Street noises) are taken from the NOIZEUS database 

[26, 27]. These input signals are provided to the mex setup 

which gives a combination of the desired speech with real-time 

noise for different SNRs (-10 dB to 15 dB). 

The degraded speech is an input to the DSB to evaluate the 

delay from each microphone and obtains a reference enhanced 

signal. After that, the input degraded speech is given to MBM. 

Using the MBM matrix, the subtraction of the delays caused 

on the adjacent microphones is calculated. Further, at the 

MBM output, a noise reference is generated. Finally, the same 

reference noise is applied to the SCCFC block as input where 

the weights of the individual filters are updated and combined 

using a mixing parameter. Due to the proposed SCCFC 

algorithm, the error is minimized and enhanced speech is 

attained at the output of the GSC beamformer. 

The proposed GSC-SCCFC algorithm is compared with 

different existing algorithms like Combined adaptive 

beamforming [19], GSC with improved linear prediction [20], 

GSC with controlled white Gaussian [21], combined 

beamforming and echo cancellation [22] which are 

represented as GSC-CC [2013], GSC-LP [2018], GSC-

CWGN [2019], and GSC-CBE [2019] respectively. GSC-CC 

algorithm uses a combination of adaptive filters [LMS-RLS] 

for noise reduction. GSC-LP multichannel improve linear 

predictor to improves the spatial filter. Both GSC-CBE and 

GSC-CWGN are used for noise reduction under white noise. 

 

4.1 Performance analysis of proposed GSC-SCCFC 

algorithm under various environmental noises 

 

The performance of the proposed GSC-SCCFC algorithm is 

evaluated using standard speech processing performance 

metrics namely Perceptual Evaluation of Speech Quality [28] 

(PESQ), Segmental SNR (SSNR) [29], Log-Spectral Distance 

(LSD) [30], and Log-Likelihood Ratio [28]. 

 

4.1.1 PESQ 

PESQ [28] is an objective comprehensible measure. The 

range of PESQ as per the Standards International 

Telecommunication Union Telecommunication (ITU-T) lies 

in between “0.5 to 4.5”. The more the PESQ, the better is the 

intelligibility. Table 3 shows the PESQ score comparison of 

GSC-SCCFC over existing methods. Under station noise, for 

-10 dB, the proposed GSC- SCCFC PESQ score is 3.302, but 

for GSC-CC it is 2.411. Similarly, at 15 dB input SNR for 

street noise, PESQ for the proposed GSC-SCCFC is 4.393 but 

for GSC-CWGN and GSC-CBE it is 3.401 and 3.567, 

respectively. 
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At -10 dB car noise, the proposed GSC-SCCFC method 

gives a PESQ of 2.632, but for GSC with CWGN and CBE, it 

is 2.305 and 2.401, respectively. Similarly, at 15 dB PESQ for 

GSC-CWGN, GSC-CBE, and the proposed GSC-SCCFC are 

3.232, 3.451, and 4.365 respectively. Similarly, for the 

remaining noises too, the perception is improved for the 

enhanced speech using the proposed GSC-SCCFC algorithm 

when compared with conventional algorithms as shown in 

Table 3. For the proposed method, an improvement in PESQ 

of 4.393 is achieved, which is very much closer to the 

maximum PESQ that can be achieved. Due to SCCFC, at the 

output, the desired speech perception is attained. 

 

4.1.2 SSNR 

SSNR [29], SSNR is the renowned objective measure for 

speech enhancement. In SNR, the complete signal is taken into 

consideration whereas, for SSNR, the segments with 256 

samples per frame are considered. (k=256, with 50 percent 

overlap). Higher the Segmental SNR, more will be the speech 

quality. 

SSNR is defined as 
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From Table 3 at -10 dB with car noise, SSNR for GSC-

SCCFC algorithm is 11.2, but for GSC-CC, GSC-LP, GSC-

CWGN, and GSC-CBE, it is 2.9, 3.7, 4.2, and 5.6 respectively. 

Similarly, SSNR for 15 dB GSC-SCCFC is 32.5 while that for 

GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE are 15.3, 

16.2, 17.6, and 19.8 respectively. SSNR for the proposed 

GSC-SCCFC shows improved performance as noise present 

in each frame is reduced. Also for 15 dB station noise, SSNR 

for GSC-SCCFC is 33.8, but for GSC-CC, GSC-LP, GSC-

CWGN, and GSC-CBE, it is 15.8, 15.9, 16.2, and 22.6 

respectively. Likewise for 15 dB street noise, GSC-SCCFC, 

GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE results in 

SSNRs of 34.6, 16.2, 17.4, 18.4, and 22.1, respectively. 

Likewise, the performance of SSNR is improved gradually for 

different real-time noises which are represented in Table 3. 

SSNR for the proposed GSC-SCCFC with four microphones 

gives better noise reduction in the segmental analysis. 

 

Table 3. Comparison of PESQ and SSNR of proposed GSC-SCCFC with existing methods  

 

SNR 

in 

dB 

Noise Type 

GSC-CC 

[2013] 

GSC-LP 

[2018] 

GSC-CWGN 

[2019] 

GSC-CBE 

[2019] 

GSC-SCCFC 

(Proposed) 

 

PESQ SSNR PESQ SSNR PESQ SSNR PESQ SSNR PESQ SSNR 

-10  Car 2.401 2.9 2.482  3.7 2.305 4.2 2.401 5.6 2.632 11.2 

-10 Restaurant 2.325 4.6 2.062  4.9 2.232 5.8 2.591 5.9 3.013 15.3 

-10 Babble 2.303 2.8 2.123  4.2 2.200 5.2 2.501 6.1 3.022 16.1 

-10 Station 2.411 5.2 2.102  3.2 2.428 4.5 2.656 5.3 3.302 12.1 

-10 Airport 2.510 3.7 2.323  4.2 2.398 5.7 2.618 6.3 2.801 13.3 

-10 Street 2.241 4.4 2.208  5.5 2.511 6.2 2.674 7.7 3.011 16.7 

-5  Car 2.008 3.6 2.569  4.2 2.507 5.1 2.604 7.2 2.804 17.2 

-5 Restaurant 2.211 4.7 2.381  3.6 2.316 4.8 2.623 7.8 3.093 21.5 

-5 Babble 2.007 5.1 2.312  4.5 2.421 5.9 2.729 8.1 3.201 18.1 

-5 Station 2.118 3.5 2.421  3.8 2.551 6.7 2.634 8.4 3.104 16.8 

-5 Airport 2.092 2.8 2.383  4.1 2.483 6.2 2.715 9.4 3.302 15.2 

-5 Street 2.183 5.7 2.572  5.9 2.501 7.5 2.749 9.5 3.259 20.3 

0  Car 2.010 7.2 2.454 6.9 2.611 5.9 2.734 9.2 3.405 21.4 

0 Restaurant 2.486 3.1 2.687 7.3 2.643 6.4 2.787 8.5 3.401 25.3 

0 Babble 2.201 5.4 2.532 7.9 2.571 6.3 2.663 10.5 3.569 24.2 

0 Station 2.229 7.5 2.556 6.8 2.691 6.9 2.719 9.7 3.582 22.8 

0 Airport 2.237 4.6 2.399 8.1 2.582 7.1 2.697 10.6 3.691 21.5 

0 Street 2.597 6.9 2.573 7.9 2.660 8.2 2.793 11.5 3.710 25.2 

5  Car 2.602 8.8 2.735 9.3 2.812 9.5 2.867 10.7 3.408 21.7 

5 Restaurant 2.676 7.2 2.812 8.9 2.752 9.8 2.702 11.3 3.421 25.1 

5 Babble 2.698 5.8 2.790 9.5 2.862 10.2 2.923 11.7 3.543 24.2 

5 Station 2.702 4.7 2.809 10.2 2.951 10.7 2.921 12.1 3.521 22.6 

5 Airport 2.818 4.9 2.901 9.9 3.028 10.5 3.052 11.9 3.671 21.9 

5 Street 2.992 8.9 3.095 12.8 3.191 11.7 3.179 13.8 3.722 25.2 

10 Car 2.901 10.6 3.011 11.7 3.221 12.7 3.328 13.3 3.992 31.9 

10 Restaurant 2.822 12.4 3.039 11.6 3.219 13.7 3.222 13.5 4.072 32.4 

10 Babble 2.899 15.1 3.156 11.9 3.312 13.2 3.356 14.2 4.287 34.1 

10 Station 2.907 12.2 3.121 12.7 3.224 12.9 3.401 14.8 4.356 32.8 

10 Airport 2.974 13.2 3.111  11.6 3.212 13.2 3.456 14.1 4.456 34.1 

10 Street 3.012 14.7 3.223  15.6 3.431 16.3 3.582 17.7 4.311 31.6 

15 Car 3.061 15.3 3.151 16.2 3.232 16.3 3.451 19.8 4.365 32.5 

15 Restaurant 2.921 15.9 3.164 16.2 3.379 1.8 3.511 20.9 4.346 34.3 

15 Babble 3.056 15.2 3.178 15.4 3.245 16.9 3.489 20.3 4.310 34.1 

15 Station 3.110 15.8 3.208 15.9 3.212 16.2 3.501 22.6 4.355 33.8 

15 Airport 3.089 15.5 3.219  16.9 3.302 17.8 3.451 21.7 4.387 34.8 

15 Street 3.121 16.2 3.410  17.4 3.401 18.4 3.567 22.1 4.393 34.6 
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4.1.3 LSD 

LSD [30], is an Advanced metric, the reduction in the 

spectral distance is calculated using LSD. 

The expression LSD is provided in Eq. (23), 
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LSD for the proposed GSC-SCCFC algorithm is compared 

with existing algorithms for various real-time noises as shown 

in Figure 4a to 4f. The proposed algorithm showing lower 

values of LSD implies better performance. The reduction of 

the spectral distance is achieved using MBM by utilizing the 

complete spatial information. As the distance between the 

frames decreases, the distortion gets reduced. At 10 dB for car 

noise, LSD for GSC-SCCFC is 0.91 but for GSC-CC, GSC-

LP, GSC-CWGN, and GSC-CBE, it is 2.04, 2.22, 2.39, 2.21. 

For 15 dB input SNR under station noise, LSD for GSC-

SCCFC, GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE is 

0.51, 1.54, 2.16, 2.03, and 1.73, respectively. The proposed 

GSC-SCCFC achieves better performance when compared to 

the existing algorithms. LSD gradually decreases for the 

remaining noises which are shown in Figure 4. A smaller 

spectral distance for the proposed GSC-SCCFC for 15 dB at 

0.41 is observed under street noise. Using the proposed 

SCCFC algorithm in the adaptive filtering block of GSC 

beamforming, better quality is achieved for the output speech 

which is represented in terms of LSD as shown in Figure 4a to 

4f. 

 

 
a. LSD for airport noise 

 
b. LSD for babble noise 

 
c. LSD for car noise 

 
d. LSD for restaurant noise 

 
e. LSD for station noise 

 
f. LSD for street noise 

 

Figure 4. LSD comparison for proposed GSC-SCCFC with 

existing method under various noisy conditions 
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4.1.4 LLR 

LLR [28] is an objective measure defined based on the LPC 

co-efficient, where αc is the LPC vector of clean speech and αp 

is the LPC vector of the processed speech and Rc is the auto-

correlation matrix of the clean speech.  

LLR can be calculated as 
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Lower the LLR more will be speech performance quality. 

For car noise at 15 dB input SNR, LLR is 0.36 for the proposed 

GSC-SCCFC, but for GSC-CC, GSC-LP, GSC-CWGN, and 

GSC-CBE it is 0.89, 0.87, 0.83, and 0.72, respectively. For 

station noise with 15 dB input SNR, GSC-SCCFC results in 

an LLR of 0.07 whereas GSC-CC, GSC-LP, GSC-CWGN, 

and GSC-CBE, it is 1.52, 1.41, 0.42, and 0.73 respectively. At 

15 dB input SNR, LLR of 0.04 under airport noise is achieved 

by the proposed GSC-SCCFC which is very low when 

compared to the other conventional algorithms as shown in 

Figure 5a to 5f.  

 

 
a. LLR for airport noise 

 
b. LLR for babble noise 

 
c. LLR for car noise 

 
d. LLR for restaurant noise 

 
e. LLR for station noise 

 f. 

LLR for street noise 

 

Figure 5. LLR comparison for proposed GSC-SCCFC with 

existing method under various noisy conditions 

 

Table 4. Computation time 

 
Methods Computation time (s) 

GSC-CC [2013] 2.38 

GSC-LP [2018] 1.98 

GSC-CWGN [2019] 2.71 

GSC-CBE [2019] 2.29 

GSC-SCCFC (proposed)  0.93 

 

4.2 Computational time 

 

The computational time is calculated in this section. An 

input degraded speech signal from the real-time environment 

with a duration of 2.814 seconds is considered. The 

simulations are executed on an intel i7 core processor with a 

2.20 GHz clock speed with 8 GB RAM. The operating system 

used is Windows 10. The GSC-SCCFC is compared with the 

conventional algorithm in Table 4. GSC-SCCFC shows less 

computation of 0.93 s is shown in Table 4. The conventional 
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algorithm shows low performance in noise reduction and gives 

high computation time is shown in Table 4. The proposed 

GSC-SCCFC method gives better performance with lower 

computational time. 

 

4.3 Waveforms 

 

In Figure 6 and Figure 7, the time domain plots and 

spectrograms of the proposed multi-channel speech 

enhancement system are illustrated. Which shows the 

proposed GSC-SCCFC noise reduction performance for 5 dB 

car noise. The enhanced speech signal of the proposed GSC-

SCCFC algorithm shown in Figure 6 looks similar to the clean 

speech signal. The enhanced speech signal is also attained at 

low SNRs. 

 

 
Figure 6. The time-domain plot of the proposed multi-

channel speech enhancement system 

 

 
Figure 7. Spectrogram of the proposed multi-channel speech 

enhancement system 

 

Using the proposed GSC-SCCFC method, PESQ of 4.393 

is obtained which is the highest compared to that of GSC-CC 

[2013], GSC-LP [2018], GSC-CWGN [2019], GSC-CBE 

[2019] having scores of 3.121, 3.410, 3.401, and 3.567 at 15 

dB input SNR for street noise respectively. The PESQ score of 

the proposed method almost reaches the maximum achievable 

PESQ score of 4.5 [28]. In the same way, the proposed method 

has significantly higher SSNR, and lower LSD, LLR, and also 

lower computational complexity values clearly showing its 

superiority in performance and its ability to provide a better 

trade-off between noise reduction and computational 

complexity compared to other methods. 

 

 

5. CONCLUSIONS 

 

A multi-channel speech enhancement system using the 

GSC-SCCFC algorithm is proposed in this paper. Both noise 

reduction and low computational complexity are achieved 

using GSC-SCCFC. GSC beamforming using the proposed 

SCCFC algorithm is compared with the existing algorithms 

under various real-time noisy conditions. The real-time noises 

are considered for evaluating the proposed algorithm. In the 

proposed multi-channel speech enhancement system a signed 

algorithm is adapted into the convex combination of two same 

adaptive filters (FCNLMS) with different step sizes which 

effectively reduces the computational burden in updating the 

weight coefficient and also reduces the real-time noises 

present in the input signal. The proposed system gave better 

speech intelligibility scores of 4.393 of PESQ, and SSNR of 

34.8 for 15 dB airport noise respectively. Other measures like 

LSD and LLR gave values of 0.41 for 15 dB street noise, and 

0.04 for 15 dB airport noise respectively for the proposed 

GSC-SCCFC algorithm, which are smaller values compared 

to the conventional algorithms. Lower LLR and LSD values, 

showing the lower distance between the frames, shows 

improved speech quality. From the performance comparisons, 

the proposed GSC-SCCFC shows improved results for the 

quality and intelligibility over the conventional algorithms. 

The proposed algorithm is very essential for smooth 

communication through speech in real-time noisy conditions. 
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