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During rehabilitation, many postoperative patients need to perform autonomous massage on 

time and on demand. Thus, this paper develops an individualized, intelligent, and 

independent rehabilitation training system for based on image feature deep learning model 

acupoint massage that excludes human factors. The system, which innovatively integrates 

massage gesture recognition with human pose recognition. It relies on the binocular depth 

camera Kinect DK and Google MediaPipe Holistic pipeline to collect the real-time image 

feature data on joints and gestures of the patient in autonomous massage. Then the system 

calculates the coordinates of each finger joint, and computes the human poses with VGG-

16, a convolutional neural network (CNN); the calculated results are translated, and 

presented in a virtual reality (VR) model based on Unity 3D, aiming to guide the patient 

actions in autonomous massage. This is because the image feature of the gesture recognition 

and pose recognition is hindered, when the hand or the human is occluded by the body or 

other things, owing to the limited recognition range of the hardware. The experimental 

results show that, the proposed system could correctly recognize up to 84% of non-occluded 

gestures, and up to 93% of non-occluded poses; the system also exhibited a good real-time 

performance, a high operability, and a low cost. Facing the lack of medical staff, our system 

can effectively improve the life quality of patients.  
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1. INTRODUCTION

The advancement of science and technology has promoted 

the application of artificial intelligence, and brought progress 

in human pose and gesture recognition, turning it into a novel 

way of somatosensory human-computer interaction [1-4]. In 

recent years, the technology of human pose and gesture 

recognition is widely applied in many fields, such as artificial 

intelligence [5], electronic games [6], smart home [7], sports 

training [8], teaching and training [9, 10], traffic guidance [11, 

12], to name a few. 

In addition, perception technologies like human pose and 

gesture recognition boast application prospects in life health 

and other medical fields [13]. For example, Liu et al. [14] used 

Leap Motion to capture the real-time gestures of patients 

during rehabilitation exercise, which realizes the 

somatosensory interaction between the upper limbs and the 

virtual environment, and stimulates their willingness for self-

rehabilitation, and constructed a low-cost evaluation system 

for self-rehabilitation exercise of patients. With the pose 

estimation method of OpenPose, Hang et al. [15] processed the 

key action features in pose videos, extracted the joints from 

human skeleton, and proposed a human rehabilitation action 

recognition algorithm based on the gated recurrent unit (GRU) 

network, which improves the recognition accuracy of 

rehabilitation actions to 98.14%. Chen [16] captured the real-

time data on hand movement with Leap Motion 

somatosensory sensor, modeled the time-varying finger joint 

angle of grasping by analyzing the kinematics data on joints, 

designed a multi-joint virtual rehabilitation system for the 

upper limbs, and realized the interactive control of virtual joint 

movements, making the relevant rehabilitation training more 

immersive. Wang et al. [17] developed a virtual environment 

training software, which relies on Leap Motion somatosensory 

sensor to track the real-time position and gesture of the 

patient’s hands; the patient is allowed to move the virtual hand 

naturally, and their system will give the patient visual and 

vibrotactile feedbacks, making his/her rehabilitation training 

more effective. Yang et al. [18] combined Kinect DK, an 

automatic human pose recognition technology, with medical 

rehabilitation, creating a medical rehabilitation action 

database, presented a pose judgement method based on the 

Euclidean distance and angle between joints, and applied the 

method to medical rehabilitation training. Qian et al. [19] 

adopted Kinect DK to extract the data on human poses, 

proposed an action model to extract human movement features 

from the joint angle series, and developed a Kinect DK-based 

system for habilitation trainers. 

Human pose and gesture recognition is mainly realized 

based on various sensors or machine vision image analysis. (1) 
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Sensor-based human pose and gesture recognition: Zeng et al. 

[20] designed a portable, lightweight, and intelligent gesture 

recognition device based on elastic conductive coated yarns; 

the device adopts the gloves made of silver-plated nylon 

spandex with strain-resistance effect. The sensor-based 

recognition methods can achieve an accuracy as high as 96%, 

without being controlled by the ambient light. However, the 

relevant devices are inconvenient to use, because the user must 

wear a variety of sensors. (2) Machine vision-based human 

pose and gesture recognition: Ravinder Ahuja et al. [21] built 

a gesture dataset from OpenCV, and extended convolutional 

neural network (CNN) into a machine vision control system 

based on gesture actions. Despite its simplicity, the machine 

vision-based methods are less accurate than the sensor-based 

methods. Besides, this type of methods is susceptible to the 

ambient light; their recognition rate drops sharply when there 

is occlusion. 

To sum up, the traditional gesture and posture recognition 

only improves the recognition rate from the algorithm, and 

does not integrate two single recognition methods into the 

same device and apply them. Taking advantage of 

somatosensory interaction, this paper develops an 

individualized, intelligent, and independent rehabilitation 

training system for acupoint massage that excludes human 

factors. In the system, the binocular depth camera Kinect DK 

is adopted to collect the data on joints and gestures of the 

patient in autonomous massage, and the coordinates of each 

finger joint are calculated; the poses of the patient are 

recognized by the CNN, and translated for display in a virtual 

reality (VR) model based on Unity 3D, aiming to guide the 

patient actions in autonomous massage. 

 

 

2. SYSTEM CONSTRUCTION 

 

 
 

Figure 1. System modules 

As shown in Figure 1, our system consists of three modules: 

a data acquisition module, a data processing module, and a 

massage gesture correction module. 

(1) The data acquisition module collects the body and hand 

movements of the patient with the deep binocular camera 

Kinect DK. After removing the invalid frames, the deep data 

on poses and gestures are computed, and stored in the backend 

database, providing original data for subsequent modules. 

(2) Based on deep learning, the data processing module 

extracts the pose features of the patient, imports the CNN 

parameters to match the pose features with the predefined pose 

action library, and outputs the recognized poses. In addition, 

the hand features of the patients are extracted, followed by the 

calculation of finger positions, finger joint positions, and 

optimal finger trajectory under the coordinate system of 

Kinect DK. 

(3) According to the results on poses and gestures, the 

massage gesture correction module introduces the kinematics 

model parameters, binds the patient’s poses and gestures to the 

VR model, and translates them for display in the VR model. 

The results, outputted via the screen, glasses, or terminal, 

guide and correct the patient’s massage actions in real time, 

and ensure the quality and quantity of postoperative self-

rehabilitation training. 

 

 

3. DEEP DATA COLLECTION 

 

The Azure Kinect DK, launched by Microsoft in 2019, was 

selected as the binocular depth camera. Using Kinect DK to 

collect the deep data on poses and gestures. It is a developer 

toolkit that integrates advanced artificial intelligence sensors. 

Kinect DK contains a 1 million pixel time of flight (TOF) 

depth camera, a 360° 7-microphone array, a 12 million pixel 

full high-definition camera, and a direction sensor. This small 

and portable binocular depth camera supports complex 

computer vision and voice models [22]. 

(1) Kinect DK coordinate system 

Kinect DK has a three-dimensional (3D) coordinate system, 

with every sensor as the origin [0, 0, 0]. That is, the 3D 

coordinate system consists of multiple subsystems: the depth 

camera coordinate system, the color camera coordinate system, 

the gyro coordinate system, and the accelerometer coordinate 

system. Among them, the depth camera coordinate system is 

selected for this research. Every second, Kinect DK generates 

30 frames of data per second, and captures the depth 3D 

coordinates of 25 key points in real time, providing the data 

support to pose and gesture recognition. 

(2) Digital skeleton of key points 

Using a ToF imaging chip, Kinect DK realizes a high 

modulation frequency and depth accuracy, and operates at a 

rate as fast as 30 frames per second (fps). The key points of 

the human body were computed from the depth image via ToF 

ranging: a light pulse is projected into the target space, and the 

depth data of the reflection points is derived from the phase 

difference of the reflected lights. Int this way, 32 joints are 

obtained and tacked. The position and direction of each joint 

form a coordinate system of that joint. The coordinate systems 

of all the joints make up a digital skeleton. 

(3) Fingertip coordinates 

Kinect DK provides 4 joint points for each hand, which is 

not enough for the recognition of massage gestures. Thus, 

Kinect DK is supplemented with Google MediaPipe Holistic 

pipeline to recognize the gestures. Then, the spatial 
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coordinates and fingertip direction of each finger are collected, 

and used to deduce the spatial coordinates of other joints of the 

finger. 

 

 

4. ACUPOINT MASSAGE GESTURE RECOGNITION 

 

In our system, the binocular depth camera Kinect DK is 

supplemented with Google MediaPipe Holistic pipeline to 

detect and track the real-time position and direction of each 

palm and finger. Each second, the system can capture 30 

frames of data at the most. The working range is 0.5-5m. The 

following data can be tracked and collected in real time by our 

system: (1) The spatial coordinates of the five fingertips, mm; 

(2) The direction vectors of the five fingers, i.e., the direction 

from the root to the tip of each finger, when the hand is fully 

open. The spatial coordinates of fingertips and direction 

vectors are determined based on the 3D coordinate system KD 

of the Kinect depth camera. 

To recognize the gestures in acupoint massage, the primary 

task is to extract the coordinates of the finger positions of the 

self-rehabilitation patient during the massage, and then derive 

the coordinates of all joints in the hand, as well as the optimal 

trajectory of each fingertip. On this basis, the patient’s 

massage actions will be guided and corrected in real time 

through the natural interaction in the virtual environment of 

the self-rehabilitation system, such that the postoperative 

patient can complete sufficient high-quality massage training 

and tasks autonomously during the self-rehabilitation. 

 

4.1 Determining the coordinates of each finger joint 

 

Take the tip of the middle finger as an example. Under ideal 

conditions, the middle finger is considered as a cylinder 

(Figure 2), with its center point as the origin O. 

 

 
 

Figure 2. Coordinates of fingertip 

 

Suppose the fingertip of the middle finger is an ideal partial 

spherical surface. Let A be the radius of the fingertip; R be the 

distance between the contact point and the origin on the 

centerline of the middle finger during massage. In the global 

coordinate system (O-XOYOZO), any direction on the fingertip 

is selected as the XKD axis, with the center point O of the 

middle finger as the origin, and the direction along the 

centerline of the finger as the ZKD axis. Then, YKD is 

determined by the right-hand rule, producing the local 

coordinate system (KD-XKDYKDZKD), where the origin is the 

center point O of the middle finger. During the massage, the 

contact point falls on the projection plane of XKD
_YKD. Let α σ 

be the angle between the normal vector of the contact point; θ 

be the angle between the normal vector of the spherical surface 

at the contact point and the ZKD axis. Then, the parameter 

equation of the contact surface in the local coordinates of the 

fingertip (KD-XKDYKDZKD) can be established as: 

 

δKD(φ, θ) = [
(R + Asinθ)cosθ

(R + Asinθ)sinθ
A − Acosθ

]  σ ∈ [0,2π], θ

∈ [0,
π

2
] 

(1) 

 

In the above global coordinate system(O-XOYOZO), it is 

assumed that the surface equation of the body part contacted 

by the tip of the middle finger is S=S(μ, v). Then, the arbitrary 

trajectory of the tip of the middle finger during the massage 

can be described as: 

 

Pi = S(μ(x), v(x))(i = 1,2,3, ⋯ , n) (2) 

 

On the i-th trajectory, the contact point between the tip of 

the middle finger and the massaged body part can be expressed 

as: 

 

D = Di,j = S(μ(xj), v(xj))(S = S(μ, v)   j =

1,2,3, ⋯ , n) 
(3) 

 

Taking the current middle finger tip, i.e., the contact point 

D of the massaged part, as the origin, the ZD axis is established 

on the normal direction of the surface of the massaged part, the 

XD  axis is established with the tangent of the massage 

direction as the positive direction, and the YD axis is 

determined by the right-hand rule, creating a local coordinate 

system for the contact point of the middle finger tip on the 

massaged part: (D-XDYDZD). 

From the spatial geometry, it is learned that the spherical 

surface of the middle finger tip is tangent to the surface of the 

massaged part at D. In (D-XDYDZD), the following parameters 

can be determined: the spatial position of middle finger tip (XD, 

YD, ZD), the inclination angle α of the middle finger relative to 

the massaged part, and the rotation angle β of the middle finger. 

Specifically, the inclination angle α refers to the angle between 

the middle finger and the normal surface of the massaged part, 

and the rotation angle β stands for the angle between the 

massage direction and the centerline of the middle finger. 

According to the relative positions, (KD-XKDYKDZKD) can be 

transformed into (D-XDYDZD) by: 

 
[XDK, YDK, ZDK] = [XD, YD, ZD]Ma (4) 

 

where, Ma is a matrix:  

 

Ma = [
cosβ −sinβ 0
sinβ cosβ 0

0 0 1

] [
cosα 0 sinα

0 1 0
−sinα 0 cosα

] 

= [
cosβcosα −sinβ cosβsinα
sinβcosα cosβ sinβsinα

−sinα 0 cosα

] 

(5) 

 

During the massage, the center point O of the middle finger 

moves to the middle finger tip, i.e., the contact point Di,j of the 

massaged part. At this moment, the ZD axis of the two local 

coordinate systems coincide. Suppose the middle finger 

continues with the original trajectory. Let R be the movement 

distance of the middle finger along the XD axis; α be the 

rotation angle of the middle finger about the axis YD, with the 

center point O as the origin; β be the rotation angle of the 

middle finger about the axis ZD, with KD as the origin. Then, 
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the 3D spatial position of the origin of the middle finger can 

be described as: 

 

O = D + AZD − RXD (6) 

 

From formulas (4) and (6), we have: 

 

{
O = D − RcosβcosαXKD − RsinβcosαZKD + (A + Rsinα)YKD

ZKD = cosβsinαXKD + sinβsinαZKD + cosαYKD
 (7) 

 

According to formula (7), the spatial position of the middle 

finger can be determined, as long as the following three 

parameters are known: the contact point D of the massaged 

part, the inclination angle α of the middle finger relative to the 

massaged part, and the rotation angle β of the middle finger. 

Then, the spatial position of every angle on the middle finger 

can be derived by the plane quadrilateral model [23] and the 

law of cosines. By analogy, it is possible to obtain the spatial 

coordinates of all the fingers of the hand. 

 

4.2 Optimizing fingertip trajectory 

 

The massaged surfaces on human body differ greatly. Some 

body parts are convex, and some are concave. Let (xi, yi, zi) be 

the coordinates of a random point selected from the massage 

trajectory on a concave surface. Then, a coordinate plane O-

XZ is established at the point (0, yi, 0). This plane is 

perpendicular to the Y axis, and intersects the concave surface 

of the massaged part along the trajectory S. The trajectory is 

explained in Figure 3, where dm is the tiny increment of each 

finger movement. 

 

 
 

Figure 3. Fingertip trajectory during massage 

 

Then, the function G=f(d, s) is set up for the message 

process, where parameter d is any point on the massage 

trajectory S. Let G be the shortest normal distance of point d 

along trajectory S, and dm be the tiny increment of each finger 

movement. Then, the t contact points within the dm-long 

trajectory, G1, G2, G3,…, Gt, can be solved. Since the t points 

are randomly arranged on the ideal trajectory, there must be an 

inflection point, that is, the crest point or the trough point. 

 

 
 

Figure 4. Distribution of contact points on massage 

trajectory S 

Figure 4 shows the distribution of contact points on massage 

trajectory S. There are three possible distributions:  

(1) If the contact points are inside trajectory S, then the 

function G=f(d, s) maximizes at point n and minimizes at point 

m. In this case, point m is the contact point for all the 

trajectories in the tiny increment, that is, the function value 

equals Gm. 

(2) If the contact points are on both sides of trajectory S, 

then the function G=f(d, s) maximizes at points m and n, with 

point n on the outside. In this case, point n is the contact point 

for all the trajectories in the tiny increment, that is, the function 

value equals Gn. 

(3) If the contact points are outside trajectory S, then the 

function G=f(d, s) maximizes at point m and minimizes at 

point n. In this case, point n is the contact point for all the 

trajectories in the tiny increment, that is, the function value 

equals Gn. 

Depending on the situation of the above three cases, it is not 

difficult to fit the optimal trajectory for each fingertip. 

 

 

5. DEEP LEARNING-BASED POSE RECOGNITION 

FOR ACUPOINT MASSAGE 

 

For pose recognition, the binocular depth camera Kinect 

DK collects the depth images on the patient’s poses during the 

autonomous massage. Then, the pose features are extracted 

from the images, and imported to the CNN for matching with 

the predefined pose library, aiming to recognize the patient’s 

massage poses in self-rehabilitation. 

The CNN is very suitable for image processing. With the 

speed improvement of computer hardware, the CNN has been 

widely adopted for face recognition [24, 25], gesture 

recognition [26, 27], human pose recognition [28], license 

plate recognition [29, 30], security, and other fields. In this 

paper, our CNN for pose recognition in acupoint massage 

includes four parts: convolutional layer, activation layer, 

pooling layer, and fully connected layer. 

(1) The convolutional layer is the feature extraction layer. 

The convolution kernels and the activation function work 

together to extract specific data, and combine them into a 

feature map. The convolutional operation can be expressed as: 

 

C(i, j) = ∑ ∑ xi+h,j+w × wh,w + b

w

w=1

h

h=1

 (8) 

 

where, C(i, j) is the convolution result; i and j  are the 

coordinates of the kernel; h and w are the height and width of 

the kernel, respectively. 

(2) The activation layer adopts the rectified linear unit 

(ReLU) function:  

 

f(x) = {
0   x < 0
x   x ≥ 0

 (9) 

 

(3) The fully connected layer connects the data of 

convolutional layers and those of pooling layers, and output 

the feature information. The output of the fully connected 

layer can be expressed as: 

 

hw,b(x) = θ(wTx + b) (10) 

 

(4) VGG-16-based pose recognition 
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The depth images, which are in the size of 224×224, on 

massage poses are collected by Kinect DK. The deep learning 

algorithm is VGG-16, a CNN developed by Computer Vision 

group from the University of Oxford [31], in association with 

Google DeepMind. Our CNN contains 13 convolutional 

layers(3x3), 5 pooling layers(2x2), 3 fully connected 

layers(4096), and 1 output layer (softmax). The kernel size is 

set to 3×3. 

The three 224×224 depth images collected by Kinect DK 

are imported to VGG-16. Then, the data flow is as follows: 

two convolutional layers, two convolutions + ReLU operation, 

max pooling layer, two convolutional layers, max pooling 

layer, three convolutional layers, max pooling layer, three 

convolutional layers, max pooling layer, three convolutional 

layers, max pooling layer, fully connected layer, outputting 

recognized poses and performing softmax classification. To 

ensure that the system can really recognize the patient's 

gestures, (Figure 5). 

 

 
 

Figure 5. Pose recognition model 

 

 

6. EXPERIMENTS AND RESULTS ANALYSIS 

 

6.1 Software and hardware environments 

 

The following software and hardware environments are 

established to verify the accuracy and effectiveness of our 

system. 

Hardware environment: Intel Core I7-6850K@3.6GHz 6-

core 12-thread CPU; DDR4-3200 32GB memory; Samsung 

970evo plus 500G hard disk; NVIDIA GeFoce1080 GTX 

GPU with 8GB video memory; Kinect DK binocular depth 

camera. 

Software environment: operation system: Windows10, 64-

bit professional edition; key point detection and tracking tool: 

Google MediaPipe Holisticipeline; VR platform: Unity3D 

engine. 

The test environment is well lighted with no occlusion 

between Kinect DK and testers. 

 

6.2 Effectiveness of massage gesture recognition 

 

The gesture data come from the fingertip data collected by 

Kinect DK and Google MediaPipe Holistic pipeline. The 

actual massage gestures of traditional Chinese medicine 

(TCM) are collected in real time, producing a series of gesture 

movements. The data are processed in the unit of frames by 

removing the invalid frames and retaining the valid ones. A 

total of five massage gestures commonly used in TCM 

massage are selected for the test: thumb massaging 

manipulation, pressing manipulation, kneading manipulation, 

grabbing manipulation, and pulling manipulation [32]. Each 

gesture is tested for more than 8s. 

To ensure the applicability of the system, the binocular deep 

camera Kinect DK is placed on a tripod. The left and right of 

the lens directly face the palm of the patient, while the vertical 

direction faces the patient with a certain angle. The gestures 

are made 1.0-2.5m away from the camera, and tested at 1.0m, 

1.5m, 2.0m, and 2.5m, respectively, for more than 2s. By the 

method specified in Section 4, the coordinates of each joint in 

the hand are obtained, and rendered with the Unity3D engine. 

Then, the gestures are displayed on the screen in a virtual form 

(Figure 6), where the joints are presented as black dots and 

linked up with black lines. 

 

 
 

Figure 6. Massage gesture test 

 

During the test, the palm faces the Kinect DK, but the back 

of the hand faces the camera. For convenience, the recognized 

gestures are rotated by 180°. As shown in Figure 6, some 

recognized gestures are slightly deformed, with an obvious 

jitter during screen playback; the best recognition effect is 

achieved at the distances of 1.5m and 2.0m; when the finger is 

bent too much, part of the hand is occluded, causing falling 

recognition rate and intensified jitter. 

 

6.3 Autonomous rehabilitation system test 

 

In the system test, 40 patients aged about 35-55 were 

selected, including 20 males and 20 females. During the test, 

the patient stands at 2m away from the camera of Kinect DK, 

with no occlusion over the distance. Kinect DK is mounted on 

a tripod, and the center point of the camera is 1.2m above the 

ground. The screen is placed at 0.5m behind the camera. The 

height of the screen is adjusted such that the patient can see the 

displayed contents clearly.  
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Figure 7. Mean recognition rates of gestures and poses for 

the four massage actions in self-rehabilitation 

 

According to the sound prompt, each patient performs self-

rehabilitation actions, including self-rehabilitation poses and 

autonomous massage gestures, on four different body parts. 

Each action is executed 10 times, that is, every patient 

performs 40 self-rehabilitation actions. In total, each action is 

executed 400 times, and all actions are implemented 1,600 

times. 

Four different massage actions of self-rehabilitation are 

tested:  

(1) Wrist massage: the left hand makes a fist and raises to 

the height of the nose bridge, while the right hand kneads the 

left wrist: with the palm facing inward, the thumb is placed on 

the right of the wrist, and the other four fingers on the left. 

(2) Shoulder massage: the left arm droops naturally, while 

the right arm raises to massage the left shoulder: the thumb is 

placed in front of the shoulder, and the other four finger behind 

the shoulder. 

(3) Abdomen massage: the five fingers draw close to each 

other to massage the abdomen. 

(4) Leg massage: the body slightly bends over, and the four 

fingers other than the thumb massage the front of the thigh. 

To ensure the recognition accuracy and precision, the 

patient needs to enter the scanning range of the camera, and 

stand at the test point during the test. After the end of the test, 

the patient must leave the scanning range. At least five seconds 

is provided to recognize each self-rehabilitation action. Since 

Kinect DK generates 30 frames of data per second, a total of 

150 frames of data can be obtained for each action. After 

removing invalid frames, the valid frames are imported to our 

algorithm to obtain the mean recognition rates of massage 

gestures and poses (Figure 7). 

As shown in Figure 7, over 93% massage poses in the four 

actions are correctly recognized, and the recognition rate, with 

only a slight fluctuation, fully meets the system needs. During 

leg massage, the recognition rate is slightly dropped due to the 

occlusion effect of the body on the arm. The recognition rate 

of the massage gestures surpasses 84%, but with large 

fluctuations. This is because the gesture recognition is 

hindered, when the hand is occluded by the body or other 

things, owing to the limited recognition range of the hardware. 

The recognition rate can be improved by adopted two Kinect 

DKs [33]. 

 

 

7. CONCLUSIONS 

 

The rehabilitation system based on somatosensory 

interaction and autonomous massage is an important research 

direction of life health. It offers the patient an immersive 

treatment experience that unknowingly reduces the pain of 

disease. In this paper, massage gesture recognition is 

innovatively integrated with human pose recognition, and 

fused with somatosensory interaction to develop an 

individualized, intelligent, and independent rehabilitation 

training system for acupoint massage that excludes human 

factors. 

In the system, the binocular depth camera Kinect DK is 

adopted to collect the data on joints and gestures of the patient 

in autonomous massage, and the coordinates of each finger 

joint are calculated; the poses of the patient are recognized by 

VGG-16, and translated for display in a VR model based on 

Unity 3D, aiming to guide the patient actions in autonomous 

massage. 

The experimental results show that, the proposed system 

could correctly recognize up to 84% of non-occluded gestures, 

and up to 93% of non-occluded poses. However, obvious jitter 

is observed on screen replay, when the patient is too close to 

or too far from Kinect DK, causing slight deformation of the 

recognized gestures; when the hand is occluded, the 

recognition rate plunges. To improve the recognition accuracy, 

two Kinect DKs could be installed to detect the patient’s poses 

and gestures from different angles. The data of the two devices 

can complete each other, resulting in better recognition effect. 
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The proposed system boasts a good real-time performance, 

a high practicality, a strong operability, and a low cost. Facing 

the lack of medical staff amidst the ongoing Coronavirus 

(COVID-19) pandemic, our system can enable postoperative 

patients to perform autonomous massage on time and on 

demand, and improve their quality of life. 
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