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Brain tumor detection or brain tumor classification is one of the most challenging problems 

in modern medicine, where patients suffering from benign or malignant brain tumors are 

usually characterized by low life expectancy making the necessity of a punctual and accurate 

diagnosis mandatory. However, even today, this kind of diagnosis is based on manual 

classification of magnetic resonance imaging (MRI), culminating in inaccurate conclusions 

especially when they derive from inexperienced doctors. Hence, trusted, automatic 

classification schemes are essential for the reduction of humans’ death rate due to this major 

chronic disease. In this article, we propose an automatic classification tool, using a 

computationally economic convolutional neural network (CNN), for the purposes of a 

binary problem concerning MRI images depicting the existence or the absence of brain 

tumors. The proposed model is based on a dataset containing real MRI images of both 

classes with nearly perfect validation-testing accuracy and low computational complexity, 

resulting a very fast and reliable training-validation process. During our analysis we 

compare the diagnostic capacity of three alternative loss functions, validating the 

appropriateness of cross entropy function, while underlining the capability of an alternative 

loss function named Jensen-Shannon divergence since our model accomplished nearly 

excellent testing accuracy, as with cross-entropy. The multiple validation tests applied, 

enhancing the robustness of the produced results, render this low-complexity CNN structure 

as an ideal and trustworthy medical aid for the classification of small datasets.  
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1. INTRODUCTION

Brain tumor, known as intracranial tumor, is an abnormal 

mass of tissue in which cells grow unnaturally and 

uncontrollably. Brain tumors make up less than 2% of human 

cancer, according to World Health Organization, although its 

severe morbidity and compilations, render early diagnosis a 

very important concept in modern medicine [1]. Brain tumors 

can be deadly, affecting significantly a patient’s life without 

discriminating between men, women or children. Furthermore, 

according to national brain tumor society, over 700.000 

citizens in the United States are living with a primary brain 

tumor, while it was predicted that over 87.000 citizens would 

be diagnosed with a brain tumor in 2020 [2]. 

The existing tumors are categorized into four grades; grade 

I represents the safest form of brain tumors, including only 

benign tumors that are curable via surgery, slow-growing with 

patients having a long-term survival rate. Some significant 

examples of grade I tumors are pilocytic astrocytoma, 

craniopharyngioma, gangliocytoma and ganglioglioma. The 

second category is grade II tumors, which are characterized by 

relatively slow growing rate and may recur after a brain 

surgery.  

On the other hand, grade III and grade IV are high-grade 

tumors that are deemed as malignant. Another significant 

characteristic of these tumors is that they cannot be cured via 

surgery usually because of their high recurrence probability. 

Grade III tumors tend to recur in the future; some examples 

are anaplastic astrocytoma, anaplastic ependymoma and 

anaplastic oligodendeoglioma. Grade IV tumors represent an 

irreversible situation due to their probable transition to 

neighboring tissues, reducing patient’s life expectancy 

significantly. Signature instances are pineoblastoma, 

medulloblastoma, ependymoblastoma and glioblastoma 

multiforme (GBM) [3]. 

The most frequently observed benign tumors are 

meningiomas, pituitary adenomas and schwannomas while the 

category of malignant tumors includes the various cases of 

gliomas representing the 78% of all malignant brain tumors. 

Meningiomas are the most common benign intracranial 

tumors comprising 10 to 15% of all neoplasms. Pituitary 

adenomas are the most common intracranial tumors after 

meningiomas, gliomas and schwannomas, affecting patients 

often in their 30s and 40s, while schwanommas arise along 

nerves, comprised of cells that normally provide the electrical 

insulation for the nerve cell. Gliomas arise from the supporting 

cells of brain called glia, including ependynomas, 

medulloblastomas, astrocytomas and GBM which is the most 

invasive type of glial tumor [4].  

MRI images are the most efficient medical tools for manual 

tumor diagnosis, where experienced doctors are usually not 

just able to diagnose a tumor’s existence but can decide if the 

examined tumor is malignant. Primarily, MRI images 

depicting brain tumors, contain smaller or wider regions inside 

the cerebrum’s area of slightly lighter colors. In cases, where 

accurate diagnosis of brain tumors is necessary, experts utilize 
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MRI images with contrast, where a dye is given to the patient 

intravenously prior to the scan. Machine and Deep Learning 

are the domains of statistical methods and algorithms that can 

be used to solve the complex issue of efficient brain tumor 

diagnosis based on MRI images. 

 

 

2. RELATED WORK 

 

There is a variety of algorithms that have widely emerged 

in the field of medical imaging as a part of artificial 

intelligence, while their main goal is to learn inherent patterns 

of training data using algorithms like Artificial Neural 

Networks (ANN) [5], K-Nearest Neighbors (KNN) [6] and 

Support Vector Machine (SVM) [7, 8]. However, another 

category of algorithms named Convolutional Neural Networks 

(CNN) seem to be the most ideal way of dealing with image 

or video problems due to higher classification performances. 

There is a variety of papers dealing with binary and 

multiclass brain tumor diagnosis problems using a series of 

state-of-the-art deep convolutional neural networks. Many 

articles initiate their analysis with image prepossessing, image 

augmentation or segmentation procedures to enhance their 

algorithm’s classification capability. The most relevant 

category of articles compared to our analysis are articles 

dealing with binary classification of benign and malignant 

tumors. Babu et al. [9], Seetha and Raja [10], Kulkarni and 

Sundari [11] and Pathak et al. [12], combine preprocessing and 

image augmentation techniques with CNNs to classify benign 

and malignant brain tumors with accuracies 94.1%, 97.5%, 

98% and 98% respectively. More precisely, Kulkarni and 

Sundari [11] utilize AlexNet, a well-known deep 

convolutional neural network for the purposes of this 

classification case. A CNN-SVM architecture is proposed for 

binary classification with corresponding accuracies 88.54%, 

95% and 95.62% [13-15]. In the first part of the architecture, 

a CNN is responsible for the efficient extraction of features 

according to which an SVM classifies the images. Sert et al. 

[14] and Ӧzyurt et al. [15], suggest ResNet for the first part of 

the CNN-SVM architecture, while the images were 

preprocessed using resolution enhancement and entropy 

segmentation techniques. Simultaneously, Ӧzyurt et al. [15] 

compare their model with a CNN-KNN on the same dataset 

with an accuracy of 90.62%. An ELM-LRF structure is 

proposed by Ari and Hanbay [16] with 97.1% accuracy; basic 

CNN structures are used for the classification of the MRI 

images with 97.87% and 91.82% accuracy [5, 17]. These 

papers’ analysis is based on segments of MRI images 

containing only the tumor region. Similar methodology is 

followed by Banerjee [18] with the difference that the utilized 

model is based on transfer learning with an accuracy of 

97.19%. Another binary approach between low-grade gliomas 

(LGG) and GBM is displayed in the studies [18, 19], based on 

histopathology images classified by a CNN-SVM hybrid with 

an accuracy of 97.8%. Murali and Meena [20] display another 

instance of binary classification by categorizing MRI images 

containing gliomas and meningiomas, accomplishing 97.2% 

accuracy. Finally, the researchers [21, 22], are of particular 

interest because the authors use one of the datasets that we 

utilize for the training-validation of their CNNs. Both papers 

propose preprocessing and augmentation of their dataset with 

maximum accuracies of 95%. The 95% accuracy of Ref. [23] 

achieved by one of the three proposed CNNs, is based on 

ResNet50 architecture; although with obvious overfitting 

problems, as Saxena et al. state. Another successful attempt of 

classifying images with and without brain tumors is displayed 

by Sajja and Kalluri [24], where the usage of a CNN on a 

BRATS dataset containing 577 images, gives an accuracy of 

96.15%, tested on 182 images. 

As we mentioned above, there are analyses dealing with 

multiclass classification problems using a variety of 

preprocessing techniques and CNNs. Das et al. [25], Afshar et 

al. [26] and Alqudah et al. [27] propose CNN structures to 

classify images representing three kinds of brain tumors; 

meningiomas, pituitary adenomas and gliomas of a public 

dataset with accuracies 94.39%, 90.89% and 98%, comparing 

classification performance on cropped, uncropped and 

segmented images. Mittal and Kumar [28] classify MRI 

images concerning three tumor categories plus a class for the 

negative diagnoses with the aid of an AiCNN, mixing five 

different models to 1 and accomplishing a testing accuracy of 

98.8%. Simultaneously, Mohsen et al. [29] and Sajjad et al. 

[30], achieve a classification rate of 93.94% and 94.58% 

respectively, on images that were previously segmented.  

On the other hand, a DenseNet-LSTM hybrid is utilized for 

a four class tumor classification problem reaching 92.13% on 

a public database [31], while Sultan et al. [32] validate their 

CNN model on two databases containing three classes of 

tumors (meningiomas, pituitary adenomas and gliomas) and 

(Grade II, Grade III, Grade IV) with overall accuracies of 

96.13% and 98.7%. Another approach is the usage of pre-

trained CNNs [33], with an accuracy of 97.64% and 98% 

accomplished on two datasets consisting of three and four 

tumor classes respectively. Finally, Zhao and Jia [34] takes 

advantage of a deep convolutional neural network to segment 

the image parts containing the tumor and classify these parts 

into five categories with an accuracy of 81%. 

 

 

3. PROPOSED METHODOLOGY 

 

This section illustrates the proposed methodology used for 

the binary classification. Our methodology consists of four 

basic stages; image preprocessing and augmentation, 

construction and tuning of the CNN, evaluation based on 

performance measures and comparisons between various loss 

functions.  

 

3.1 Preprocessing  

 

Our dataset consists of two classes of MRI images depicting 

images with and without tumor, while their original size varies 

among them. We generated new MRI instances via image 

augmentation by slightly changing the basic properties of the 

initial images, like brightness, angle, orientation and zoom. 

This technique is often used in related work because these new 

images represent other possible cases of patients’ MRI and 

simultaneously enhance the robustness of neural networks 

[35]. Another element that makes this technique so popular is 

the fact that especially in medical problems, datasets are small 

resulting in unreliable models. The second step is to crop the 

black parts around the cranium of each MRI image, which 

contain no valuable information for the classification (shown 

in Figure 1). As a result, we keep the important part of the 

image that is the part of the brain where the tumor takes place. 

This technique not only makes the process more accurate, but 

also shortens the period needed for the training of the CNN. 

Another advantage of the aforementioned procedure, is that by 
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cropping the space around the brain we avoid unwanted 

correlations between the two classes according to the position 

of the brain inside the MRI image. 

 

 
a) Existence of Tumor 

 
b) Absence of Tumor 

 

Figure 1. Original and cropped images representing brain 

MRI images with and without tumor 

 

3.2 Convolutional neural networks 

 

CNNs are a category of neural networks that is focused on 

image or video related problems, usually taking an order 3 

tensor as their input. For instance, a colored image with M 

rows, N columns and 3 channels (in the RGB system) is an 

order 3 tensor, denoted as 𝑿1 ∈  ℝ𝑀×𝑁×3. Although, there 

are occasions where we work with tensors of lower or higher 

order, e.g. when our images are black and white, they represent 

tensors of order 2. A CNN consists of a series of successive 

layers; convolutional, pooling, batch normalization, fully 

connected layers and a loss layer. These layers constitute the 

two main parts of a CNN, which are the parts of feature 

extraction and feature selection [36]. 

 

3.2.1 Forward run and backward propagation  

Let 𝜲𝑘 be the input of the 𝑘 – th layer of a CNN and 𝒘𝑘 be 

the set of trainable parameters of each layer. Our input 𝑿1
 

passes through a series of layers until the last layer – the loss 

layer – where with the contribution of the loss function, we 

combine the output y𝑗, and the label of the 𝑗 – th image �̂�𝑗 to 

produce an error 𝒛. This process is called forward run and 

takes place during the training phase. During the training 

process there is a second procedure called backward 

propagation. This procedure utilizes the produced error, to 

modify all trainable parameters of the CNN according to a 

learning algorithm, e.g. stochastic gradient decent 

 

(𝒘𝒌)𝒊+1 = (𝒘𝒌)
𝒊

− 𝜂
𝜕𝒛

𝜕(𝒘𝒌)𝑖
, (1) 

 

where, 𝜂 denotes the learning rate of the algorithm and 𝑖 the 

training’s 𝑖 −th iteration [37]. Learning rate η represents a 

hyperparameter that its misplaced selection may lead to non-

optimum results.  

 

3.2.2 Convolutional layer  

The most signature layer of a CNN, belonging to its first 

part of feature extraction. Convolution is a local operation 

which role is the extraction of various patterns from the input 

images resulting in an efficient classification. Convolutional 

layers are consisted of multiple convolutional kernels which 

are the layers’ trainable parameters, modified during each 

iteration. Let 𝜲𝑘
 ∈ ℝ𝑴𝒌×𝑵𝒌×𝑫𝒌

 be the input of the 𝑘  – th 

convolutional layer and F ∈ ℝ𝑚×𝑛×𝑑𝑘×𝑆  be an order four 

tensor representing the 𝑠 kernels of 𝑘 – th layer, of spatial span 

𝑚 × 𝑛. The output of the 𝑘 – th convolutional layer will be an 

order three tensor denoted as 𝒀𝑘  (or 𝜲𝑘+1 ) ∈ 

ℝ𝑀𝑘−𝑚+1×𝑁𝑘−𝑛+1×𝑆, which elements result from 

 

𝑦𝑖𝑘,𝑗𝑘,𝑠 = ∑ ∑ ∑ 𝐹𝑖,𝑗,𝑑𝑘,𝑠 × 𝑥
𝑖𝑘,𝑗𝑘,𝑙
𝑘

𝑑𝑘

𝑙=0

.

𝑛

𝑗=0

𝑚

𝑖=0

 (2) 

 

Eq. (2) is repeated for all 0 ≤ 𝑠 ≤ 𝑆 and for any spatial 

location satisfying 0 ≤ 𝑖𝑘 ≤  𝑀𝑘 − 𝑚 + 1  and 0 ≤ 𝑗𝑘 ≤
 𝑁𝑘 − 𝑛 +1. CNNs usually combine successive convolutional 

layers aiming to detect larger spatial patterns of the input 

images [37, 38]. The utilization of convolutional layers is often 

accompanied by the operation of zero padding that maintains 

the image’s dimension unchanged during the process. 

 

3.2.3 Pooling layer 

Let 𝜲𝑘 ∈ ℝ𝑀𝑘×𝑁𝑘×𝐷𝑘
be the input of the 𝑘 – th layer that is 

now a pooling layer with a spatial span of 𝑚 × 𝑛. These layers 

are parameter free, which means that there are no parameters 

to be trained. We assume that 𝑚 divides 𝑀 and 𝑛 divides 𝑁 

and the stride equals the pooling spatial span. The output is an 

order three tensor denoted as 𝒀𝑘 ∈ ℝ𝑀𝑘+1×𝑁𝑘+1×𝐷𝑘+1
, where  

 

𝑀𝑘+1 =
𝑀𝑘

𝑚
,  𝑁𝑘+1 =  

𝑁𝑘

𝑛
,  𝐷𝑘+1 = 𝐷𝑘 , (3) 

 

while the polling layer operates upon 𝜲𝑘 channel by channel 

independently. There is a variety of pooling operations with 

max pooling and average pooling being widely used. In our 

analysis, we used max pooling, culminating in outputs 

produced according to formula 

 

𝑦𝑖𝑘,𝑗𝑘,𝑑 = max
0≤𝑖≤𝑚,0≤𝑗≤𝑛

𝑥
𝑖𝑘×𝑚+𝑖,𝑗𝑘×𝑛+𝑗,𝑑
𝑘 , (4) 

 

where, 0 ≤ 𝑖𝑘 ≤ 𝑀𝑘 , 0 ≤ 𝑗𝑘 ≤ 𝑁𝑘and 0 ≤ 𝑑 ≤ 𝐷𝑘. 

Intuitively, pooling layers are used to decrease the 

dimensions of the output tensors whereas maintaining the most 

crucial detected patterns [39].  

 

3.2.4 Fully connected layer 

This layer belongs to the second part of a CNN and its role 

is the effective selection of features extracted by the first part. 

The input of the first fully connected layer is a high 

dimensional vector containing all extracted features produced 

by a flattening operation. After the last fully connected layer, 

there is always a classification function, e.g. sigmoid, softmax, 

tanh etc. producing a real value 𝑦𝑗  that will be compared with 

the expected value (label) �̂�𝑗  based on the selected loss 

function. In our occasion, we deem that the utilization of the 

sigmoid function  

 

�̂�𝑗 =  
𝑒𝑥𝑗

1 + 𝑒𝑥𝑗
, 𝑥𝑗 ∈ ℝ. (5) 
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would be appropriate for this binary problem. Intuitively, 𝑦𝑗 ∈

(0,1) represents the probability that the input image depicts a 

tumor’s existence. 

Dropout is another important concept, which is a technique 

used to improve the generalization of the learning method, 

minimizing the probability of overfitting. It sets the parameters 

connected to a certain percentage of nodes in the network to 

zero [40]. Finally, important transition mediums connecting 

the aforementioned layers are the operations of ReLU and 

batch normalization. The ReLU function is defined as 

 

𝑦𝑖,𝑗,𝑑 = max(0, 𝑥𝑖,𝑗,𝑑
𝑘 ) (6) 

 

with 0 ≤ 𝑖 ≤ 𝑀𝑘, 0 ≤ 𝑗 ≤ 𝑁𝑘 and 0 ≤ 𝑑 ≤ 𝐷𝑘 , aiming to 

transfer only the purposive elements for the classification, 

while batch normalization makes neural networks faster and 

stabler by normalizing the layer’s input through re-scaling and 

re-centering during each iteration. The exact reasons why 

batch normalization increases a network’s accuracy are under 

discussion [41]. 

 

3.3 Loss functions 

 

As we previously mentioned, a selected loss function takes 

𝒚𝑗  and �̂�𝑗  as inputs and produces an error 𝒛 , according to 

which, the back-propagation process takes place. In this paper, 

we will compare the performance of four loss functions which 

are cross-entropy, hinge, squared hinge and Jensen-Shannon 

divergence. 

Cross-entropy: 

 

𝑆𝑐𝑟𝑜𝑠𝑠(𝒚𝑗 , �̂�𝑗) = − 
1

𝑛
∑ 𝑦𝑗𝑘𝑙𝑜𝑔�̂�𝑗𝑘

𝑛

𝑘=1

. (7) 

 

This loss function measures the expected inaccuracy of 

events observed with distribution �̂�𝑗  while the information 

contained in the events is valuated according to 𝒚𝑗 . The 

mentioned �̂�𝑗 and 𝒚𝑗 are vectors containing 𝑛  instances of 

classified images included in the training-testing process. 

Hinge: 

 

𝐻(𝒚𝑗 , �̂�𝑗) =  
1

𝑛
∑ 𝑚𝑎𝑥(0, 1 − 𝑦𝑗𝑘�̂�𝑗𝑘).

𝑛

𝑘=1

 (8) 

 

Squared Hinge: 

 

𝑆𝑞𝐻(𝒚𝑗, �̂�𝑗) =  
1

𝑛
∑ max(0, 1 − 𝑦𝑗𝑘�̂�𝑗𝑘)

2
.

𝑛

𝑘=1

 (9) 

 

Hinge and squared hinge functions are frequently used in 

machine learning algorithms and more precisely in SVM 

models.  

Jensen-Shannon divergence:  

 

𝐽𝑆𝐷(𝒚𝑗 , �̂�𝑗) =  
1

2
(𝐾𝐿 (𝒚𝑗,

𝒚𝑗 +  �̂�𝑗

2
)

+ 𝐾𝐿 (�̂�𝑗,
𝒚𝑗 +  �̂�𝑗

2
)), 

(10) 

 

where, 𝑛 is the number of samples and KL is the notation for 

Kullback-Leibler divergence  

 

𝐾𝐿(𝒚𝑗 , �̂�𝑗) =  
1

𝑛
∑ 𝑦𝑗𝑘𝑙𝑜𝑔

𝑦𝑗𝑘

�̂�𝑗𝑘

𝑛

𝑘=1

. (11) 

 

3.4 Classification measures 

 

After the completion of the training phase, we test the 

performance of our model using a series of validation 

measures. We will invoke four well-known measures named 

accuracy, sensitivity, specificity and F1 score which can be 

defined as 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (12) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝐹

𝑇𝐹 + 𝐹𝑃
 (14) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
. (15) 

 

Sensitivity represents the probability that the CNN correctly 

diagnoses the presence of a tumor in an MRI image. On the 

other hand, specificity represents the probability that the CNN 

correctly diagnoses the absence of a tumor while F1 score is 

the harmonic mean of precision and sensitivity.  

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Dataset 

 

For the purposes of our analysis, we combine two public 

databases named Brain MRI Images for Brain Tumor 

Detection and Br35H::Brain Tumor Detection 2020, published 

in Kaggle. The first dataset contains 253 MRI images, from 

which 98 represent cases of healthy brain MRI and the 

remaining 155 represent the existence of tumors, while the 

second one contains 1500 images for each category of the 

binary classification problem, producing a nearly balanced 

combined dataset of 3253 instances. After the application of 

augmentation, the final dataset includes 16.265 MRI images, 

providing 13.012, 2.440 and 813 images for training, 

validation and testing respectively.  

 

4.2 CNN architecture  

 

We propose a low complexity CNN architecture composed 

of seven primary layers as shown in Figure 2. Four of them 

(two convolutional and two max pooling) are responsible for 

feature extraction while the remaining three layers (fully 

connected) utilize these features to accomplish a high 

diagnostic efficiency. The inputs of our CNN are two-

dimensional matrices representing the gray-scale MRI images 

of size 120x120. We concluded to this selection after 

experimentation, because the chosen relatively small input 

size, implies lower computational cost without deteriorating 

our model’s accuracy. 
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Figure 2. The proposed low-complexity CNN structure for MRI images classification, consisting of 7 trainable layers 

 

 

 
 

Figure 3. Training, validation loss and accuracy during 75 

epochs using cross-entropy loss function 

 

 
 

Figure 4. Mean performance measures of validation process 

± standard deviations for cross entropy, revealing a slightly 

higher sensitivity 

 

The input matrices are transmitted to the first convolutional 

layer containing 32 kernels of size 9x9, while the feature maps 

extracted from this layer pass through a max pooling layer of 

spatial span 4x4, retaining only the max values of the 4x4 

feature maps’ subregions. This structure is repeated once more 

containing a 5x5 convolutional and a 4x4 max pooling layer. 

We used same padding before the application of the 

convolutional operation. Each of these layers is followed by 

batch normalization and ReLU operations. 

The second part is consisted of three fully connected layers 

containing 2048, 256 and 1 node respectively. Between the 

first two fully connected layers, there is a dropout layer 

eliminating overfitting effects. We trained our model for 75 

epochs based on Adam optimizer with 𝜂 =  0.001 , which 

seems to have a more unstable but more effective training 

process compared to stochastic gradient descent, as we 

observe based on Figure 3. 

According to the proposed structure, we reach perfect 

training accuracy while in Figure 4 we observe a validation 

accuracy of 99.56%, sensitivity of 99.59%, specificity of 

99.43% and f1 score of 99.50%. These results are the mean 

values produced by executing the whole training – validation 

process multiple times with different sampling combinations 

for training and validation, aiming to increase the reliability of 

our method. The corresponding standard deviations of the 

aforementioned results are 0.11, 0.256, 0.171 and 0.144. 

Applying the trained model to the test set we achieve similar, 

almost excellent detection capacity. The slightly higher 

sensitivity witnesses that our model yields just a bit better 

results on images displaying tumors. Our training-validation 

on 13.012 and 2.440 images lasted only for 2.123 seconds, 

which is translated in 28.3 seconds per epoch, running on a 

GPU and more specifically on a NVIDIA GeForce GTX 760 

graphics card. The existence of a more recently released GPU 

would produce an even shorter training-validation process.  

 

4.3 Performance comparison of loss functions 

 

In this section, we examine the results of the diagnostic 

procedure of four loss functions; cross-entropy, hinge loss, 

square hinge loss and Jensen Shannon divergence (JSD). For 

this attempt, we utilize the CNN structure that we extensively 

present above. The only remarkable difference is that during 

the training of our CNN with hinge and squared hinge loss, we 

label the absence of tumor with −1 and the existence with 1, 

while we substitute sigmoid with hyperbolic tangent function 

(tanh). Another important note is the necessary change of 

learning rate, where we employed 𝜂 =  0.0001 for JSD and 

𝜂 =  0.00001 for the two remaining loss functions. 
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Table 1. Performance measures for the validation process of the selected loss functions, proposing the utilization of cross – 

entropy 

 
Loss function Accuracy Sensitivity Specificity F1 score 

Cross-Entropy 99.56% 99.59% 99.43% 99.50% 

Hinge 98.72% 98.90% 98.58% 98.70% 

Squared Hinge 98.97% 98.99% 98.99% 98.95% 

JSD 99.38% 99.31% 99.42% 99.34% 

 

Table 2. Performance measures for the testing process of the selected loss functions, highlighting the selection of cross-entropy 

for brain tumor detection. 
 

Loss function Accuracy Sensitivity Specificity F1 score 

Cross-Entropy 99.62% 99.48% 99.56% 99.49% 

Hinge 98.73% 98.87% 98.56% 98.69% 

Squared Hinge 98.53% 98.27% 98.85% 98.56% 

JSD 99.33% 99.25% 99.20% 99.24% 

 

Table 3. Presentation of binary classification methods’ performances, displayed in related work 

 
 Model Best Testing Accuracy Classification Method 

1 Manjunath et al. [5] 97.87% CNN 

2 Babu et al. [9] 94.10% CNN 

3 Seetha and Raja [10] 97.50% CNN 

4 Kulkarni and Sundari [11] 98.33% CNN 

5 Pathak et al. [12] 98.00% CNN 

6 Ari and Hanbay [16] 97.18% ELM-LRF 

7 Hossain et al. [17] 91.82% CNN 

8 Banerjee et al. [18] 97.19% CNN-Transfer Learning 

9 Xu et al. [19] 97.80% CNN (Histop. images) 

10 Mohammed [20] 95.00% CNN (same dataset) 

11 Saxena [21] 95.00% CNN (same dataset) 

12 Sajja et al. [22] 96.15% CNN 

13 Murali and Meena [33] 97.22% CNN 

14 Xu et al. [36] 97.80% CNN (Histop. images) 

15 Proposed 99.62% CNN (cross entropy) 

16 Proposed 99.33% CNN (JSD) 

 

According to Table 1 and Figure 5, cross entropy produces 

the best validation performance in all four classification 

measures. Cross entropy’s accuracy surpasses hinge’s 

accuracy by 0.84%, squared hinge’s by 0.59% and JSD’s by 

only 0.18%. Similar results are produced for the other three 

measures, while cross-entropy displays the best performance 

against the other examined functions. Although, its difference 

in validation accuracy from JSD function remains small.  

 

 
 

Figure 5. Bar plot displaying the validation performance of 

the examined loss functions, constructed according to the 

presented results of Table 1 

 

Moreover, we compare the performance of the selected loss 

functions according to the 813 images that the test set contains. 

The CNN structure utilizing cross-entropy reached nearly 

perfect testing capacity in all utilized measures (Figure 6). 

Moreover, remarkable performance is accomplished from JSD 

function with 99.33% testing accuracy 99.25% sensitivity and 

99.24% f1 score. 

 

 
 

Figure 6. Bar plot displaying the testing performance of the 

utilized loss functions, constructed according to the presented 

results of Table 2 
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4.4 Comparison of binary brain tumor classification - 

detection 

 

In this section, we will compare the accuracy of the other 

binary classification models that use CNN structures as we 

mentioned above. By observing Table 3, we could conclude 

that our method proposes a very reliable model for brain tumor 

diagnoses, surpassing the performance of other proposed 

methodologies. Simultaneously, we provide a low complexity 

structure, avoiding appearance of overfitting and a very short 

training-validation duration, introducing an innovative 

approach for modern medicine. The combination of our 

automated process with the knowledge of an experienced 

doctor will revolutionize the field of preventive medicine by 

saving more and more human lives and simultaneously 

downgrading the threat of death. 

 

 

5. CONCLUSIONS 

 

The main idea behind this approach is the construction of 

an economic and automatic classification tool that will aid 

doctors around the world overcoming the difficulties of a brain 

tumor diagnosis based on MRI images. Our model trained and 

validated on MRI images, gives 99.62% testing accuracy using 

cross-entropy loss function. The nature of our problem 

demands a low complexity CNN structure to overcome the 

danger of overfitting that accompanies small datasets. Similar 

methodology should be applied to various problems in the 

field of medicine because data collection is usually limited. 

The extremely short training-validation period needed for our 

analysis is another signature advantage gained from this 

economic structure, highlighting the usefulness of simpler 

mathematical models in real life applications.  

We examined the diagnostic efficiency of four loss 

functions; cross-entropy, hinge, square hinge and Jensen-

Shannon divergence. Comparing the performance of the loss 

functions mentioned above, according to four widely used 

measures, we validate the appropriateness of cross entropy 

function, while underlining the capability of an alternative loss 

function as JSD. The low variability of the resulted accuracy 

produced from various training and validation splits, ensures 

the trustworthiness of our model. 
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