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 The effect of motion posture recognition hinges on the accurate description of motion 

postures with effective feature information. This study introduces Wronskian function to 

improve the denoising ability of visual background extractor (ViBe) algorithm, and thus 

acquires relatively clear motion targets. Then, a multi-feature fusion motion posture feature 

model was developed based on genetic algorithm (GA). Specifically, GA was called to 

optimize and fuse the extracted feature information, while a fitness function was constructed 

based on the mean variance ratio, and used to select the feature information with high inter-

class discriminability. Taking support vector machine (SVM) as the classifier, a multi-class 

classifier was designed by one-to-one method for the classification and recognition of 

motion postures. Through experiments, our model was proved highly accurate in motion 

posture recognition.  
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1. INTRODUCTION 

 

To recognize human motion postures [1], it is important to 

analyze videos and images through image processing, so that 

the computer can parse the postures captured by cameras. In 

this way, human motion information can be obtained 

comprehensively and effectively, facilitating subsequent 

analysis on behaviors and actions. Motion posture recognition 

plays an important role in the intelligent analysis of videos, 

and provides a highly practical application field of computer 

vision. 

Computer vision relies on cameras and computers instead 

of humans to perceive and process the visual information of 

objects, with the aid of advanced image processing techniques. 

The processed images facilitate subsequent analysis by human 

eyes or machines. Recognition is a classic problem in both 

image processing and machine vision. It intends to determine 

whether an image set contains a specific object, image feature, 

or motion state. According to the common definition, 

recognition aims to extract the features and spatial information 

from one or a class of objects, and identify the object(s) 

through the predefinition or learning of the features. 

Human motion postures generally include walking, running, 

jumping, squatting, etc. These postures not only reflect the 

body state in sports, but also convey the purpose of behaviors 

and emotional responses. The recognition of human motion 

postures is premised on the detection of moving objects, and 

the feature extraction of motion postures. By analyzing the 

extracted features, it is possible to automatically classify and 

recognize human motion postures. 

Over the years, the recognition technology of human motion 

postures has developed continuously, and penetrated more and 

more fields. In sports analysis, athlete videos are often 

processed by intelligent computer vision techniques, which 

yield valuable sports data. The objective and efficient analysis 

of these data help athlete quickly identify training problems, 

and master the essentials of sports actions. In addition, sports 

video analysis assists referees in competitions, and supports 

strategy and tactic evaluation in team events. The relevant 

techniques can extract and track moving objects in videos, and 

recognize motion postures from videos. 

This paper designs a multi-feature motion posture 

recognition model based on videos, with the aid of visual 

background extractor (ViBe) algorithm. The core functions of 

the model are detecting human motion postures, extracting 

features from motion postures, and fusing different features. 

 

 

2. LITERATURE REVIEW 

 

The first step of human posture recognition is to acquire the 

postures. Human postures can be recognized by two types of 

techniques: the contact recognition techniques requiring the 

subject to wear devices or get marked [2], and the non-contact 

techniques eliminating these requirements [3]. The commonly 

used contact techniques are mechanical, optical, or 

electromagnetic, while the prevalent non-contact technique is 

computer vision. Gao et al. [4] designed a mechanical motion 

capture system. In the system, the object needs to wear 

mechanical devices connected to sensors. The motions and 

body state of the object are measured by the sensors in real 

time. The system provides a low-cost solution with high 

accuracy and good real-time performance. However, the 

mechanical devices are very likely to impede the motions of 

the subject. Choe et al. [5] developed an optical motion capture 

system capable of collecting rich multi-dimensional 

information. The system can capture real-time motion postures 

quickly. Liu and Chan [6] proposed a wearable bioelectrical 

signal sensor to gather accurate and complete data, laying a 

solid basis for subsequent posture recognition. 

With the aid of computer vision, human motion capture 

techniques can obtain video information via cameras, and 

identify human motion postures in videos or images. Swamy 

and Reddy [7] derived a human pose estimation framework, 
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which recognizes body parts accuracy by representing the 

body in multiple models. To estimate human postures, Huang 

et al. [8] put forward a novel bottom-up approach to learn scale 

sensing representation by pyramid with high resolution 

features. Their approach can be implemented in two stages: 

training through multi-resolution supervision, and reasoning 

through multi-resolution fusion. Through the two stages, the 

poses of multiple people can be estimated in the presence of 

scale change, and the key points can be located very accurately. 

St-Pierre [9] proposed distributed sensing coordinates for 

posture estimation. Specifically, the mean position of real 

Gaussian distribution is estimated from the maximum value on 

heatmap and its position, thereby minimizing the quantization 

error. He et al. [10] proposed self-supervised three-

dimensional (3D) pose estimation model. In this model, 3D 

human poses are estimated based on transient images, i.e., 3D 

spatiotemporal histograms of photons, which are obtained by 

optical non-line of sight (NLOS) imaging system. Despite the 

above works, the computer vision-based human motion 

capture techniques should be improved in terms of cost, 

convenience, and transmission speed, such as to meet the 

requirements of various fields of production and life. 

Considering the advantages of videos captured by ordinary 

cameras, it is promising to capture and analyze human motions 

through intelligent video analysis. 

Human motion postures can be described effectively based 

on feature information. The feature descriptor can characterize 

motion postures with a high accuracy. Of course, the feature 

information should not only reflect the similarity between 

motion postures in the same class, but also reveal the 

distinction between those in different classes. The feature 

extraction of human motion postures can be categorized into 

global feature extraction and local feature extraction [11]. 

Global feature extraction describes human regions of interest 

(ROIs) with contours, optical flows, and moments. They are 

usually obtained through moving object tracking or 

foreground detection. The global features are highly invariant, 

simple to compute, and offer intuitive and rich representations. 

Local feature extraction depicts the ROIs in the original video, 

without needing to tracking moving objects or model any 

trajectories. Local features are insensitive to complex 

background, illumination change, visual angle variation, or 

partial occlusion. However, they cannot provide the complete 

information of moving objects. Akiduki et al. [12] represented 

motion postures with a continuous state sequence, and 

developed a global feature extraction method for motion 

posture recognition: the human motions are classified by 

representing the state changes with probability relationship. 

Etemad and Arya [13] characterized motion postures with a 

set of templates, which includes the known video sequence of 

human motion postures and the features extracted from the 

sequence, matched the target motion posture templates with 

the known templates by similarity, and developed a global 

feature extraction strategy for recognizing human motion 

postures. To identify human potion postures, De Silva et al. 

[14] presented a local feature extraction method based on 

posture features and grammatical information, and relied on 

the method to acquire high-level semantics and obtain an 

abstract description of motion postures. 

 

 

 

3. IMPROVED VIBE COUPLING WRONSKIAN 

FUNCTION 

 

3.1 ViBe algorithm  

 

ViBe algorithm Barnich and Van Droogenbroeck [15] 

models the background and detects foreground based on the 

spatiotemporal levels of pixels. The background model is 

established and updated through random update, and 

neighborhood propagation, which ensure the detection 

accuracy and speed of the algorithm. The algorithm can be 

divided into three parts: initializing background model, 

detecting foreground, and updating background model. 

(1) Initializing background model 

Each pixel of each frame is modeled iteratively through the 

following process. First, the background model is initialized 

with the first frame of the source video: 

 

M(x) = {v1, v2, … , vN} (1) 

 

where, v(x) is the value of background pixel at x; M(x) is the 

set of background samples at x. 

(2) Detecting foreground 

Each new pixel value v(x)  is compared with the set of 

background samples M(x)  to see if it belongs to the 

background. If it is close to a sample value in the set, then the 

pixel must belong to the background. The judgement criteria 

can be described by: 

 

v(x) ∈ {
foreground if|BR(v(x) ∩ M(x))| < Tmin

background                              otherwise
 (2) 

 

where, BR(v(x)) is the sphere with center v(x) and radius R; 

Tmin is the decision threshold. If the number of M(x) in the 

sphere is fewer than Tmin , then point x must belong to the 

foreground; otherwise, that point must belong to the 

background. 

(3) Updating background model 

Different from conventional approaches, ViBe algorithm 

updates the background model randomly by a simple strategy: 

Firstly, the sub-templates are updated by random. As new 

samples are continuously added to the background model, the 

previous samples are randomly removed from the model. Let 

N be the number of samples in background model M(x) at a 

moment. Then, the probability for a previous sample to be 

retained at that moment is (N − 1) N⁄ . With the elapse of time, 

the probability for a previous sample to be retained at t +
dt can be calculated by: 

 

P(t, t + dt) = ((N − 1) N⁄ )(t+dt) (3) 

 

Formula (3) can be rewritten in the exponential form: 

 

P(t, t + dt) = e−ln((N−1) N⁄ )dt (4) 

 

Formula (4) shows that the number of samples in the 

background model decreases smoothly in their lifecycle, i.e., 

the retention probability decreases with time. 

Secondly, if the sample size is small, a second sampling 

factor is introduced to lower the frequency of background 

updates, and extend the lifecycle of background samples. In 

other words, when there are a few samples, the time window 

is widened for the fixed size background model, without 

sacrificing algorithm accuracy. 
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The updates of background model can be mathematically 

described as follows: Firstly, a random frame is selected from 

N background models, and denoted as image IG . Next, a 

random point x is taken from the frame. For the pixels in x and 

its eight neighborhoods, when a new frame IT is imported, the 

pixel IT(x)  corresponding to x  in IT  is judged as the 

background, calling for the update of IG . By this eight-

neighborhood update strategy, any error sample can propagate 

through the model, such that the neighborhood pixels will not 

match the incorrectly updated samples. In this way, the subtle 

interference and noise can be removed from the video, making 

the detection more accurate. 

 

3.2 Improved ViBe algorithm 

 

One of the advantages of ViBe algorithm is the ability to 

initialize the background model rapidly, using only the first 

frame of the video sequence. However, this might lead to 

ghosting problem.  

As mentioned before, the original ViBe algorithm can 

initialize the background model with only the first frame, and 

select the pixels through eight-neighborhood random sampling. 

The algorithm is robust in detecting moving objects from 

complex scenes, owing to the absence of parameter setting and 

small memory occupation.  

However, ViBe algorithm could easily mistake a 

foreground pixel as part of the background, if the initial frame 

contains a moving object, or if the state of the moving object 

changes abruptly. Then, the detection results will suffer from 

the ghosting problem. The ghosting areas will remain in the 

background for a long time, and undermine the detection 

accuracy of moving objects. 

To mitigate the problem, this paper tries to improve the 

ViBe algorithm with Wronskian function, and fill the ghosting 

frames by the seed filling algorithm. The improved ViBe 

algorithm could detect moving objects from the video 

sequence without being affected by the ghosting problem. The 

workflow of the improved algorithm is explained in Figure 2. 

The moving object detector based on Wronskian function 

[16] is a vector image model. It is often adopted to detect the 

pixel variation between the same position of two adjacent 

frames. This paper assumes that each pixel in a frame is 

correlated with its adjacent pixels, and represents it by a vector 

(Figure 1) composed of the center pixel and its adjacent pixels. 

To detect the change of pixel position between two frames, 

a linear independent test needs to be conducted on the support 

region (Figure 1). The pixels in the same positive must have 

changed, if they are linearly independent of the corresponding 

pixels in the adjacent frames. The linear correlation or 

independence of vectors can be determined by Wronskian 

function. 

 

 
 

Figure 1. Support region of pixel (x, y) 

 

During the detection of the variation between two adjacent 

frames, the determinant of the Wronskian matrix is zero, if the 

two pixels have a linear correlation: 

when the two pixels are linearly correlated. 

 

|Q| = |
Gt(x, y) Gt−1(x, y)

Gt
′(x, y) Gt−1

′ (x, y)
| = 0 (5) 

 

where, Gt(x, y)  and Gt−1(x, y)  are gray values at t and t-1, 

respectively. 

The moving object detector based on Wronskian function 

was applied to the pixel region with spatial temporal attributes. 

At a specific position (x, y), the variation between the t-th 

frame and the (t-1)-th frame can be detected by Wronskian 

function: 

 

|Q| =
1

n
∑((

Ft
′(x, y)i

Ft−1
′ (x, y)i

)

2

−
Ft

′(x, y)i

Ft−1
′ (x, y)i

)

n

i=1

 (6) 

 

where, n is the number of pixels in the vector image; 1 n⁄  is a 

normalizer to ensure that the same threshold applies to 

different vector dimensions. 

Seed filling algorithm chooses a point from a known image 

region as the seed (x, y), detects the color of the seed, and 

compares it with the boundary color and filling color. If the 

three colors are not the same, the point will be filled with the 

filling color. Then, the comparison and color filling will be 

carried out on the adjacent position. This process is repeated 

until all the pixels in the neighborhoods of the image region 

have been processed. 

By filling area and search direction, seed filling algorithm 

can be divided into 4-interconnection algorithm and 8-

interconnection algorithm [17]. This paper selects the more 

efficient 4- interconnection algorithm to fill the ghosting areas, 

for the following considerations: the recognition of human 

motion postures should be computationally efficient and good 

in real-time performance, and morphological processing could 

reduce the miss rate of actual filling more effectively than 

boundary crossing. 

 

 
 

Figure 2. Workflow of the improved ViBe algorithm 
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As shown in Figure 2, the flow of the improved ViBe 

algorithm can be defined as follows: 

Step 1. Input the source video or frame, and detect moving 

objects with the original ViBe algorithm. 

Step 2. Judge the correlation and pixel value by Wronskian 

matrix.  

The matrix evaluates the pixel variation with an interval of 

five frames suffering from ghosting problem. These frames are 

selected through repeated tests on different videos. Since the 

ghosting area is fast and still in each frame, the motion of each 

pixel can be judged by the Wronskian function, and the 

ghosting area can be identified based on pixel value. 

Step 3. Fill the detected ghosting area by 4-interconnection 

algorithm, so that the whole video sequence is free of ghosting. 

Step 4. Take the pixels in the ghosting area as background 

pixels to update the ViBe template, and thus suppress the 

influence of ghosting on moving object detection. 

Through the above steps, it is possible to get a clear moving 

target, reduce the interference of noise and non-fuzzy edges, 

and provide accurate information for subsequent processing. 

The improved ViBe algorithm can accurately recognize 

moving targets in complex background. Figure 3 shows the 

recognition effect of the improved algorithm for moving skiers. 

 

 
 

Figure 3. Recognition effect of moving skiers 

 

 

4. MULTI-FEATURE MOTION POSTURE 

RECOGNITION MODEL 

 

Feature fusion Yeh et al. [18] and Pong and Lam [19] aims 

to get the optimal combination of eigenvectors of multiple 

types and dimensions. The fused feature group should fully 

demonstrate the complementarity of information, and 

eliminate redundant data to enhance real-time performance. 

The key of feature fusion is to find a subset of highly 

distinguishable features from the set of multi-source features. 

Genetic algorithm (GA) stands out as a feature fusion 

method powerful in classification and dimensionality 

reduction. Through binary coding of chromosomes, GA can 

filter effective features, and reduce the dimensionality of 

eigenvectors. The resulting new eigenvector group helps to 

improve the accuracy and efficiency of moving target 

recognition.  

As a random search method, GA Tian et al. [20] mimics the 

process of natural selection and genetic mutation in biological 

evolution. The initial population is a set of possible solutions 

for the optimization problem, which take the form of 

individual binary coded genes. Through selection, crossover, 

and mutation, new generations are derived from the initial 

population. In each generation, the individuals are compared 

by fitness, and the elites are retained in the next generation. 

Since feature fusion intends to get the optimal combination 

of eigenvectors, it is important to find suitable criteria to 

evaluate each solution, and assess the classification ability of 

the corresponding eigenvectors in classification and 

recognition. To classify different motion postures, the 

maximum inter-class and minimum intra-class were chosen as 

the criteria. 

 

Sab =
|ma − mb|

√εa
2 + εb

2
 (7) 

 

where, maand mb are the mean values of features of classes a 

and b , respectively; εa
2  and εb

2  are the feature variances of 

classes a  and b , respectively. Formula (7) is the basis for 

binary classification of multiple types of features. 

Let K be the class of a motion posture; Sab be the distance 

between two classes; n = K(K − 1) N⁄  be the number of class 

separation values; V = [S1, S2, … , Sn]  be the n-dimensional 

vector of each individual. Then, the fitness function can be 

established by: 

 

f = ∑ Sx

n

x=1

nσV
2⁄  (8) 

 

where, σT
2  is the variance of vector V. 

If the eigenvalues of a selected individual improve the 

performance of both types of separation values, the individual 

can represent different motion postures accurately. Therefore, 

the mean variance ratio was adopted as the metric. The greater 

the mean variance ratio, the better the overall performance of 

vector V. The smaller the ratio, the stabler the data in V, which 

increases the data values in V. 

The selection operation randomly chooses individuals from 

the current generation by fitness and the preset strategy. The 

selected individuals are retained, while the other individuals 

are eliminated. Based on the proportion of fitness, roulette 

selection can be defined as: 

 

Pi = Fi ∑ Fj

N

j=1

⁄  (9) 

 

In this strategy, an individual with a large fitness is very 

likely to be retained in the next generation, and could be 

directly adopted to solve the maximization problem. 

The crossover operation swaps the corresponding genes in 

two parent chromosomes, in order to produce new individuals. 

The gene swap is similar to the mating mode in nature, so that 

the population is naturally diverse. This paper selects single-

point crossover with a probability of 0.7. 

The mutation operation changes the gene in a certain 

position of an individual by the mutation probability. Under 

binary encoding, mutation means changing the zero or one on 

the gene string to one or zero, in order to generate new 

individuals. In this paper, the mutation probability is set to 

0.05. 

GA has two termination conditions: First, the preset 

maximum number of iterations is reached. Second, the mean 

fitness of adjacent generations reaches the preset threshold. 

Therefore, the termination of GA depends on the convergence 

degree of the population. This paper sets the maximum 

number of iterations to 300. 

According to the feature extractor of our motion posture 

recognition technique, 39 human motion posture features were 
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extracted from the images on the key actions, such as walking, 

running, and jumping. The features include the eight-star 

model, Hu moment invariants, Zernike moment invariants, 

and wavelet moment invariants. The eigenvalues were 

standardized and normalized for feature fusion. Then, GA-

based multi-feature fusion was carried out to optimize the 

combination of 19 features. The fused features have a large 

class gap in object recognition. This facilitates classification 

and recognition tasks, reduces the number of features and 

computing load, and improves the real-time performance of 

motion posture recognition. 

 

 

5. SUPPORT VECTOR MACHINE (SVM)-BASED 

MULTI-FEATURE POSTURE RECOGNITION 

 

This paper selects SVM for learning and training, and 

constructs a multi-class classifier through feature fusion, so 

that human motion postures can be classified and recognized 

by both global and local features. In this way, the recognition 

becomes more accurate and rapid. 

At present, SVM multi-class classifier can be designed by 

direct method, or by one-to-one method [21]. The latter is 

more accurate and faster in training. Hence, this paper selects 

one-to-one method, and chooses radial kernel function SVM 

to establish a multi-class classifier for the recognition of 

human motion postures. Figure 4 explains the implementation 

process of the multi-class classifier. 

In the presence of N classes of training samples, both the 

two possible classes of training sets were constructed, and 

used to generate the corresponding binary SVMs. A total of 

(N×(N-1))/2 binary SVMs needs to be constructed. Six binary 

SVMs are needed for four types of samples. During the 

training of the sub-classifiers of classes a and b, the samples 

of class a were taken as positive samples, and those of class b 

as negative samples. 

 

 
 

Figure 4. Implementation process of multi-class classifier 

 

 
 

Figure 5. Structure of SVM-based multi-feature posture recognition 

 

The test samples were imported to (N×(N-1))/2 classifiers, 

respectively, because N classes were outputted. Thus, N 

classes of cumulative voting scores could be obtained. Then, 

each class corresponds to a sum of cumulative voting scores. 

After a test sample was imported, if a class was determined as 

the output, then the voting score of this class would be 

increased by 1 ( sum = sum + 1 ). Finally, the maximum 

cumulative value was found, and the corresponding class was 

taken as the class of the test sample. 

When the classification model is applied to recognize 

human motion postures, each feature of motion posture sample 

contains two independent features. Thus, it is necessary to 

establish a multi-class classifier of fused features. Figure 5 

shows the structure of the SVM-based multi-feature posture 

recognition model. 

The features of training samples were obtained from the 

standard video database. Two kinds of features could be 

extracted from each type of videos, namely, fused feature and 
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scale invariant feature transform (SIFT) feature. This paper 

trains the two features of training samples to generate two 

classification models, and imports the two features of the test 

samples into the two classifiers. Then, the two multi-class 

classifiers output their own voting scores. These results were 

fused into the final cumulative voting scores. Finally, the class 

with the maximum cumulative score was outputted. 

 

 

6. EXPERIMENTS AND RESULTS ANALYSIS 

 

The proposed multi-feature motion posture recognition 

model was applied to recognize three kinds of motion postures 

(walking, running, and jumping) in standard video databases, 

such as KTH database [22], Weizmann database [23], a self-

built video database, and UCF-sport database (Table 1). 

Tables 2 and 3 present the classification results on 

Weizmann and KTH databases, focusing on the three common 

postures of walking, running, and jumping, respectively. 

As shown in Tables 2 and 3, the proposed model greatly 

improved the recognition rate of the fusion multi-feature, 

because the features fused by GA has sufficient information 

and a prominent inter-class difference. But the SIFT feature 

was not well recognized on the two video databases, and the 

recognition rate of fusion + SIFT feature was not much 

different from that of fusion multi-feature. The reason is that 

the video background in the two databases is not diverse, 

failing to provide much information about the scenes. 

Figure 6 shows the recognition effect of diving, golf, and 

gymnastics in UCF-sport database. Table 4 records the 

classification results of UCF-sport database. It can be seen that 

the recognition rate of Fusion + SIFT feature of UCF-sport 

video database was higher than that in Weizmann database and 

KTH database. A possible reason is the rich and diverse 

motion posture scenes in the former database, which provide 

more effective information. 

 

Table 1. Information of video databases 

 
Video database Number of videos  Number of posture types Resolution 

KTH 603 6 160*120 

Weizmann 80 8 180*150 

UCF-Sport 150 10 720*480 

Self-built video database 77 3 720*480 

 

Table 2. Classification results on Weizmann database 

 
Posture SIFT feature Multi-feature Fusion multi-feature Fusion + SIFT feature 

Running 40.17% 93.71% 99.92% 100% 

Walking 47.79% 88.72% 94.81% 98.37% 

Jumping 62.82% 96.86% 100% 100% 

 

Table 3. Classification results on KTH database 

 
Posture SIFT feature Multi-feature Fusion multi-feature Fusion + SIFT feature 

Running 45.22% 91.69% 95.72% 95.97% 

Walking 57.31% 90.71% 92.57% 97.01% 

Jumping 60.22% 92.81% 97.03% 99.01% 

 

Table 4. Classification results of UCF-sport database 

 
Posture SIFT feature Multi-feature Fusion multi-feature Fusion + SIFT feature 

Diving 72.32% 90.13% 95.62% 98.99% 

Golf 46.91% 70.82% 87.65% 96.91% 

Gymnastics 88.31% 90.21% 95.09% 99.98% 

 

 

 
 

Figure 6. Recognition effect of diving, golf and gymnastics 

in UCF-sport database 

 

 

7. CONCLUSIONS 

 

This paper mainly studies the detection of moving objects, 

and the extraction of motion features, and designs a multi-

feature fusion motion posture feature model based on GA. The 

model is dedicated to obtain clear moving objects, describe 

motion postures with a few effective features, highlight the 

disparity between postures, and improve the recognition 

performance in an all-round manner. Experimental results 

show that our model can recognize more than 95% of walking, 

running, and jumping postures accurately, and achieve a 

recognition rate of motion videos in UCF-sport video database 

up to 96%. Therefore, the proposed human motion posture 

recognition model, which relies on multi-feature fusion, is 

highly feasible. 
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