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This work explores the heat transfer flow characteristics of an incompressible non-

Newtonian Jeffrey fluid over a stretching/shrinking surface with thermal radiation and heat 

source. The sheet is linearly stretched in the presence of a transverse magnetic field with 

convective boundary conditions. Appropriate similarity variables are used to transform the 

basic governing equations (PDEs) into ODEs. The resulting equations are solved by 

utilizing MATLAB bvp4c. The impact of distinctive physical parameters and 

dimensionless numbers on the flow field and heat transfer is analysed graphically. It is 

noticed that the measure of heat raised with increasing the Biot number and opposite effect 

with the rise of the suction parameter. 
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1. INTRODUCTION

In a real situation, many industrial fluids such as ketchup, 

pastes, slurries, paint, shampoo, blood, glues, printing inks, 

food materials, soap and detergent slurries, polymer solutions 

are non-Newtonian in nature. These fluids are basically non-

linear and normally show both viscous and elastic properties. 

The constitutive equations relating such fluids are intrinsically 

more sophisticated than conventional Newtonian (Navier-

Stokes) fluids. Most non-Newtonian models (Maxwell models, 

Oldroyd-B models, Walters-B short memory models, Jeffrey 

model and Eyring-Powell models etc.) involve varying 

degrees of refinement to the classical momentum conservation 

equations. Out of these, Jeffrey model is the simplest one rate 

type non-Newtonian liquids which exhibits shear diminishing 

attributes, yield pressure and high shear viscosity. Due to its 

simplicity and variety of applications in science and 

engineering, many researchers have been attracted. 

Kothandapani and Srinivas [1] contemplated the peristaltic 

flow of a Jeffrey liquid over an asymmetric channel in the 

occurrence of the magnetic field. Radiative effect on 

rheological fluid (Jeffrey fluid) over a stretchable cylinder in 

a 2D flow has been deliberated by Hayat et al. [2]. Khan et al. 

[3] presented the influence of third-grade nanofluid flow

generated due to sheet stretching. Mishra et al. [4]

implemented a shooting method to analyze the 2D flow of

Jeffrey fluid through the stretchable sheet. Narayana et al. [5]

discussed the viscous dissipation effects on Jeffrey fluid flow

caused due to a stretchable sheet. More recently, many authors

have studied the diverse non-Newtonian fluid flow models

with various heat transfer effects [6-10].

The flow analysis of an electrically conducting non-

Newtonian liquid over a shrinking/stretching surface plays a 

vital role in mechanical and engineering applications such as 

metal spinning, hot rolling and shrinking film for packing of 

huge products etc. Shrinking surface flow is not quite same as 

that of stretching sheet flow due to the attraction of fluid 

towards the origin (slot). Hamid et al. [11] assumed a time-

dependent magnetic field for analyzing the nature of Ohmic 

heating and viscous dissipation on Williamson fluid flow 

generated by stretching/shrinking sheet. Yasin et al. [12] 

considered the effect of thermal radiation on MHD flow past a 

shrinking/stretching sheet and solved the model by obtaining 

the dual solutions. Gangadhar et al. [13] investigated the effect 

of Newtonian heating on MHD micropolar nano-liquid in the 

case of stretching and shrinking surface. They dissected the 

existence of dual answers for the cases of stretching and 

shrinking. Jahan et al. [14] illustrated the influence of 

nanofluid over a stretching /shrinking sheet. Later, several 

authors discussed the effect of MHD flow on various fluid 

models [15-22].  

The boundary layer flow with convective boundary 

conditions and heat transfer has much importance due to their 

applications in manufacturing and ecological technologies 

including energy storage, nuclear plants, gas turbines, 

geothermal reservoirs and rocket propulsion. In view of this, 

many investigators [23-28] concentrated the heat transfer and 

mass transfer concepts over various flow geometries. Zeeshan 

et al. [29] explored the Couette-Poiseuille flow of viscous 

nanofluid with convective boundary conditions by utilizing 

HAM technique. Shehzad et al. [30] analyzed the 3-D 

stretched flow of an incompressible Jeffery liquid with 

convective conditions. Tlili et al. [31] applied thermodynamics 

theory to analyze the flow of nanoliquid through a static wedge 

with convective boundary conditions. The impact of chemical 

reaction on MHD flow of Jeffery nanoliquid by utilizing the 
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convective boundary conditions was described by 

Kothandapani and Prakash [32]. The impact of the heat source 

on Jeffrey liquid over a stretching sheet in the presence of 

nonlinear energy and concentration has been focused by 

Narayana and Babu [33]. Recently, Ashraf et al. [34] and 

Mishra et al. [35] discussed the 2D flow of non-Newtonian 

convective flow with heat source/sink. 

Motivated by these facts, a mathematical model on MHD 

boundary layer flow of a Jeffrey liquid with heat transfer 

owing to a permeable stretching sheet is proposed. Instead of 

frequently used uniform surface temperature, a convective 

boundary condition is applied which makes the analysis 

unique and further the consequences are accurate and 

practically valuable. An appropriate similarity transformation 

is applied to convert the basic governing equations (PDEs) into 

ODEs which are then solved by utilizing MATLAB bvp4c. 

The effects of various parameters on the flow field are shown 

graphically and discussed. It is believed that the present results 

not only find the applications in realistic engineering but also 

assist as a complement to the earlier research works. 

2. MATHEMATICAL FORMULATION

A steady two-dimensional (x, y) boundary layer flow of an 

incompressible non-Newtonian Jeffrey liquid over a stretching 

sheet with thermal radiation and heat source is analysed. In the 

Cartesian coordinate system, the linear velocity of stretching 

sheet as 𝑢𝑤(𝑥) = 𝑏𝑥 (where b is a real number) is toward the

x-axis and y-axis is opposite to it [see Figure 1]. Also, it is

considered that the stretching surface is heated due to

convection from a hot liquid at temperature Tf. Additionally, a

uniform magnetic field of strength B0 is forced normal to the

plate along the y-axis and the induced magnetic field is

neglected because the magnetic Reynolds number is very

small. The expressions for the Cauchy and the extra stress

tensors τ and S1 in a Jeffery non-Newtonian liquid are defined

as follows [1]:

1pI S = − + (1) 

1 1 1 1.
1

S A V A
t






   
= + +   

+   
(2) 

In which p is the pressure. The Rivlin-Ericksen tensor A1 is 

defined as 𝐴1 = 𝛻𝑉 + (𝛻𝑉)′ , where V is the velocity field

vector. 

The governing equations of non-Newtonian liquid under the 

assumption of boundary layer approximations is given by (Ref. 

[8, 23]). 

Figure 1. Geometry of the problem 
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Utilizing the Rosseland approximation, the radiative heat 

flux qr is defined as [36]: 
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(7) 

where, Ks and σ* is the mean absorption coefficient and Stefan-

Boltzmann constant respectively. It is assumed that the 

variation in temperature within the flow is such that T4 can be 

expanding in Taylor series about T∞ and neglecting higher-

order terms beyond the first degree in (T-T∞), we get:  

4 3 44 3T T T T  − (8) 

Now, differentiating Eq. (7) w. r. to y and using Eq. (8), we 

get: 
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Using Eq. (9) in Eq. (5), we obtain: 
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The following similarity transformations are introduced. 

( ),

( ), ( )

, ,

( )

f

u axf

v a f

T T a
y

T T

x a f



   




  





=

= −

−
= =

−

=

(11) 

where, the stream function 𝜓 defined as 𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
. 

Utilizing Eq. (11), the Eqns. (4)-(5) are reduced into the 

following 3rd and 2nd order ordinary differential equations.  
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and Eq. (6) becomes, 

f S=
,

/f b a  = =
, 

[1 (0)]   = − −
 at η=0 

(14) 

0f  =
, 

( ) 0f  =
, 

θ=0 as η→ ∞ 
(15) 

where, 𝛽 = 𝜆1𝑎 , 𝐾 =
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2
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The physical quantities of interest are which is defined as 
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where, 𝜏𝑤 =
𝜇

1+𝜆
{(
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, qw is heat transfer from the sheet. 

Substituting the value of 𝜏𝑤 and qw into Eq. (16) we get the

skin friction and local Nusselt number in dimensionless form 

as follows: 
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where, 𝑅𝑒𝑥 =
𝑢𝑤(𝑥)

𝜐
 is the local Reynolds number. 

3. NUMERICAL PROCEDURE

The non-linear ordinary differential Eqns. (12) and (13) 

with the boundary conditions (14) and (15) have been solved 

numerically utilizing fourth-order Runge-Kutta method 

together with shooting technique (see Ref. [37]). This 

technique is explained as follows: 

I. The higher-order, non-linear differential equations

are reduced into a system of first order simultaneous

differential equations.

II. The resulting IVP (Initial Value Problem) is solved

by utilizing a fourth order Runge-Kutta scheme (see

Refs. [38, 39]).

III. Suitable guess values are obtained by using the

Newton Raphson method.

IV. The calculations have been performed via MATLAB

bvp4c.

The iteration process is repeated until the boundary 

conditions are satisfied. 

4. RESULTS AND DISCUSSION

The problem of MHD two-dimensional heat transfer flow 

of a Jeffrey liquid over a shrinking/stretching sheet is studied 

numerically. The Jeffrey fluid parameters λ and β are chosen 

in the range of 0≤λ≤2.0, 0≤β≤0.5. The present non-Newtonian 

model reduced to a viscous model in the absence of Jeffrey 

fluid parameters λ and β. A parametric study is conducted on 

Newtonian and Jeffrey fluids, in order to get the pertinent 

parameters on various flow fields. The velocity, skin-friction 

coefficient, temperature, and Nusslet number results are 

analysed through the plotted in Figures 2-13. Table 1, gives 

the comparison values of Nusslet number with those of Chen 

[40] and Grubka and Bobba [41] in the absence of M, Q, R, λ,

β, K and γ. It is noticed that the comparison shows a

concurrence with the existing outcomes and thus confirms the

exactness of numerical code applied in the current work.

Table 1. Comparison results of 𝑁𝑢𝑥𝑅𝑒𝑥
−1 2⁄  for different

values of Pr (in the absence of K, γ, β, M, R, Q and λ) 

Pr Chen [40] Grubka and Bobba [41] Present 

0.01 0.00990 0.00991 0.009000 

0.72 0.46315 0.46314 0.463146 

1.0 0.58199 0.58199 0.581979 

10.0 2.03079 2.30800 2.308008 

Table 2, depicts the effect of suction/injection parameter (S), 

magnetic field (M) and Deborah number (β) on the skin-

friction coefficient and Nusselt number along with a variation 

of Pr. It is seen that the skin friction coefficient decreased with 

increasing suction parameter (S>0) and β, while the inverse 

pattern is seen with S<0 and M. Further, an increase in β and 

M increases the Nusselt Number.  

Figure 2 demonstrates the influence of magnetic field 

parameter M on the velocity profiles against η for both 

Newtonian and non-Newtonian fluid cases. It is observed that 

the increase in M reduces the fluid velocity and boundary layer 

thickness. Physically, an applied magnetic field generates a 
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reverse force (Lorentz force) in the flow field and causes to 

oppose the movement of liquid. Also, it is noticed that the 

dimensionless fluid velocity at the sheet has a higher value for 

a Newtonian fluid (λ=β=0) than to the non-Newtonian fluid (λ, 

β>0). 

Table 2. Numerical Values of 𝑅𝑒𝑥

1

2 𝐶𝑓 and 𝑁𝑢𝑥𝑅𝑒𝑥
−1 2⁄  for

different values of S, M, β and Pr (other parameters are fixed) 

(i.e. K=2.0; Q=1.0; R=0.4; α=0.3; λ=0.2; γ=1.0) 

S M 

Pr=1.0 Pr=3.0 

𝑹𝒆𝒙

𝟏
𝟐 𝑪𝒇

1
2Re

x

x

Nu

𝑹𝒆𝒙

𝟏
𝟐 𝑪𝒇

1
2Re

x

x

Nu

1.0 1.0 0.2 1.45651 0.08211 1.55417 0.09483 

0.5 1.25516 0.06838 1.35234 0.08970 

0.0 1.02148 0.01778 1.11647 0.05410 

-0.5 10.74085 0.25238 11.2166 0.15141 

-1.0 5.96083 0.16669 6.21564 0.15203 

 0.5 0.2 1.94889 0.06830 1.94889 0.08986 

0.5 2.11414 0.06808 2.11414 0.08980 

1.0 2.36225 0.06775 2.36225 0.08970 

1.5 2.58344 0.06747 2.58344 0.08961 

0.2 0.1 1.64132 0.06819 1.64132 0.08983 

0.2 1.57243 0.06830 1.57243 0.08986 

0.3 1.51673 0.06839 1.51673 0.08989 

0.4 1.47082 0.06845 1.47082 0.08990 

Figure 2. Effect of M on 𝑓 ′(𝜂) 

Figures 3(a) and 3(b) illustrate the effect of velocity ratio 

parameter (α=b/a) on the velocity and temperature 

distributions. It is noticed that α>0 relates to the sheet 

stretching while α<0 demonstrate the shrinking sheet 

respectively. When α = 0 then there is no flow. It is seen that 

the velocity increases with the increase of α for both the 

stretching and shrinking cases. Also, it is observed that the rate 

transport of velocity curve decreases with the increasing 

distance η normal to the sheet and the velocity vanishes at η=2 

from the sheet. Whereas α has a reverse trend in case of the 

temperature profile. 

Figures 4(a) and 4(b) demonstrate the impact of Deborah 

number β on the velocity and temperature functions for both 

stretching and shrinking cases. The velocity becomes constant 

when α=0, decreases for shrinking case and increases for 

stretching case. It is obvious from the figure that the 

momentum boundary layer converges quickly for smaller β 

values. Physically, small β resembles a situation where the 

material has time to relax (Newtonian nature) and high β 

relates to non-Newtonian nature. Also, the temperature profile 

θ(η) reduced with increasing values of β for stretching case. 

Figure 3. Effect of α on (a) f'(η) (b) θ(η) 

888



Figure 4. Effect of β on (a) f'(η) (b) θ(η) 

Figure 5(a) shows the influence of the ratio of relaxation and 

retardation times parameter λ on the velocity profiles for 

stretching and shrinking sheets. It is observed that the velocity 

decreases with the increase of λ in stretching case and reverse 

in shrinking case. Physically, an increase in λ means a 

reduction in fluid retardation time which in turn to stop the 

hastening of fluid motion. On the other hand, the temperature 

profile increases with the increase of λ which is obvious from 

Figure 5(b). Physically, an increase in λ leads to a rise in 

relaxation time and diminish in retardation time, due to this 

higher temperature and thicker thermal boundary layer. 

The effect of permeability parameter K on the velocity 

profiles is shown in Figure 6. It is observed that in the case of 

stretching sheet (α>0) the velocity increases with the increase 

of K and β values. These results are similar to those obtained 

in Ref. [12]. It is also noticed from the figure that the velocity 

boundary layer converges quickly for small values of β. 

Figures 7(a), 7(b) and 7(c) respectively show the influence 

of suction/injection parameter S on the velocity and 

temperature profiles. It is obvious from the figures that f'(η) 

and θ(η) is found to a decrease with the increase of S>0. On 

the other hand, inverse behaviour is seen in the injection case 

(S<0). 

Figure 5. Effect of λ on (a) f'(η) (b) θ(η) 

Figure 6. Effect of K on f'(η) 
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Figure 7. Effect of (a) S≥0 on f'(η) (b) S < 0 on f'(η) (c) S>0 

on θ(η) 

The influence of Biot number γ on θ(η) is plotted in Figure 

8. It is evident that the θ(η) increase with the rise in γ for both

stretching and shrinking cases. In general, γ=0 represents the

no convective heat exchange from the surface of the sheet to

the cold fluid which is far away from the sheet. For this

situation, it should be understood that the surface is totally

insulated. Further, it is observed that the temperature is greater

in the case of shrinking when compared to the stretching sheet.

These outcomes obviously reinforced from the physical

perspective.

The effect of thermal radiation parameter R on the 

dimensionless temperature profile is offered in Figure 9. It is 

inspected that the fluid temperature increases by an increase in 

R values. This is because of the fact that as R increases; the 

mean absorption coefficient Ks diminishes. Hence, the 

divergence of radiation heat flux increases. As a result, the rate 

of radiative heat transfer into the liquid rises. 

Figure 10 represents the temperature profile for different 

values of heat source/sink parameter (Q>0 and Q<0). It is 

observed that the boundary layer generates the energy, which 

causes the temperature profile to increase with increasing 

values of the heat source (Q>0) whereas reverse effects are 

seen in the heat sink (Q<0) case. This is due to the fact that the 

rise of Q in the boundary layer makes energy which roots the 

θ(η) increase. From this, it is concluded that in the engineering 

and industrial heat transfer applications the heat sink is well 

appropriate for real cooling of the stretching sheet. It is also 

important to note that θ(η) decreases with increasing values of 

the suction parameter (S>0).  

Figure 8. Effect of γ on θ(η) 

Figure 9. Effect of R on θ(η) 

Figure 11(a) portrays the attributes of skin friction 

coefficient concerning λ and β for stretching and shrinking 

cases. It is found that the skin-friction reduce in case of 

stretching sheet with rising β and reverse a trend in the case of 

a shrinking sheet. Figure 11(b) shows the influence of β on 

Nusselt number for stretching/shrinking sheet. The Nusselt 

number raised in terms of increase in β for stretching sheet, 

while it is reversed in case of the shrinking sheet.  

Figures 12(a) and 12(b) describe the changes in Nusselt 

number against Prandtl number Pr for various values of Q and 

R respectively. It is perceived from the graphs that Nusselt 

number decline with the augmented values of Q and rises for 

Pr. The heat transfer coefficient for viscous fluid is more than 

that of Jeffrey fluid. In addition, the opposite trend is noticed 

with the rise in R. 
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Figure 10. Effect of Q on θ(η) 

Figure 11. Effect of λ against β on (a) 𝐶𝑓𝑥𝑅𝑒𝑥
1
2⁄  b)

𝑁𝑢𝑥𝑅𝑒𝑥
−1 2⁄

Figure 12. Effect of Pr against (a) Q on 𝑁𝑢𝑥𝑅𝑒𝑥
−1 2⁄  (b) R

on 𝑁𝑢𝑥𝑅𝑒𝑥
−1 2⁄

Figure 13. Comparison of the velocity distribution for 

various values of α between present and Hayat et al. [8] work 
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In order to check the accuracy of the present results, we 

have analyzed the outcomes of the velocity distribution for 

different numbers of α in Figure 13 with those reported by 

Hayat et al. [8] in the absence of M and K. This correlation 

shows an incredible arrangement. 

5. CONCLUSIONS

Two-dimensional boundary layer flow of MHD heat 

transfer of a Jeffrey fluid with thermal radiation and heat 

source/sink is discussed numerically in this paper. The main 

points of this analysis are given below: 

1. The velocity of Jeffery fluid increases with rising

stretching ratio parameter.

2. Temperature distributions have the same behaviour

for different values of γ and R.

3. The variation of S on the temperature distributions is

qualitatively the same when γ>0.

4. f’(η) enhanced for augmented values of K.

5. The velocity profile f’(η)was declined with raising

values of M for both Newtonian and non-Newtonian

cases.

6. The skin friction coefficient shows reverse nature in

stretching and shrinking sheet cases for diverse

values of β.

7. The rate of heat transfer exhibits the same behaviour

in Newtonian and non-Newtonian cases for different

values of Q.
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NOMENCLATURE 

a Constant 

A1 Rivlin-Ericksen tensor 

B0 magnetic induction [T] 

b real number 

cp specific heat at constant pressure [J/kg/K] 

F dimensional stream function 

f' dimensionless velocity 

h convective heat transfer 
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K permeability of the porous medium  

k thermal conductivity of fluid [W/m/k]  

Ks Rosseland mean absorption coefficient 

M magnetic field  

R radiation parameter 

Nu Nusselt number 

Pr Prandtl number 

Q heat source/sink parameter 

qr radiative heat flux[W/m] 

qw surface heat flux 

Rex local Reynolds number 

S suction/injection parameter 

T fluid temperature (K) 

Tf 
convective fluid temperature below the moving 

sheet 

Tw wall temperature on a sheet at y = 0 (K) 

T∞ temperature far away from the wall (i) 

u, 

v 

velocity components in x-,y-directions, respectively 

[m/s] 

uw Velocity of stretching sheet [ms-1] 

vw suction velocity across a stretching sheet  

x the distance along wall [m]  

y distance normal to the wall [m]  

Greek symbols 

α ratio parameter 

β Deborah number 

η similarity variable 

γ Biot number 

𝜆 ratio of relaxation and retardation times 

λ1 retardation time [s] 

𝜇 dynamic viscosity [Pa/s] 

υ kinematic viscosity [m2s-1] 

ρ fluid density [kg/m] 

σ electric conductivity[sm-1] 

σ* Stefan-Boltzmann constant [Wm-2K-4] 

θ non-dimensional temperature 

τ Cauchy stress tensor 

τw shear stress along stretching sheet 

ψ steam function 

Subscripts 

w sheet surface 

∞ Infinity 

Superscript 

' differentiation with respect to η 
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