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The present paper investigates double-diffusive mixed convection inside a horizontal 

rectangular cavity both numerically using the finite volume method to solve the governing 

equations and analytically based on the parallel flow approximation developed for the case 

of shallow enclosures A≫1. Uniform heat and mass fluxes are applied to the short vertical 

walls, while the horizontal ones are insulated and impermeable, with top wall sliding from 

left to right. The results show good agreement between both solutions for a wide range of 

controlling parameters: Peclet number, Pe, Lewis number, Le, the buoyancy ratio, N, and 

thermal Rayleigh number, RaT. In order to highlight how the convective regimes influence 

the effect of controlling parameters on flow and heat and mass transfer characteristics, the 

parameter RaT/Pe3.0 is established to delineate the zones where natural, mixed, and forced 

convections dominates the heat and mass transfer. Effects of governing parameters on flow 

intensity and heat and mass transfer rates are illustrated and discussed in terms of the stream 

function, Ψ, the average Nusselt number, 𝑁𝑢̅̅ ̅̅ , the average Sherwood number 𝑆ℎ̅̅ ̅, for the

three separated convective regimes. 
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1. INTRODUCTION

Double-diffusive convection or thermosolutal convection 

refers to fluid flows stimulated by buoyancy effects owing to 

both temperature and concentration gradients, with different 

rates of diffusion, it’s a subject that continues to attract a lot 

of attention due to its industrial applications, namely, growth 

of crystals [1], solar energy systems [2], solidification 

processes [3] and several others [4-6], showing the great 

relevance of thermosolutal flows in fluid dynamics. Mixed 

convection on the other hand, is a result of both buoyancy 

forces generated by applied temperature and mass gradients, 

and the shear force, caused by the moving wall.  

The majority of mixed convection studies cover flow and 

heat transfer considering different combinations of cavity 

configurations and applied thermal gradients [7-13]. Lamarti 

et al. [14] studied flow heat transfer of two-dimensional 

Newtonian fluid in a square cavity with a periodically 

oscillating wall, they conducted that the variation of the 

Reynolds and Grashof numbers affect strongly the flow 

structure and the heat transfer depending on the wall moving 

direction. Furthermore, the variation of Rayleigh number and 

period of the heated portion influences the Nusselt number on 

convective structures. Munshi et al. [15] investigated mixed 

convection in square lid-driven cavity with elliptic obstacle 

inside and imposed constant heat flux on the lower wall, they 

concluded that the mixed convection is mainly controlled by 

Richardson number (Ri), Grashof number (Gr) and Reynolds 

number (Re).  

Driven cavities are present in many industrial applications, 

flow and heat transfer in solar systems, glass production, food 

processing, cooling technics to name few, those applications 

usually combine with mass transfer, showing the importance 

of studying mixed convection phenomenon introduced by both 

thermal and mass buoyancy forces. But many of those 

investigations found in the literature are related to square 

cavities. Al-Amiri et al. [16] inspected mixed convection due 

to combined temperature and mass gradients in a square lid-

driven cavity. The results showed that by decreasing the 

Richardson number, Ri, the moving wall shear force 

dominates, leading to higher heat and mass transfer rates. 

Kefayati [17] analyzed thermosolutal mixed convection in 

square enclosure with both horizontal walls moving and filled 

with shear-thinning fluids. This study has been performed for 

the related parameters: Richardson number, Lewis number, 

power-law index, and the buoyancy ratio. Results discuss how 

the parameters above affects heat and mass transfer. Abbasian 

Arani et al. [18], Sheremet et al. [19], Kefayati [20] and 

Hussain et al. [21] also studied mixed convection in single lid-

driven square cavities using different boundary conditions 

with buoyancy forces due to both thermal and mass diffusion. 

On the opposite, rectangular cavities attracted less interest, 

using imposed constant temperatures and concentration. 

Teamah and El-Maghlany [22] studied numerically the mixed 

convection in a rectangular cavity with moving upper surface 

under the combined buoyancy effects of thermal and mass 

diffusion. They found that decreasing the Richardson number 

causes the heat and mass transfer rates to increase, for both 

when the wall moves to the right (assisting flow) or to the left 

(opposing flow), they stated also that increasing Lewis number 

enhance mass transfer without affecting the heat transfer, and 

that both heat and mass transfer rates increase as the absolute 

value of buoyancy ratio increases. Soufiene Bettaibi et al. [23] 

investigated numerically thermosolutal mixed convection in 
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rectangular enclosure with moving top wall. They used the 

multiple relaxation time lattice Boltzmann method to study the 

flow, while the finite difference method is used to compute the 

temperature and concentration. this study investigated the 

accuracy of such model, compared to different numerical 

methods in the literature, in predicting thermodynamics for 

mixed convection heat and mass transfer. 

In summary, the square cavities are the most studied 

configurations in literature in the case of double diffusive 

mixed convection, while few studies that considered 

rectangular cavities were numerical studies associated with 

constant temperature and concentration. Hence, thermosolutal 

mixed convection in a rectangular cavity with moving top wall, 

occupied with a Newtonian fluid and exposed to heat and mass 

boundary conditions of Neumann type (i.e., applied heat and 

mass fluxes) has not been covered yet. The present study aims 

mainly to simulate thermosolutal mixed convection inside a 

horizontal rectangular cavity filled with Newtonian fluid and 

subjected to uniform heat and mass gradients along the short 

vertical sides, while the horizontal ones are insulated and 

impermeable, with single lid driven. Both, the numerical 

solution and the parallel flow approximation based analytical 

solution, are developed for a wide range of the governing 

parameters, 1≤RaT≤107, 0.1≤Pe≤500, 10-2≤Le≤102, 10-

2≤N≤102, and A=24, while discussing the effect of those 

parameters on the mixed convection flow and heat and mass 

transfer rates. Also, the zones highlighting the contribution of 

natural, forced, and mixed convection to heat and mass 

transfer rates are defined with respect to the governing 

parameters. 

 

 

2. MATHEMATICAL MODEL 

 

Figure 1 presents the studied configuration with the 

corresponding boundary conditions. A shallow horizontal 

rectangular enclosure of height H' and length L', with applied 

uniform heat and mass fluxes, q' and j', respectively, to the 

vertical walls, while the horizontal ones are insulated. The 

cavity is filled with a Newtonian fluid, the top wall is sliding 

from left to right (assisting flow) with constant velocity 𝑢0
′ ; 

while the remaining walls are motionless. 

For Buoyancy driven flows, the exact governing equations 

are intractable. Hence, the following frequently used 

assumptions are adopted, i.e., 

• The fluid velocities are small enough to consider the 

flow as laminar due to moderate applied gradients [24]. 

 

 
 

Figure 1. Geometry of the enclosure and coordinates system 

 

• The fluid is incompressible. For pressures close to 

atmospheric, liquids are found as good approximation 

of incompressible fluids. 

• The viscous dissipation is insignificant compared to 

the contribution of applied fluxes. 

• The physical proprieties are independent of 

temperature and concentration except for viscosity 

and density in the buoyancy term. The density follows 

the Boussinesq approximation, more details are 

provided by Gray and Giorgini [25]. 

• The third dimension is large enough for the problem 

to be treated as two dimensional, which is generally 

well satisfied and can offer more understanding of the 

more complex three-dimensional flows [24]. 

 

Using the stated assumptions, the dimensionless governing 

equations, representing the conservation of mass (1), 

momentum (2), (3), energy (4), and concentration (5) written 

in terms of velocity components (u, v), pressure (p), 

temperature (T) concentration (S) are as follows: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (1) 

 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 𝑃𝑟[

𝜕²𝑢

𝜕𝑥²
+

𝜕²𝑢

𝜕𝑦²
] (2) 

 

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −

∂p

∂y
+ Pr [

∂2v

∂x2
+

∂2v

∂y2
]

+ RaTPr[T + NS] 

(3) 

 

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= [

∂2T

∂x2
+

∂2T

∂y2
] (4) 

 

∂S

∂t
+ u

∂S

∂x
+ v

∂S

∂y
=

1

Le
[
∂2S

∂x2
+

∂2S

∂y2
] (5) 

 

The above equations are obtained by using the following 

characteristic scales: H', H'2/α, ρ(α2/H'2), α/H', q'H'/λ, j'H'/D 

corresponding to length, time, pressure, velocity, 

characteristic temperature, and characteristic concentration, 

respectively. 

The dimensionless boundary conditions of the problem are:  

 

𝑢 = 𝑣 = 0 𝑎𝑛𝑑 
𝜕𝑇

𝜕𝑥
+ 1 =

𝜕𝑆

𝜕𝑥
+ 1 = 0 𝑓𝑜𝑟 𝑥 = 0 

𝑎𝑛𝑑 𝑥 = 𝐴; 
(6) 

 

𝑢 = 𝑣 = 0 𝑎𝑛𝑑 
𝜕𝑇

𝜕𝑦
=

𝜕𝑆

𝜕𝑦
= 0 𝑓𝑜𝑟 𝑦 = 0;  (7) 

 

𝑢 − 𝑃𝑒 =  𝑣 = 0 𝑎𝑛𝑑 
𝜕𝑇

𝜕𝑦
=

𝜕𝑆

𝜕𝑦
= 0 𝑓𝑜𝑟 𝑦 = 1 (8) 

 

The stream function, Ψ, is used to study the flow structure: 

 

𝑢 =
𝜕𝛹

𝜕𝑦
;  𝑣 = −

𝜕𝛹

𝜕𝑥
(Ψ = 0 𝑜𝑛 𝑎𝑙𝑙 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠) (9) 

 

The governing dimensionless parameters are: the aspect 

ratio of the enclosure, A, the generalized Prandtl number, Pr, 

the Peclet number, Pe, the thermal Rayleigh number, RaT, the 

Lewis number, Le and the buoyancy ratio, N, expressed as: 

 

670



 

𝐴 =
𝐿′

𝐻′
;  𝑃𝑟 =

(
𝜇
𝜌

)

𝛼
;  𝑃𝑒 =

𝑢0
′ 𝐻′

𝛼
;  

RaT =
gβₜH′4

q′

(
μ
ρ

)αλ
;  Le =

α

D
;  N =

βSΔS∗

βTΔT∗
 

(10) 

 

where, ρ, g, μ, βT, βS, α and D, are the fluid density, the 

gravitational acceleration, the dynamic viscosity, the thermal 

expansion coefficient, the solutal expansion coefficient, the 

thermal diffusivity and the mass diffusivity, respectively. 

Note that: 

 

𝑃𝑒 = 𝑅𝑒𝑃𝑟 𝑎𝑛𝑑 𝑅𝑎𝑇 = 𝐺𝑟𝑃𝑟 (11) 

 

where, Re and Gr are the Reynolds and Grashof numbers, 

respectively.  

 

 

3. NUMERICAL SOLUTION 

 

The well-known finite volume method and SIMPLER 

algorithm [26], used to solve the governing Eqns. (1)-(5) with 

the corresponding boundary conditions (6)-(8) numerically. 

The temporal terms appearing in (2)-(5) are discretized using 

a second order backward finite difference scheme. A line-by-

line tridiagonal matrix algorithm with relaxation is used in 

conjunction with iterations to solve the nonlinear discretized 

equations. The convergence criterion  

∑ |𝑓ⅈ,𝑗
𝑘+1 + 𝑓ⅈ,𝑗

𝑘 | < 10−5
ⅈ,𝑗 ∑ |𝑓ⅈ,𝑗

𝑘+1|ⅈ,𝑗  is adopted, where 𝑓ⅈ,𝑗
𝑘  is 

the value of u, v, p, T or S at the kth step. The choice of the 

grid size was chosen as to have accurate results with a 

reasonable computation time. Table 1 shows that, for A=24 

(value after which the computed entities are invariant to 𝐴), a 

uniform grid size of 341 x 81 is found adequate to simulate 

accurately the fluid flow, temperature and concentration 

distribution in the cavity. We used the following initial 

conditions for the adopted code: u=v=T=S=0. 

The local Nusselt and Sherwood numbers describing local 

heat and mass transfers, respectively, can be defined as: 

 

𝑁𝑢(𝑦) =
𝑞′𝐿′

𝜆𝛥𝑇′
=

1

(𝛥𝑇/𝐴)
 (12) 

 

𝑆ℎ(𝑦) =
𝑗′𝐿′

𝐷𝛥𝑆′
=

1

(𝛥𝑆/𝐴)
 (13) 

where, ΔT=T(0, y)-T(A, y) and ΔS=S(0, y)-S(A, y) represents 

the local dimensionless temperature and mass difference 

between the two vertical walls of equations x=0 and  x=A, 

respectively. 

The Analytical solution is valid in the core section of the 

enclosure, and as it will be compared with the numerical 

solution, and to avoid problems related to edge effects that 

may result in Eqns. (12)-(13) giving different results, 𝑁𝑢 and 

𝑆ℎ are evaluated far from the edges of the cavity. Thus, for 

two infinitesimally adjacent sections, we can express 𝑁𝑢 and 

𝑆ℎ respectively as: 

 

𝑁𝑢(𝑦) = 𝑙𝑖𝑚
𝛿𝑥→0

𝛿𝑥

𝛿𝑇
= 𝑙𝑖𝑚

𝛿𝑥→0

1

(
𝛿𝑇
𝛿𝑥

)
 

= −1/(𝜕𝑇 ∕ 𝜕𝑥)𝑥=𝐴/2 

(14) 

 

𝑆ℎ(𝑦) = 𝑙𝑖𝑚
𝛿𝑥→0

𝛿𝑥

𝛿𝑆
= 𝑙𝑖𝑚

𝛿𝑥→0

1

(
𝛿𝑆
𝛿𝑥

)
 

= −1/(𝜕𝑆 ∕ 𝜕𝑥)𝑥=𝐴/2 

(15) 

 

where, δx is the horizontal distance between the two vertical 

symmetrical sections with respect to the central section at 

x=A/2. 

The average horizontal Nusselt number, representing the 

overall horizontal heat transfer and the average horizontal 

Sherwood number, describing the overall horizontal mass 

transfer can be given respectively as: 

 

𝑁𝑢̅̅ ̅̅ = ∫ 𝑁𝑢(𝑦)𝑑𝑦
1

0

 (16) 

 

𝑆ℎ̅̅ ̅ = ∫ 𝑆ℎ(𝑦)𝑑𝑦
1

0

 (17) 

 

Numerical results, displaying streamlines, isotherms, and 

iso-concentrations, are presented in Figure 2, obtained, for 

A=24, Le=5, N=1, RaT=105 and different values of Pe. The 

results show that the flow is parallel to the x-direction, the 

temperature and concentration exhibit linear stratification in 

the central region of the cavity with respect to the horizontal 

direction, independently of the governing parameters. The 

approximate analytical solution developed next uses the above 

observations. 

 

Table 1. Grid size choice using 𝑁𝑢̅̅ ̅̅  for A=24, Le=5, N=1, RaT=105 and different values of Pe 

 

Pe 
Grids Analytical 

Solution (301,81) (321,81) (341,81) (341,121) (361,81) 

0.1 31.601 31.658 31.689 31.660 31.722 31.401 

1.0 31.909 31.968 32.000 31.967 32.033 31.706 

5.0 33.343 33.408 33.444 33.418 33.479 33.131 

25.0 42.4 42.506 42.572 42.555 42.633 42.143 

50.0 59.638 59.839 59.977 59.942 60.096 59.364 

100.0 123.072 123.711 124.197 124.133 124.597 123.308 

150.0 233.249 234.808 236.045 235.906 237.045 235.538 
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Figure 2. Streamlines (left), isotherms (middle) and isoconcentrations (right) for A=24, Le=5, N=1 and RaT=105 and different Pe 

values ((a) Pe=0.1, (b) Pe=20 and (c) Pe=100). (Scale not respected) 

 

 

4. APPROXIMATE PARALLEL FLOW ANALYTICAL 

SOLUTION 

 

Based on the observations made on Figure 2, the next 

simplifications are used: 

 

𝑢(𝑥, 𝑦) = 𝑢(𝑦), 𝑣(𝑥, 𝑦) = 0 𝑎𝑛𝑑 𝛹(𝑥, 𝑦) = 𝛹(𝑦) 

𝑇(𝑥, 𝑦) = 𝐶𝑇 (𝑥 −
𝐴

2
) +𝜃𝑇(𝑦) 

𝑎𝑛𝑑 𝑆(𝑥, 𝑦) = 𝐶𝑆 (𝑥 −
𝐴

2
) +𝜃𝑆(𝑦) 

(18) 

 

where, CT and CS are respectively, the unknown constant 

temperature gradient and the unknown constant concentration 

gradient in x-direction. As a result, the non-dimensional 

governing equations become: 

 

𝑑3𝑢(𝑦)

𝑑𝑦3
= 𝐸𝑅𝑎𝑇  (19) 

 

 

𝐶𝑇𝑢(𝑦) =
𝑑2𝜃𝑇(y)

𝑑𝑦2
 (20) 

 

𝐶𝑆𝑢(𝑦) =
1

𝐿𝑒

𝑑2𝜃𝑆(y)

𝑑𝑦2
 (21) 

 

where: 

 

𝐸 = 𝐶𝑇 + 𝑁𝐶𝑆 (22) 

 

with the following boundary conditions: 

 

𝑢 = 𝛹 =
𝑑𝜃𝑇(𝑦)

𝑑𝑦
=

𝑑𝜃𝑆(𝑦)

𝑑𝑦
= 0 𝑓𝑜𝑟 𝑦 = 0  

𝑢 − 𝑃𝑒 = 𝛹 =
𝑑𝜃𝑇(𝑦)

𝑑𝑦
=

𝑑𝜃𝑆(𝑦)

𝑑𝑦
= 0 𝑓𝑜𝑟 𝑦 = 1 

(23) 

 

with: 

 

∫ 𝑢(𝑦)𝑑𝑦 = 0
1

0

 (24) 

 

∫ 𝜃𝑇(y)𝑑𝑦 = 0
1

0

 (25) 

 

∫ 𝜃𝑆(y)𝑑𝑦 = 0
1

0

 (26) 

 

as return flow, mean temperature and mean concentration 

conditions, respectively. 

Thus, the solutions of (19)-(20), satisfying (23)-(25), are as 

follows: 

 

𝑢(𝑦) =
RaT𝐸

12
(2𝑦3 − 3𝑦2 + 𝑦) + 𝑃𝑒(3𝑦2 − 2𝑦) (27) 

 

𝜃𝑇(y) =
𝐶𝑇RaT𝐸

1440
(12𝑦5 − 30𝑦4 + 20𝑦3 − 1) 

+
𝐶𝑇Pe

60
(15y4 − 20𝑦3 + 2)  

(28) 

 

Using Eq. (20) and Eq. (21) and boundary conditions (23), 

(25) and (26), we can express θS(y) as: 

 

𝜃𝑆(y) =
𝐿𝑒𝐶𝑆

𝐶𝑇

𝜃𝑇(y) (29) 

 

The stream function, Ψ(y), is obtained by integrating Eq. (9), 

using boundary conditions (23) and Eq. (27): 

 

𝛹(𝑦) =
RaT

24
𝐸(𝑦⁴ − 2𝑦3 + 𝑦2) + 𝑃𝑒(𝑦3 − 𝑦2) (30) 

 

According to [27] the energy and concentration fluxes 

conditions in the x-direction are:  

 

∫ −
∂T

∂x
dy + ∫ uTdy = ∫ − (

∂T

∂x
)

x=0 or x=A
dy

1

0

1

0

1

0

 (31) 

 

∫ −
∂S

∂x
dy + Le ∫ uSdy = ∫ − (

∂S

∂x
)

x=0 or x=A
dy

1

0

1

0

1

0

 (32) 

 

In the core section of the enclosure, and with conditions (6), 

Eqns. (31) and (32) becomes: 

 

𝐶𝑇 + 1 = ∫ 𝑢(𝑦)𝜃𝑇(y)𝑑𝑦
1

0

 (33) 

 

𝐶𝑆 + 1 = 𝐿𝑒 ∫ 𝑢(𝑦)𝜃𝑆(y)𝑑𝑦
1

0

 (34) 

 

   

(a) 

   

(b) 

  

 

(c) 
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where, replacing u(y), θT(y) and θS(y) by their expressions, 

gives: 

 

𝐶𝑇 =
1

−
𝑅𝑎𝑇

2

362,880
𝐸2 +

𝑅𝑎𝑇𝑃𝑒
3360

𝐸 −
𝑃𝑒2

105
− 1

 
(35) 

 

𝐶𝑆 =
1

−
𝐿𝑒2𝑅𝑎𝑇

2

362,880
𝐸2 +

𝐿𝑒2RaT𝑃𝑒
3360

𝐸 −
𝐿𝑒2𝑃𝑒2

105
− 1

 
(36) 

 

Finally, using Eq. (22), we obtain the following 

transcendental equation: 

 
Le2RaT

4

362,8802 E5 −
Le2RaT

3 Pe

609,638,400
E4 + RaT

2 [
Le2Pe2

19,051,200
 

+
1

362,880
(1 + Le2) +

Le2Pe2

11,289,600
]E3 + 𝑅𝑎𝑇 

[−
Le2Pe3

176,400
−

Pe

3,360
(1 + Le2) +

RaT

362,880
(Le2 + N)]  

E2 + [
Le2Pe4

11,025
+

Pe2

105
(1 + Le2) −

RaTPe

3,360
(Le2 + N) + 

1]E +
Pe2

105
(Le2 + N) + N + 1 = 0 

(37) 

 

To solve Eq. (37) and obtain the value of 𝐸, the Newton-

Raphson method is adopted, while for CT and CS values, we 

refer to Eqns. (35) and (36), for the given values of the 

governing parameters Le, N, RaT and Pe. 

Considering Eqns. (14)-(18), the mean Nusselt and mean 

Sherwood numbers are constant: 

 

𝑁𝑢̅̅ ̅̅ =
−1

𝐶𝑇

;  𝑆ℎ̅̅ ̅ =
−1

𝐶𝑆

 (38) 

 

In pure natural convection, u(1)=0. In such a situation, the 

mean Nusselt number and the mean Sherwood number, are as 

follows: 

 

𝑁𝑢̅̅ ̅̅ =
𝑅𝑎𝑇

2

362,880
𝐸2 + 1 (39) 

 

𝑆ℎ̅̅ ̅ =
𝐿𝑒2𝑅𝑎𝑇

2

362,880
𝐸2 + 1 (40) 

 

The case RaT=0 refers to pure forced convection generated 

only by shear force. Resulting in the following mean Nusselt 

and mean Sherwood numbers: 

 

𝑁𝑢̅̅ ̅̅ =
𝑃𝑒2

105
+ 1 (41) 

 

𝑆ℎ̅̅ ̅ =
𝐿𝑒2𝑃𝑒2

105
+ 1 (42) 

 

 

5. RESULTS AND DISCUSSION 

 

The analytical solution developed in section 4 based on the 

parallel flow approximation is valid for enclosures with A>>1. 

Thus, numerical tests were carried to define the value of A, 

after which the flow characteristics become invariant to the 

aspect ratio, also for which the numerical and analytical results 

agree perfectly for different values of Le, N, Pe and RaT. 

The Prandtl number, Pr, affects strongly mixed convection 

as reported by [28, 29]. While, in contrast, Lamsaadi et al. [30] 

and Alloui et al. [31] found that when Pr≥1, it doesn’t affect 

natural convection. In our case, and while referring to Eq. (11), 

we can reduce the number of controlling parameters, and not 

need to explicitly use the value of Pr, by using the couple (RaT, 

Pe), in which Pr is incorporated, instead of (Gr, Re). As a 

result, the thermosolutal mixed convection flow is governed 

by the Peclet number, Pe, the thermal Rayleigh number, RaT, 

the buoyancy ratio, N and the Lewis number, Le, whose effects 

on the flow structure, heat and mass transfer rates are 

investigated for natural, mixed and forced convection. 

 

5.1 Determination of the aspect ratio value 

 

In order to find the smallest value of the aspect ratio, A, for 

which the numerical results are in good agreement with the 

analytic ones, Figure 3 shows the evolution of 𝑁𝑢̅̅ ̅̅  with A, for 

Le=5, N=1, RaT=105 and various values of Pe. It’s obvious that 

𝑁𝑢̅̅ ̅̅  tend to have an asymptotic behavior as A increases. 

Therefore, a value of A=24 is large enough to achieve results 

close to the parallel flow approximation results for all 

considered values of Le, N, RaT, and Pe. 

Furthermore, the results introduced in Table 1 validates the 

analytical approach and the choice of the value A=24 for the 

numerical code, as both results agree perfectly. In the 

following sections, the presented figures will confirm such fact 

in the explored ranges of the governing parameters RaT≤107, 

Pe≤500, 10-2≤Le≤102 and 10-2≤N≤102. 

 

 
 

Figure 3. Evolution of the Nusselt number with the aspect 

ratio for Le=5, N=1, RaT=105 and different Pe values 

 

5.2 The mixed convection parameter 

 

The goal is to establish the limits for the natural, mixed, and 

forced convective regimes, the modified Richardson number 

Gr/Ren (known also as the mixed convection parameter) is 

widely used for that purpose, as it compares the buoyancy 

effects to shear one. The exponent 𝑛 depends on the geometry 

of the cavity and associated boundary conditions. 

Note that, setting Le=1, results in heat and mass transfer 

having same diffusion characteristics, which allows 

highlighting the implications of mixed convection parameter 

alone. 

To separate the conditions where a convection regime is 

qualified either as pure (natural or forced) or mixed in a single 
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lid driven rectangular cavity occupied with Newtonian fluid, 

we calculate the deviation of the heat and mass transfer rates 

from the values computed in the case of pure convection, if the 

deviation is less than 5%, the convective regime is considered 

pure, if not the regime is flagged as mixed. So, to determine 

the mixed convection parameter, the following ratios are used:  

 

𝜀𝑁𝑢𝑛
=

|𝑁𝑢̅̅ ̅̅ − 𝑁𝑢𝑛
̅̅ ̅̅ ̅̅  |

𝑁𝑢𝑛
̅̅ ̅̅ ̅̅

;  𝜀𝑁𝑢𝑓
=

|𝑁𝑢̅̅ ̅̅ − 𝑁𝑢𝑓
̅̅ ̅̅ ̅ |

𝑁𝑢𝑓
̅̅ ̅̅ ̅

 (43) 

 

𝜀𝑆ℎ𝑛
=

|𝑆ℎ̅̅ ̅ − 𝑆ℎ𝑛
̅̅ ̅̅ ̅|

𝑆ℎ𝑛
̅̅ ̅̅ ̅

;  𝜀𝑆ℎ𝑓
=

|𝑆ℎ̅̅ ̅ − 𝑆ℎ𝑓
̅̅ ̅̅ ̅ |

𝑆ℎ𝑓
̅̅ ̅̅ ̅ 

 (44) 

 

where, 𝑁𝑢𝑓
̅̅ ̅̅ ̅ and 𝑁𝑢𝑛

̅̅ ̅̅ ̅̅  are the average Nusselt numbers for pure 

forced and natural convections, respectively, and 𝑆ℎ𝑓
̅̅ ̅̅ ̅ and 

𝑆ℎ𝑛
̅̅ ̅̅ ̅ are the average Sherwood numbers for pure forced and 

natural convections, respectively. As explained above, the 

convective regime is qualified as pure natural / forced when 

conditions 𝜀𝑁𝑢𝑛
< 5% and 𝜀𝑆ℎ𝑛

< 5%/𝜀𝑁𝑢𝑓
< 5% and 

𝜀𝑆ℎ𝑓
< 5% are verified. Otherwise, the convective regime is 

set to be mixed. 

Based on Eq. (43) and Eq. (44), the Figure 4 is constructed, 

the points (log(RaT), log(Pe)) that verify (𝜀𝑁𝑢𝑛
= 5% and 

𝜀𝑆ℎ𝑛
= 5%)  and (𝜀𝑁𝑢𝑓

= 5% and 𝜀𝑆ℎ𝑓
= 5%)  are obtained 

analytically (solid lines) and numerically (symbols), where 

both solutions agree perfectly. Those points form two parallel 

straight lines that split the domain of the explored values of 

RaT and Pe into three zones. The first zone above line (1), 

where natural convection is predominant. The second zone 

below line (2), the forced convection is qualified as dominant 

regime, in between the two lines, the third zone where the 

mixed convection dominates. The lines (1) and (2) can be 

correlated in the following relations: 

 
𝑅𝑎𝑇

𝑃𝑒3.0
= 𝜂𝑛 𝑎𝑛𝑑 

𝑅𝑎𝑇

𝑃𝑒3.0
= 𝜂𝑓 (45) 

 

outlining natural and forced convective regime limit, 

respectively. The values of coefficients ηn and ηf are presented 

in Table 2 and shown in Figure 4 with dashed lines. 

Finally, for the considered cavity configuration and the 

associated boundary conditions, the mixed convection regime 

is delimited as follows: 

 

Table 2. Values of ηn and ηf 

 

Convection regime 
Natural 

convection ηn 

Natural 

convection ηf 

 584.83  0.0079  

 

0.0079 <
𝑅𝑎𝑇

𝑃𝑒3.0
< 584.83 (46) 

 

 

5.3 Dynamical, thermal and solutale fields 

 

Streamlines (left), isotherms (middle) and iso-

concentration(right) are shown in Figure 2 for 𝐿𝑒 = 5, 𝑁 =
1, 𝑅𝑎𝑇 = 105 and various values of 𝑃𝑒. As the wall is sliding 

from left to right, the same direction as the imposed 

temperature and concentrations gradients, the buoyancy and 

shear effects work together (assisting flow), causing the flow 

to be unicellular and clockwise. As for the flow structure, and 

except the edges of the cavity where the flow experiences a 

rotation of 180˚, the dynamical field is parallel to the 

horizontal direction while the thermal and solutale fields are 

linearly stratified in the x-direction. 

On the other hand, for low values of Pe (i.e. when 
𝑅𝑎𝑇

𝑃𝑒3.0 >

𝜂𝑛), the dynamical, thermal and solutale fields are similar to 

the ones in pure natural convection case, for RaT=105 (Figure 

5), where the fields are Centro- symmetric, with horizontal 

parallelism and a stratification in the core region of the 

enclosure, which shows that the buoyancy forces dominate the 

shear one. As 𝑃𝑒 increases, the streamlines, isotherms and iso-

concentrations become more sensitive to the effect of the 

moving wall since the Centro-symmetric pattern starts to 

disappear and the inclinations of the isotherms and iso-

concentrations with respect to the y-direction increases, when 

𝑃𝑒  is large enough (i.e. when 
𝑅𝑎𝑇

𝑃𝑒3.0 < 𝜂𝑓 ), we end up with 

patterns similar to the ones in pure forced convection for 

Pe=100 and Pe=200 (Figure 6), where the streamlines are 

more packed near the moving wall showing that the flow is 

powerful in that region, while isotherms and iso-

concentrations becomes more tilted and practically linear in 

the centre of the enclosure, in that case it’s obvious that the 

shear effect dominates the convection. 

It’s worth to note, that as 𝑃𝑒 increases, a boundary layer of 

isothermal and isoconcentrations starts to form next the 

vertical walls, indicating the heat and mass transfer strengthen 

in that regions. The layer is more noticeable near the left wall. 
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Figure 4. Diagram characterizing the convective regimes 

 

 
  

 

Figure 5. Streamlines (left), isotherms (middle) and iso-concentrations (right) for pure natural convection, Le=5, N=1, RaT=105. 

(Scale not respected) 
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(a) 

   

(b) 

 

Figure 6. Streamlines (left), isotherms (middle) and iso-concentrations (right) for pure forced convection: Le=5, N=1 and (a) 

Pe=100 and (b) Pe=200. (Scale not respected) 

 

 

 

 
 

Figure 7. Stream function (top), Nusselt number (middle) 

and Sherwood number (bottom) variations with Pe, for A=24, 

Le=5, N=1, and different values of RaT 

 

5.4 Effect of Peclet number 

 

The evolution of |𝛹𝑐|, 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ with the Peclet number, 

Pe, is presented on Figure 7, for Le=5, N=1 and different 

values of RaT. For low values of Pe, |𝛹𝑐| , 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅  are 

invariant to Pe while depending on RaT, plus the results are 

analogous to the ones obtained in the case of pure natural 

convection, which indicates that the heat and mass transfer are 

assured by natural convection, after a certain value of Pe, |Ψc|, 

𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ start to increase slowly due to the contribution of 

shear effect related to moving wall, this value can be correlated 

by (
𝑅𝑎

𝜂𝑛
)1/3.0, it increases as RaT increases, owing to the well-

established effect of Rayleigh number in reinforcing natural 

convection, thus, delaying the transition from natural regime 

to mixed one. Finally, as, Pe keeps increasing, the shear effect 

dominates the buoyancy one until the flow characteristics are 

governed by forced convection (
𝑅𝑎𝑇

𝑃𝑒3.0 < 𝜂𝑓) as they increase 

linearly with 𝑃𝑒 , such fact can be confirmed as the results 

agree with the ones for pure forced convection. 

Pure natural convection results are given by the solution of 

Eq. (39) and Eq. (40) for 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅, respectively, and as for 

forced convection flows, asymptotic limits of the results are 

defined by the solution of Eq. (41) and Eq. (42) for 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅, 

respectively. Asymptotic limits are indicated by dashed and 

doted lines. 

 

5.5 Effect of the thermal Rayleigh number 

 

For more understanding of the effect of thermal Rayleigh 

number, RaT, the variations of |𝛹𝑐| , 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅  with this 

parameter for Le=5, N=1, and various values of Pe, are 

depicted in. Figure 8. The evolution of |Ψc|, 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅  is 

similar to that with Peclet number discussed above, as the 

buoyancy effects and shear one competes. For small values of 

RaT, |Ψc|, 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ are invariant as the forced convection is 

dominating (results agree with the pure forced convection 

ones), where increasing Pe increases the extent of that range 

as it strengthens the shear effect, after which they first 

experiences a slight increase (mixed convection heat transfer), 

the threshold signaling that change in behavior is defined by 

(Pe3.0ηf), where forced convection no longer dominates the 

heat and mass transfer, which agrees with the mixed 

convection regime limits given by Eq. (46), then after the 

transition phase, all quantities increase monotonically 

(dominating natural convection when 
𝑅𝑎𝑇

𝑃𝑒3.0 > 𝜂𝑛), due to the 

dominating buoyancy effects in promoting the convection. . 

The dashed lines that indicate the pure forced convection are 

defined by the solution of Eq. (41) and Eq. (42) for 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅, 

respectively, and as for natural convection, asymptotic limits 
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of the results are defined by the solution of Eq. (39) and Eq. 

(40) for 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅, respectively.  

There are two points that deserve mentioning, first, for low 

values of 𝑃𝑒 (𝑃𝑒 ≤ 1), When 𝑅𝑎𝑇  is small enough (𝑅𝑎𝑇 <
10 ) the heat and mass transfers are governed by pseudo-

diffusion (|𝛹𝑐| ≤ 10−1 , 𝑁𝑢̅̅ ̅̅ ≈ 1 and 1 < 𝑆ℎ̅̅ ̅ < 2) . Outside 

this zone, increasing 𝑅𝑎𝑇  results in increasing |𝛹𝑐|  and 𝑆ℎ̅̅ ̅ 

without affecting 𝑁𝑢̅̅ ̅̅  at first, which increases only when 

RaT≥100. Second, because Le=5, mass transfer is more 

important than heat transfer. 

 

 

 
 

Figure 8. Stream function (top), Nusselt number (middle) 

and Sherwood number (bottom) variations with RaT, for 

A=24, Le=5, N=1, and different values of Pe 

 

 

 
 

Figure 9. Stream function (top), Nusselt number (middle) 

and Sherwood number (bottom) variations with Le, for A=24, 

N=1, RaT=105, and different values of Pe 

 

5.6 Effect of Lewis number 

 

Variations of |𝛹𝑐|, 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ with Lewis number, Le, are 

reported in Figure 9 for N=1, RaT=105 and various values of 

Pe. For low values of Le, the upper plateau for |𝛹𝑐| and 𝑁𝑢̅̅ ̅̅  

indicates that thermal convection dominates both thermal 

conduction and solutal convection, which can be confirmed by 

the plateau characterized by 𝑆ℎ̅̅ ̅ ≈ 1 indicating the diffusive 

nature of mass transfer. On the other hand, increasing Pe has 

no effect on flow characteristics, showing that thermal 

convection also dominates the shear effect induced by driven 

wall. As Le increases, a descent in the values of |𝛹𝑐| and 𝑁𝑢̅̅ ̅̅ , 
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while 𝑆ℎ̅̅ ̅ starts to rise slowly indicates a phase change. Finally, 

for Le>1, 𝑆ℎ̅̅ ̅ increases monotonically, this is due to the fact 

that Sherwood number depends strongly on the Lewis number, 

while a lower plateau is observed for |𝛹𝑐| and 𝑁𝑢̅̅ ̅̅ , as the 

solutal convection with the contribution of the thermal 

diffusion that increases as Le increases, dominates the thermal 

convection. Also, the lower plateau shows that increasing 

Lewis number has no significant outcome on |𝛹𝑐| and 𝑁𝑢̅̅ ̅̅ , 

which is expected as the heat transfer is related only to the 

parameter (
𝑅𝑎𝑇

𝑃𝑒3.0) that couples natural convection effects with 

the forced convection ones, which explains the difference in 

the values of |𝛹𝑐|  and 𝑁𝑢̅̅ ̅̅  for a fixed value of RaT , while 

varying Pe, where the shear forces obviously affect convection. 

 

 

 

 
 

Figure 10. Stream function (top), Nusselt number (middle) 

and Sherwood number (bottom) variations with N, for A=24, 

Le=5, RaT=105, and different values of Pe 

5.7 Effect of the buoyancy ratio 

 

The results of varying 𝑁 on |𝛹𝑐|, 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ are reported 

in Figure 10 for RaT=105, Le=5 and various values of Pe. For 

aiding flow situation (N>0) discussed here, three convective 

regimes appear: 

 

• for a range of small values of N(N<10), thermal volume 

force dominates the convection, which results in |𝛹𝑐|, 
𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅  to be indifferent to changes in 𝑁  value, 

given the small involvement of solute forces in 

convection, and only the effect of the moving wall can 

be seen. 

• an intermediate regime, for which the increase of |𝛹𝑐|, 
𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ begins to be seen, the solutal buoyancy force 

starts to take importance compared to the thermal 

buoyancy one. As a result, the effect of the moving wall 

acting in the same direction as the buoyancy forces to 

enhance convection starts to diminish.   

• a regime of predominant solutal volume force for which 

|𝛹𝑐| , 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅  increase in a monotonous and 

pronounced way with N, thus, the solutal effects are 

governing the convection, which explains the vanishing 

effect of the moving wall. 

 

We note that, beyond Le=1000 and N=1000, the numerical 

code can’t generate stable results. 

 

5.8 Horizontal velocity, temperature and concentration 

profiles along the y-axis in the central section of the cavity 

 

The horizontal velocity (top), the temperature (centre), and 

the concentration (bottom) at the core of the enclosure (x=A/2) 

are shown in Figure 11, for Le=5, N=1, Pe=25 and various 

values of RaT. When forced convection is dominant, (𝑅𝑎𝑇 <
𝑅𝑎𝑇𝑐𝑟), the illustrated profiles are asymmetric given the fact 

that horizontal kinematic boundary conditions are of 

asymmetric nature (only the top wall is moving). For the 

velocity, as 𝑅𝑎𝑇  increases, the velocity extremum values 

augments, as the minimum value becomes more amplified and 

the maximum value increases as it moves far from the moving 

wall (y=1), indicating that the flow becomes faster and more 

intense in that region away from the moving wall, which 

explains that buoyancy effects dominate convection (𝑅𝑎𝑇 >
𝑅𝑎𝑇𝑐𝑟). The threshold that results in those extremums and 

indicates that the flow is buoyancy-driven (𝑅𝑎𝑇𝑐𝑟), is given by: 

(see Figure 11). 

 

𝑅𝑎𝑇𝑐𝑟 =
1

[
19

630
(𝐿𝑒2 + 𝑁)𝑃𝑒2 + 1 + 𝑁]

[
1444

33075
𝐿𝑒2𝑃𝑒5 

+
152

105
(1 + 𝐿𝑒2)𝑃𝑒3 + 48𝑃𝑒] 

(47) 

 

The fact that both shear and buoyancy effects working in 

the same direction from left to right, results in monocellular 

clockwise flow, where the velocity is positive on the top region 

of the cavity while negative on the bottom. As for the 

temperature and concentration profiles, they also present two 

zones, the one with positive signs in the top and one with 

negative signs on the bottom with extremum values that 

increases as RaT decreases indicating that the flow is losing its 

intensity as confirmed by the velocity profile and the values of 

heat and mass transfers that decrease as RaT decreases. For 
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temperature, the clockwise flow makes the top of the cavity 

warm and the bottom cold by transferring heat from left to 

right section of the cavity. The concentration exhibits similar 

phenomenon. 

 

 

 

 
 

Figure 11. Horizontal velocity (left), temperature (middle) 

and concentration (right) profiles in the core region of the 

cavity, along the y-axis for Le=5, N=1, Pe=25 and different 

values of RaT 

 

 

6. CONCLUSIONS 

 

Thermosolutal Mixed convection in single lid-driven 

horizontal rectangular shallow enclosures (A>>1) filled with 

Newtonian fluid and subjected to uniform heat and mass fluxes 

applied to the vertical short sides (Neumann type condition) 

while the long horizontal boundaries are insulated and 

impermeable is studied numerically and analytically. In the 

case of shallow enclosures (A≥24), the flow characteristics 

become indifferent to the increase of the aspect ratio 𝐴, which 

indicates that the governing parameters are reduced to: Lewis 

number, Le, buoyancy ration, N, Peclet number, Pe, and 

thermal Rayleigh number, RaT. Numerical solutions, using a 

finite volume method, are given for wide ranges of governing 

parameters (10−2 ≤ 𝐿𝑒 ≤ 102, 10−2 ≤ 𝑁 ≤ 102, 0.1 ≤ Pe ≤
500, 1 ≤ RaT ≤ 107). On the other hand, using the parallel 

flow approximation valid in the central part of a shallow 

enclosure, an analytical solution is elaborated, both solutions 

show good agreement within the explored ranges of the 

governing parameters. The parameter RaT/𝑃𝑒3.0, is found to 

perfectly outline the natural, forced and mixed convective 

regimes, where the following boundaries: 

 

0.0079 <
𝑅𝑎𝑇

𝑃𝑒3.0
< 584.83 

 

delimit the mixed regime for single lid-driven cavity. Whereas, 

natural and forced convection are found to be dominant 

outside those limits. The effect of governing parameters on 

enhancing heat and mass transfer was investigate, where 

increasing Peclet number results in stronger shear effects, thus 

increasing heat and mass transfer rates, while increasing 

Rayleigh number results in a similar effect, but this time due 

to reinforced buoyancy effects which lead to more active 

convection. On the other hand, Lewis number affects strongly 

mass transfer, while no change is noticed on heat transfer. As 

for increasing buoyancy ratio, it enhances heat and mass 

transfer, as a beneficial result of dominant solutal buoyancy 

force. 
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NOMENCLATURE 

 

𝐴 dimensionless aspect ratio of the cavity 

𝐶𝑇 dimensionless temperature gradient in the  𝑥 -

direction 

𝐶𝑆 dimensionless concentration gradient in the 𝑥 -

direction  
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𝐷 mass diffusivity (𝑚2 𝑠⁄ ) 

𝑔 gravitational acceleration (𝑚2 𝑠⁄ ) 

𝐺𝑟 Grashof number 

𝐻′ height of the enclosure (𝑚) 

𝑗′ constant mass flux per unit area  (𝑘𝑔/𝑚2 𝑠) 

𝐿𝑒 Lewis number 

𝐿′ length of the rectangular enclosure (𝑚) 

𝑁 buoyancy ratio 

𝑁𝑢 local Nusselt number 

𝑁𝑢̅̅ ̅̅  mean Nusselt number 

𝑃𝑒 Peclet number 

𝑃𝑟 generalized Prandtl number 

𝑞′ constant heat flux per unit area (𝑊/𝑚2) 

𝑅𝑎𝑇 generalized thermal Rayleigh number 

𝑅𝑒 Reynolds number 

𝑆 dimensionless concentration [= (𝑆′ − 𝑆0
′ ) 𝛥𝑆∗⁄ ] 

S′0 reference concentration (kg/𝑚3) 

𝑆ℎ local Sherwood number 

𝑆ℎ̅̅ ̅ mean Sherwood number 

𝑇 dimensionless temperature [= (𝑇′ − 𝑇0
′)/𝛥𝑆∗] 

T′0 reference temperature (𝐾) 

𝛥𝑆∗ characteristic concentration  

[=𝑗′𝐻′/𝐷] (𝑘𝑔/𝑚3) 

𝛥𝑇∗ characteristic temperature [=𝑞′𝐻′/ 𝜆] (𝐾) 

(𝑢, 𝑣) dimensionless axial and vertical velocities 

[=(𝑢′, 𝑣′)(𝛼 𝐻′⁄ )] 

(𝑥, 𝑦) dimensionless axial and vertical co-ordinates 

[=(𝑥′, 𝑦′)/𝐻′] 

 

Greek symbols 

 

 thermal diffusivity of fluid (𝑚2/𝑠) 

𝛽𝑇 thermal expansion coefficient of fluid (1/𝐾) 

𝛽𝑆 solutal expansion coefficient of fluid (𝑚3/𝑘𝑔) 

𝜆 thermal conductivity of fluid (𝑊/𝑚 𝐾) 

µ dynamic viscosity for a Newtonian fluid (𝑃𝑎 𝑠) 

𝜌 density of fluid (𝑘𝑔/𝑚3) 

𝜓 dimensionless stream function [= 𝜓′ 𝛼⁄ ] 
 

Superscripts 

 

′ dimensional variable 
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