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 The present paper investigates the mixed convection in a two-sided and four-sided lid-

driven square cavity in porous media. In the two-sided porous cavity, the left and right 

walls of the enclosure are maintained at constant but different temperatures, while the top 

and bottom walls are adiabatic. The top and the bottom walls of the enclosure move with 

a constant speed from left to right. In the four-sided porous cavity, the top and the bottom 

walls of the enclosure move from left to right and right to left, respectively, while the left 

and the right walls move from top to bottom and bottom to top, respectively, with a constant 

speed. The left and right walls of the enclosure are maintained at different heat fluxes, 

while the top and bottom walls are maintained at hot and cold temperatures, respectively. 

The governing equations are discretized by the fully implicit finite difference method, 

namely, Alternating-Direction-Implicit (ADI) method. The numerical results are analyzed 

for the effect of Darcy number (Da = 0.001, 0.01), Prandtl number (Pr = 7), Grashof 

number (Gr = 50,000), porosity (ε = 0.2) and viscosity ratio (Λ = 1, 3). The stability and 

convergence of the considered problem have been proved using the Matrix method. 
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1. INTRODUCTION 

 

During the past few decades, the problem of natural or 

mixed convection in lid-driven square or rectangular cavity 

with porous media has been widely studied due to its simple 

geometrical settings and its practical applications [1] such as 

nuclear waste disposal, coal and grain storage, textile materials, 

geothermal systems, biological processes, and many others. 

Mixed convection in lid-driven square or rectangular cavity 

has various applications in engineering science [2], such as 

lubricant technology, chemical processing, cooling of 

microprocessors and electronic components, float glass 

production, etc. The lid-driven cavity in porous media whose 

all four walls are kept at different heat flux or temperatures has 

been studied by many researchers. Mixed or natural 

convection in a square cavity with three different cases, i.e. (a) 

all walls of the cavity are kept stationary, (b) one side of the 

wall is in motion (c) two sides of the cavity are in motion, has 

been studied in the following literature. 

Mixed convection in a square cavity with all walls at rest 

has been studied by Venkatachalappa et al. [1], Saeid and 

Mohamad [3], Mansour et al. [4], Basak et al. [5], and 

Badruddin et al. [6]. Venkatachalappa et al. [1] investigated 

natural convection inside a square porous cavity using the 

finite-difference ADI method. Saeid and Mohamad [3] studied 

the natural convection within the square cavity by keeping its 

right wall at hot temperature and sinusoidal condition on its 

left wall. In contrast, the top and bottom walls are adiabatic. 

Mansour et al. [4] investigated the numerical study of natural 

convection with thermal radiation inside a wavy porous cavity. 

Basak et al. [5] examined the natural convection flow inside a 

square cavity keeping its top wall adiabatic. In contrast, the 

bottom wall is maintained at hot temperature or a sinusoidal 

boundary condition. The left and right wall of the cavity is 

maintained at a cold temperature. They have obtained 

numerical results for various parameters; Rayleigh number 

(103 ≤ Ra ≤ 106), Darcy number (10-5 ≤ Da ≤ 10-3), and Prandtl 

number (0.71 ≤ Pr ≤ 10). Badruddin et al. [6] examined the 

heat transfer by convection, conduction, and radiation using a 

non-equilibrium thermal model inside a square porous cavity. 

The numerical results are discussed for various parameters like 

Rayleigh number, inter-phase heat transfer coefficient 

radiation, and modified conductivity ratio in terms of Nusselt 

number for solid and fluid. 

Natural or mixed convection in the one-sided lid-driven 

square porous cavity has been studied by Chattopadhyay and 

Pandit [7], Kandaswamy et al. [8], Mohan and Satheesh [9], 

Md. Hidayathulla Khan et al. [10]. Chattopadhyay and Pandit 

[7] have used the higher-order compact (HOC) scheme to 

analyze the mixed convection in a lid-driven trapezoidal 

porous enclosure whose top wall is kept at a motion from left 

to right. The effect of convection in a trapezoidal porous 

enclosure is examined for different Peclet numbers. 

Kandaswamy et al. [8] have numerically investigated the 

effect of Prandtl number on mixed convection in a one-sided 

lid-driven square cavity filled with porous media. They have 

found that conduction is dominated at low Prandtl numbers, 

while mixed and forced convection dominates the temperature 

field as the Prandtl number increases. Mohan and Satheesh [9] 

investigated the double-diffusive mixed convection with 

magnetohydrodynamic effect in a one-sided lid-driven porous 

cavity. They have examined the fluid flow in the top-sided lid-

driven square cavity in both directions with a constant velocity. 

They analyzed streamline contours, concentration, 

temperature gradients, and velocity components for a wide 

range of non-dimensional parameters like Hartmann (1 ≤ Ha 
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≤ 25), Lewis (1 ≤ Le ≤ 50), Prandtl (Pr = 0.7), Richardson (Ri 

= 1.0), Darcy (Da = 1.0), and Reynolds (Re = 100) numbers. 

Khan et al. [10] have used the Marker and Cell (MAC) method 

to analyze the mixed convection in a one-sided lid-driven 

porous cavity. 

Natural or mixed convection inside a two-sided lid-driven 

porous cavity has been studied by Vardhana and Das [11], 

Muthtamilselvan et al. [12], Behzadi et al. [13], Mittal et al. 

[14], Chattopadhyay et al. [15]. They have all investigated the 

mixed convection inside a two-sided lid-driven square porous 

cavity, in which the left and right walls move at a constant 

speed in the same or opposite directions. The left and right 

walls of the cavity are kept at constant but different 

temperatures, while the top and bottom walls are adiabatic. 

Muthtamilselvan et al. [12] carried out numerical computation 

in a square porous cavity whose top and bottom walls move in 

opposite directions. Behzadi et al. [13] have investigated the 

effect of porous media on mixed convection inside a ventilated 

square cavity, in which an external flow enters the enclosure 

from a port on the left vertical wall and leaves from a port on 

the right wall. Md. Hidayathulla Khan et al. [16] investigated 

the mixed convection under the effect of radiation inside a 

porous square cavity whose top and bottom walls are kept at a 

constant temperature, while some portions of the left and right 

walls of the cavity are partially heated. Vusala and Kumar 

[17], and Bagai et al. [18, 19] have used the stream function-

vorticity formulation to investigate the mixed convection 

problem with heat or mass transfer in a two-sided or four-sided 

lid-driven square porous or without a porous cavity. 

The present study analyzes the mixed convection in a two-

sided and four-sided lid-driven square cavity filled with 

porous media. The governing equations for the considered 

problem are discretized by a fully implicit finite difference 

scheme, namely Alternating-Direction-Implicit (ADI) method. 

We shall also prove the stability and convergence of the 

numerical scheme to obtain the desired accuracy by the Matrix 

method. 

 

 

2. MATHEMATICAL FORMULATION 

 

2.1 Physical description 

 

The physical model of a two-sided and four-sided lid-driven 

square cavity of unit size with heat transfer is illustrated in 

Figure 1. The cavity is filled with homogeneous, isotropic, 

saturated, sparsely packed porous material of high 

permeability K. The fluid's thermo-physical properties are 

presumed to be constant, except the density, which varies 

linearly with temperature as, 𝜌 = 𝜌0[1 − 𝛽(𝑇ℎ − 𝑇𝑐)], where 

𝛽  is the thermal expansion coefficient, and the subscript 0 

denotes the reference state. Natural convection occurs in the 

cavity due to temperature gradient, and forced convection 

occurs due to the motions of the lids. Thus, the combination of 

natural convection and forced convection results in a mixed 

convection problem.  

In the two-sided porous cavity, the top and the bottom walls 

of the cavity move from left to right with velocity u = 1. The 

left and right walls of the porous cavity are maintained at cold 

(T = −1) and hot (T = 1) temperatures, respectively, while the 

top and the bottom walls of the cavity are adiabatic. In a four-

sided cavity, the top and the bottom walls of the cavity move 

in opposite directions with velocity u = 1. The left and right 

walls of the cavity move with velocity v = 1 in the opposite 

directions. The top and the bottom walls of the porous cavity 

are maintained at hot (T = 1) and cold (T = −1) temperatures, 

respectively, while the left and right walls of the cavity are 

kept with heat flux 𝜕𝑇/𝜕𝑥 = −1 and 𝜕𝑇/𝜕𝑥 = 1 respectively. 

 

 
(a) Two-sided lid-driven square porous cavity 

 
(b) Four-sided lid-driven square porous cavity 

 

Figure 1. Flow configuration and coordinate system for two-

sided and four-sided lid-driven square cavity in the porous 

media 

 

2.2 Governing equations 

 

The governing equations of mixed convection in a lid-

driven square porous cavity based on Boussinesq 

approximations, using the stream function-vorticity (𝜓 − 𝜉) 

formulation in the non-dimensional form [1] can be expressed 

as: 

 
1

𝜀

∂𝜉

∂𝑡
+

1

𝜀2
 𝑢

∂𝜉

∂𝑥
+

1

𝜀2
 𝑣

∂𝜉

∂𝑦
=

𝐺𝑟

2

∂𝑇

∂𝑦
+

𝛬 (
∂2𝜉

∂𝑥2
+

∂2𝜉

∂𝑦2
) −

1

𝐷𝑎
𝜉,

 (1) 

 

𝑆
∂𝑇

∂𝑡
+  𝑢

∂𝑇

∂𝑥
+  𝑣

∂𝑇

∂𝑦
=

1

𝑃𝑟
(

∂2𝑇

∂𝑥2
+

∂2𝑇

∂𝑦2
), (2) 

 

∇2𝜓 = −𝜉, (3) 

 

𝑢 =
∂𝜓

∂𝑦
, 𝑣 = −

∂𝜓

∂𝑥
. (4) 

 

where, 
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The non-dimensional parameters are Prandtl number, Darcy 

number, viscosity ratio and Grashof number, defined as 

follows: 

 

𝑃𝑟 =
𝜈

𝛼
, 𝐷𝑎 =

𝐾

𝐿2 , 𝛬 =
𝜇′

𝜇
, 𝐺𝑟 =

𝑔𝛽(𝜃ℎ − 𝜃𝑐)𝐿3

𝜈2 . 

 

The Darcy number is the ratio of permeability of the porous 

media to square of the length of the cavity. The medium’s 

permeability is defined as, 𝐾 = 𝐷𝑝
2𝜀2/144(1 − 𝜀)2, where Dp 

is the particle diameter and ε its porosity. The porosity in the 

porous media structure is an important indicator, which 

directly affects the movement characteristics of the fluid. So, 

its effect can be considered by varying the Darcy number. 

The initial and the boundary conditions associated with the 

system (1) to (4) are: 

 

Case 1: Two-sided lid-driven porous cavity 

 

𝑡 = 0;  𝑢 = 𝑣 = 𝑇 = 𝜓 = 𝜉 = 0, 0 ≤ 𝑥, 𝑦 ≤ 1, 

𝑡 > 0;  𝑥 = 0: 𝑇 = −1, 𝜓 =
∂𝜓

∂𝑥
= 0 (𝑖. 𝑒. 𝑣 = 0), 

𝑥 = 1: 𝑇 = 1, 𝜓 =
∂𝜓

∂𝑥
= 0 (𝑖. 𝑒. 𝑣 = 0), 

𝑦 = 0,1: 
∂𝑇

∂𝑦
= 0, 𝜓 = 0,

∂𝜓

∂𝑦
= 1 (𝑖. 𝑒. 𝑢 = 1). 

 

Case 2: Four-sided lid-driven porous cavity 

 

𝑡 = 0;  𝑢 = 𝑣 = 𝑇 = 𝜓 = 𝜉 = 0, 0 ≤ 𝑥, 𝑦 ≤ 1, 

𝑡 > 0;  𝑥 = 0: 
∂𝑇

∂𝑥
= −1, 𝜓 = 0,

∂𝜓

∂𝑥
= 1(𝑖. 𝑒. 𝑣 = −1), 

𝑥 = 1: 
∂𝑇

∂𝑥
= 1, 𝜓 = 0,

∂𝜓

∂𝑥
= −1 (𝑖. 𝑒. 𝑣 = 1), 

𝑦 = 0: 𝑇 = −1, 𝜓 = 0,
∂𝜓

∂𝑦
= −1 (𝑖. 𝑒. 𝑢 = −1), 

𝑦 = 1: 𝑇 = 1, 𝜓 = 0,
∂𝜓

∂𝑦
= 1 (𝑖. 𝑒. 𝑢 = 1). 

 

Heat transfer along the left and right walls of the cavity is 

also studied with the help of the average Nusselt number. The 

local and average Nusselt numbers along the left and right wall 

of the enclosure are defined as follows: 

 
 Left wall Right wall 

Local Nusselt 

number 
𝑁𝑢𝑙 =

∂T

∂x
|

𝑥=0
 𝑁𝑢𝑟 =

∂T

∂x
|

𝑥=1
 

Average Nusselt 

number 
𝑁𝑢𝑙
̅̅ ̅̅ ̅ = ∫ 𝑁𝑢𝑙 dy

1

0

 𝑁𝑢𝑟
̅̅ ̅̅ ̅̅ = ∫ 𝑁𝑢𝑟  dy

1

0

 

 

 

3. NUMERICAL DISCRETIZATION 

 

The finite difference method is used to discretize the 

Poisson, vorticity, and energy transport equations. The 

coupled Eqns. (1) to (3) are solved numerically utilizing 

Alternating-Direction-Implicit (ADI) method. Using the ADI 

method, we obtain a system of tri-diagonal equations, which is 

solved by LU-decomposition for vorticity ξ and temperature T. 

The second-order partial derivatives of flow variable 𝜓 in Eq. 

(3) are discretized by the second-order central finite difference 

quotients. 

The first and second-order partial derivatives of stream 

function 𝜓, vorticity 𝜉, temperature T in Eqns. (1) to (3) with 

respect to time and space variables are discretized using 

forward-time and central-space (FTCS) finite-difference 

quotients for the ADI Scheme [17, 20]. The finite difference 

quotients are used to discretize Eqns. (1) to (3) to get the 

following discretized equations. 

In view of the discretization Eq. (3) can be written as: 

 

𝜓𝑖+1,𝑗
𝑡+1 − 2𝜓𝑖,𝑗

𝑡+1 + 𝜓𝑖−1,𝑗
𝑡+1

𝛥𝑥2

+
𝜓𝑖,𝑗+1

𝑡+1 − 2𝜓𝑖,𝑗
𝑡+1 + 𝜓𝑖,𝑗−1

𝑡+1

𝛥𝑦2
= −𝜉𝑖,𝑗

𝑡+1,

 (6) 

 

The discretized Eq. (1) with time step 𝑡 +
1

2
 and t+1 can be 

expressed as: 

 

( )

( )

1 1

2 2
1, 1, , 1 ,2 2

1

2
1, 1, , 12

1
8 2

8 2

t t
t t

i j i j i j i j

t
t t

i j i j i j

t t t

x y y y

t t

x y y

 
   




  



+ +

+ − −
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− − − 
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1

8
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t t t t
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t t t t t

i j i j i j i j i j

t t t t

x y x x Da

t t t

x y x y

Gr
T T

  
   




  





+ − −

+ − + + − 

    
− + − 

    

   
− − + 

 


   

+ − +
 


 + −

 

 

and, 
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( )
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1 1
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1

, 1 , 1 1,2

1 1

2 2
1, 1, , 1 ,2 2

1
8 2

8 2

8 2 2
1

t t t t

i j i j i j i j

t t t

i j i j i j

t t
t t

i j i j i j i j

t t t

x y x x

t t

x y x

t t t t

x y y y Da

 
   




  



  
   



+ +

+ − −

+

+ − +

+ +

+ − −
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+ − − 

   

 
−

=

  
+ −




 

   
− + − 

   

( )
1

2
1, 1, , 1 , 1 , 128 82

t
t t t t

i j i j i j i j i j

Gt t t

x y y

r

y
T T


  



+

+ − + + − 
   

− + +
 

−
 

+


 


 

 

The Eq. (2) at time step 𝑡 +
1

2
 and t + 1 can be discretized 

using the ADI scheme as follows: 

 

( )

( ) ( )

1 1

2 2
1, 1, , 1 ,2 2

1

2
1, 1, , 1 , 1 , 1 1,2 2

,2

1
8 2

8 2 8 2

1
8

t t
t t

i j i j i j i j

t
t t t t t

i j i j i j i j i j i j

t

i j

t t t
T T

S x y SPr y SPr y

t t t t
T T

S x y SPr y S x y SPr x

t t
T

SPr x S

 

   

+ +

+ − −

+

+ − + + − −

     
− − + + +   

      

      
− − − − +   

        




=

+
 

− − 
+


( ), 1 , 1 1,22

t t t

i j i j i j

t
T

x y SPr x
 + − +

 
− + 

   

 

 

and, 

 

( )

( ) ( )

1 1

, 1 , 1 1, ,2 2

1

1 2
, 1 , 1 1, 1, 1, , 12 2

1

2
,2

1
2 8

2 8 2 8

1

t t t t

i j i j i j i j

t
t t t t t

i j i j i j i j i j i j

t

i j

t t t
T T

SPr x s x y SPr x

t t t t
T T

SPr x S x y SPr y S x y

t
T

SPr y

 

   

+ +

+ − −

+
+

+ − + + − −

+

    
− − − + + +        

      
− + − − −   

        

  
− 
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+ + ( )
1

2
1, 1, , 122 8

t
t t

i j i j i j

t t
T

SPr y S x y
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+ − +
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4. STABILITY AND CONVERGENCE OF THE 

NUMERICAL METHOD 

 

This section proves the stability and convergence of the 

considered problem using the Matrix method. We will adopt 

the following difference approximation formula for first-order 

partial derivatives [20]: 

 

𝐷(+,𝑥)(𝛥𝑥)𝜉i,j =
𝜉i+1,j − 𝜉i,j

𝛥𝑥
+ 𝑂(𝛥𝑥), 

𝐷(−,𝑥)(𝛥𝑥)𝜉i,j =
𝜉i,j − 𝜉i−1,j

𝛥𝑥
+ 𝑂(𝛥𝑥), 

𝐷(0,𝑥)(𝛥𝑥)𝜉i,j =
𝜉i+1,j − 𝜉i−1,j

2𝛥𝑥
+ 𝑂(𝛥𝑥2). 

 

The second-order partial derivatives will be approximated 

by second-order central difference formula. 

 

𝑫𝟐
(𝟎,𝒙)(𝜟𝒙)𝝃𝒊,𝒋 =

𝝃𝒊+𝟏,𝒋 − 𝟐𝝃𝒊,𝒋 + 𝝃𝒊−𝟏,𝒋

𝜟𝒙𝟐
+ 𝑶(𝜟𝒙𝟐), 

 

where, 𝛥𝑥 is the step length in x-direction. Similar formula 

will be adopted for y-direction. Let 𝛥𝑡 denotes the step length 

in time (𝑡) −direction. Further, we assume 𝐴∗ = 𝐷2
0,𝑥, 𝐵∗ =

𝐷2
0,𝑦 , 𝐶∗ = 𝐷0,𝑥 and 𝐷∗ = 𝐷0,𝑦. Eq. (1) at time step 𝑡 +

1

2
 can 

be discretized as: 

 

𝜉𝑖,𝑗
𝑡+

1
2 − 𝜉𝑖,𝑗

𝑡 = −
∆𝑡

2𝜀
𝑢𝑖,𝑗𝐶∗𝜉𝑖,𝑗

𝑡 −
∆𝑡

2𝜀
𝑣𝑖,𝑗𝐷∗𝜉𝑖,𝑗

𝑡+
1
2

+
𝜀∆𝑡

4
𝐺𝑟𝐷∗𝑇𝑖,𝑗

𝑡 +
𝜀𝛬∆𝑡

2
𝐴∗𝜉𝑖,𝑗

𝑡

+
𝜀𝛬∆𝑡

2
𝐵∗𝜉𝑖,𝑗

𝑡+
1
2 −

𝜀∆𝑡

2𝐷𝑎
𝜉𝑖,𝑗

𝑡
 

 

On simplification we have: 

 

[𝐼 +
∆𝑡

2𝜀
𝑣𝑖,𝑗𝐷∗ −

𝜀𝛬∆𝑡

2
𝐵∗] 𝜉𝑖,𝑗

𝑡+
1
2

= [
𝜀∆𝑡

4
𝐺𝑟𝐷∗] 𝑇𝑖,𝑗

𝑡

+ [𝐼 −
∆𝑡

2𝜀
𝑢𝑖,𝑗𝐶∗ +

𝜀𝛬∆𝑡

2
𝐴∗ −

𝜀∆𝑡

2𝐷𝑎
] 𝜉𝑖,𝑗

𝑡
 

 

This implies, 

 

𝜉𝑖,𝑗
𝑡+

1
2 = 𝐸1𝜉𝑖,𝑗

𝑡 + 𝐹1𝑇𝑖,𝑗
𝑡 (7) 

 

𝐸1 = [𝐼 +
∆𝑡

2𝜀
𝑣𝑖,𝑗𝐷∗ −

𝜀𝛬∆𝑡

2
𝐵∗]

−1

[𝐼 −
∆𝑡

2𝜀
𝑢𝑖,𝑗𝐶∗ +

𝜀𝛬∆𝑡

2
𝐴∗

−
𝜀∆𝑡

2𝐷𝑎
] 

𝐹1 = [𝐼 +
∆𝑡

2𝜀
𝑣𝑖,𝑗𝐷∗ −

𝜀𝛬∆𝑡

2
𝐵∗]

−1

[
𝜀∆𝑡

4
𝐺𝑟𝐷∗] 

 

Eq. (1) at time step t + 1 can be discretized as: 

 

𝜉𝑖,𝑗
𝑡+1 − 𝜉𝑖,𝑗

𝑡+
1
2 = −

∆𝑡

2𝜀
𝑢𝑖,𝑗𝐶∗𝜉𝑖,𝑗

𝑡+1 −
∆𝑡

2𝜀
𝑣𝑖,𝑗𝐷∗𝜉𝑖,𝑗

𝑡+
1
2

+
𝜀∆𝑡

4
𝐺𝑟𝐷∗𝑇𝑖,𝑗

𝑡 +
𝜀𝛬∆𝑡

2
𝐴∗𝜉𝑖,𝑗

𝑡+1

+
𝜀𝛬∆𝑡

2
𝐵∗𝜉𝑖,𝑗

𝑡+
1
2 −

𝜀∆𝑡

2𝐷𝑎
𝜉𝑖,𝑗

𝑡+
1
2 

 

Simplifying the above equation, we get: 

 

* * 1 *

, , ,

1

* * 2
, ,

 
 

2 2 4

 

2 2 2?

t t

i j i j i j

t

i j i j

t t t
I u C A Gr D T

t t t
I v D B

Da

 




 




+

+

     
+ − =   

   

   
+ − + − 
 

 

 

This implies, 

 

𝜉𝑖,𝑗
𝑡+1 = 𝐺1𝜉𝑖,𝑗

𝑡+
1
2 + 𝐻1𝑇𝑖,𝑗

𝑡 (8) 

 

𝐺1 = [𝐼 +
∆𝑡

2𝜀
𝑢𝑖,𝑗𝐶∗ −

𝜀𝛬∆𝑡

2
𝐴∗]

−1

[𝐼 −
∆𝑡

2𝜀
𝑣𝑖,𝑗𝐷∗ +

𝜀𝛬∆𝑡

2
𝐵∗

−
𝜀∆𝑡

2𝐷𝑎
] 

𝐻1 = [𝐼 +
∆𝑡

2𝜀
𝑢𝑖,𝑗𝐶∗ −

𝜀𝛬∆𝑡

2
𝐴∗]

−1

[
𝜀∆𝑡

4
𝐺𝑟𝐷∗] 

 

Combining the Eqns. (7) and (8) we obtain, 

 

𝜉𝑖,𝑗
𝑡+1 = 𝐺1𝐸1𝜉𝑖,𝑗

𝑡 + (𝐺1𝐹1 + 𝐻1)𝑇𝑖,𝑗
𝑡 (9) 

 

The energy Eq. (2) at time step 𝑡 +
1

2
 and t + 1 can be 

discretized as: 

 
1

*2
, , ,

1 1

* * *2 2
, , , , ,

2

2 2 2

t
t t

i j i j i j

t t
t

i j i j i j i j i j

t
T T A T

SPr

t t t
B T u C T v D T

SPr S S

+

+ +


− =

  
+ − −

 
(10) 

 
1

1 * 12
, , ,

1 1

* * 1 *2 2
, , , , ,

2

2 2 2

t
t t

i j i j i j

t t
t

i j i j i j i j i j

t
T T A T

SPr

t t t
B T u C T v D T

SPr S S

+
+ +

+ +
+


− =

  
+ − −

 
(11) 

 

On rearranging, the Eqns. (10) and (11) can be expressed as: 

 
1

* * 2
, ,

* *

, ,

2 2

2 2

t

i j i j

t

i j i j

t t
I v D B T

S SPr

t t
I u C A T

S SPr

+  
+ − 

 

  
= − + 
 

 
(12) 

 

* * 1

, ,

1

* * 2
, ,

2 2

2 2

t

i j i j

t

i j i j

t t
I u C A T

S SPr

t t
I v D B T

S SPr

+

+

  
+ − 

 

  
= − + 
 

 
(13) 

 

Combining Eqns. (12) and (13) we obtain, 

 

* * 1

, ,

* *

,

1

* *

,

* *

, ,

2 2

2 2

2 2

2 2

t

i j i j

i j

i j

t

i j i j

t t
I u C A T

S SPr

t t
I v D B

S SPr

t t
I v D B

S SPr

t t
I u C A T

S SPr

+

−

  
+ − 

 

  
= − + 
 

  
+ − 

 

  
− + 

 

 

(14) 
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From Eqns. (12), (13) and (14) we have: 
 

1

2
, 2 ,

t
t

i j i jT E T
+

=  (15) 

 
1

1 2
, 2 ,

t
t

i j i jT G T
+

+ =  (16) 

 
1

, 2 2 ,

t t

i j i jT G E T+ =  (17) 

 

where, 

 
1

* * * *

2 , ,

1

* * * *

2 , ,

2 2 2 2

2 2 2 2

i j i j

i j i j

t t t t
E I v D B I u C A

S SPr S SPr

t t t t
G I u C A I v D B

S SPr S SPr

−

−

      
= + − − +   
   

      
= + − − +   
   

 

 

Writing the Eqns. (9) and (17) in matrix form we obtain: 

 

,1 1 1

1

,

1

, ,

1 1

2 20

t t

i j i j

t t

i j i jGT T

G E G F H

E

 +

+

    
=    

       

+  

 

For stability of the considered problem by matrix method, 

we must have: 

 

1 1 1 1 1

2 2

1
0

G E G F H

G E

 


+


 

 

 

which imply ‖𝐺1𝐸1‖ ≤ 1  and ‖𝐺2𝐸2‖ ≤ 1 . For any matrix 

𝑀, 𝜌(𝑀) ≤ ‖𝑀‖ all matrix norm ‖. ‖. The equality can occur 

if we take norm to be spectral norm for the matrices, and it will 

be valid provided M is diagonalizable with real eigenvalues. 

So in our case we have 

 

( ) ( ) ( )i i i ii i i iG E E E EG G G  =  = i=1, 2 

 

Thus in order to achieve‖𝐺𝑖𝐸𝑖‖ ≤ 1, we will prove 𝜌(𝐺𝑖) ≤
1  and 𝜌(𝐸𝑖) ≤ 1  for i=1 and 2. We will only prove that 

𝜌(𝐸1) ≤ 1 and the other case can be dealt similarly. Consider 

Eqns. (7) and (8) with A*= B*, and C*= D*. Note that this occurs 

for vorticity-transport equation due to uniform grid spacing in 

both directions [20]. The discretized Eq. (7) without 

temperature term can be expressed as: 

 
1 1 1

2 2 2
, , 1 , , , 12 2 2

1
4 2 4 2

t t t

i j i j i j i j i j

t t t t t
v v

y y y y y

  
  

 

+ + +

− +

         
− =− + + −


+    

        

 

, , 1 , , , 12 2 2
1

4 2 4 22

t t t

i j i j i j i j i j
D

t t t t t t
u u

x x x x xa

   
  

 
− +

          
+ + − − − +          

+
  

 

 

Using the known boundary values and for a fixed i in x-

direction and varying the values for j in y-direction, j = 2…n-

1, we get a system of equations expressed in matrix form as 

follows: 

 

2

3

1

1

2

3

1

2
,

,
1

2 ,
,

1 ,
2

,

. . . . . .

n

n

t

ti j
i j

tt

i j
i j

j

t

i jt

i j

a b a b

c a b c a b

Rh

c a b c a b

c a c a

 






−

−

+

+

+

 
       

         
      
   = +   
              

         
 

 

where, 
 

2

, 2

, 2

1 ,

,
4 2

4 2

i j

i j

t
a

y

t t
b v

y y

t t
c v

y y











 
= + 

 

  
= − 

  

  
= − − 

  

 
(18) 

 

2

, 2

, 2

' 1 ,
2

' ,
4 2

'
4 2

i j

i j

t t
a

x Da

t t
b u

x x

t t
c u

x x

 









  
= − −  

  
= − +   

  
= +   

 

(19) 

 

and Rhj is the vector of known boundary values and zeros. 

Rewriting the above system: 
 

1 1

2 2
1 1 1

t t
tQ RP 

+ +

= +
 

 

where, the matrices P1, Q1 are of order n-2 as shown above, 

𝜉𝑡+
1

2 and 𝜉𝑡 denotes the column vector with components 

𝜉𝑖,𝑗2

𝑡+
1

2, 𝜉𝑖,𝑗3

𝑡+
1

2 … 𝜉𝑖,𝑗𝑛−1

𝑡+
1

2  and 𝜉𝑖,𝑗2

𝑡 , 𝜉𝑖,𝑗3

𝑡 … 𝜉𝑖,𝑗𝑛−1

𝑡
 

respectively, 𝑅1
𝑡+

1

2 is a column vector of boundary values and 

zeros of 𝜉𝑡+
1

2. Since P1 is a tri-diagonal matrix, the eigenvalues 

of matrix P1 is given as [21]: 
 

2 cos ,
1

s

s
bc

n
a


 =

 
+  

− 

𝑠 = 1,2, … , 𝑛 − 2. 

 

Using the values of a, b, c from Eq. (18), the eigenvalues of 

matrix P1 are given by 
 

2

,

2 2 2
1 1 cos , 1,2,..., 2.

12

i j

ps

v yt t s
s n

y y n

  




       = + + − = −        −    
 

 

 

Similarly, the eigenvalues of matrix Q1 are given by 
 

2 2

2

,

2
1 1 cos , 1,2,..., 2.

2 12

i j

qs

u xt t t s
s n

x a xD n

   


 

        = − − + − = −       −    
 

 

 

Hence, for stability we must have: 
 

1 1

1 1 1 1
2

( ) 1, 1,2,..., 2.
qs

s
ps

P PQ max s nQ





− −= =  = −
 

 
2

,

2 2

1

1 1
2 2

,

2 2

2

2

1 1 cos
1

1

2
1 1 co

2

s
1

2

i j

s

i j

u xt t t s

x x n

max

v yt t

Da

P

s

y y n

Q

   

  





−

        − − + −    
   −    
 = 

       + + −    
    −  



 
 

 

(20) 

 

We have chosen, 
 

, ,

2 2 22
, , ' , and

2 2 2

i j i j

D

u x v yt t t

a
x y r r M M

x y

 

 



 

   
 =  = = = = =
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Then the Eq. (20) can be expressed in the form: 

 

2

1

1 1
2

2

1 ' 1 cos
1

1, 1,2,..., 2

1 1 cos
1

s
P

s
r r r M

n
max s n

s
r r M

n

Q




−

 
− − + −  

− =  = −
 

+ + −  
− 

 
(21) 

 

Since 0 ≤ 𝑢𝑖,𝑗 , 𝑣𝑖,𝑗 ≤ 1, ∆𝑥2 ≈ 10−6, 𝜀 = 0.2,  we have 

|𝑀| ≤ 1, |𝑀′| ≤ 1  or |
𝑢𝑖,𝑗∆𝑥

2𝜀2Λ
| ≤ 1, |

𝑣𝑖,𝑗∆𝑦

2𝜀2Λ
| ≤ 1 . So we get 

|𝑢𝑖,𝑗∆𝑥| ≤ 2𝜀2Λ and |𝑣𝑖,𝑗∆𝑦| ≤ 2𝜀2Λ. Now assuming: 

 

𝑓 =
1 − 𝑟 − 𝑟′ + 𝑟√1 − 𝑀2cos (

𝑠𝜋
𝑛 − 1

)

1 + 𝑟 + 𝑟√1 − 𝑀′2cos (
𝑠𝜋

𝑛 − 1
)

,     we see that 

     
𝑑𝑓

𝑑𝑠
= 0    gives   𝑠 = 𝑛 − 1, 

 

For this value of s, ‖𝑃1
−1𝑄1‖

2
 has maximum value, 

therefore Eq. (21) reduces to: 

 
2

2

1 ' 1
1

1 1

r r r M

r r M

− − − −


+ − −

 

 

Left side inequality implies, 

 
2 21 1 1 ' 1r r M r r r M− − + −  − − − −  

 

On simplifying 

 

𝑟 <
2

[√1−𝑀2+√1−𝑀′2]
  

 

Letting 𝑀, 𝑀′ → 0, r < 1. Also, 

 

0 ≤  
𝜀Λ∆𝑡

∆𝑥2  = r <1, i.e. ∆𝑡 <
∆𝑥2

𝜀Λ
 

 
Now consider the case 𝜌(𝐸2) ≤ 1  and the case 𝜌(𝐺2) ≤

1 follows on similar lines. Now, E2 is equivalent to matrix 

form as described below: 

 

3

1

1

2
2

3

1

2
,

,
1

2 ,
,

1 ,
2

,

'. . . . . .

n

n

t

ti j
i j

tt

i j
i j

j

t

i jt

i j

d e d eT
T

f d e f d e
TT Rh

f d e f d e
T

f d f d
T

−

−

+

+

+

 
       

         
      
   = +   
              

         
 

 

 

where, 

 

, ,2 2 2

, ,2 2 2

1 , ,
4 2 4 2

1 , ,
4 2 4 2

i j i j

i j i j

t t t t t
d e v f v

SPr y S y SPr y S y SPr y

t t t t t
d e u f u

SPr x S x SPr x S x SPr x

         
= + = − = − −     

         

         
  = − = − + = +              

 

 

and 𝑅ℎ′𝑗  is the vector of known boundary values and zeros. 

Rewriting, 

 
1 1

2 2
2 2 2 ,

t t
tP TQ RT

+ +

= +
 

 

where, the matrices P2, Q2 are of order n-2 as shown above, 

𝑇𝑡+
1

2 and Tt denotes the column vector with components 

𝑇𝑖,𝑗2

𝑡+
1

2, 𝑇𝑖,𝑗3

𝑡+
1

2 … 𝑇𝑖,𝑗𝑛−1

𝑡+
1

2  and 𝑇𝑖,𝑗2

𝑡 , 𝑇𝑖,𝑗3

𝑡 … 𝑇𝑖,𝑗𝑛−1

𝑡 

respectively, 𝑅2
𝑡+

1

2 is a column vector of boundary values and 

zeros of 𝑇𝑡+
1

2. Now, proceeding as for the above case, we get: 

 

∆𝑡 < 𝑆 𝑃𝑟 ∆𝑥2. 

 

Thus, we have proved that: 

 

|𝑢𝑖,𝑗∆𝑥| ≤ 2𝜀2Λ, |𝑣𝑖,𝑗∆𝑦| ≤ 2𝜀2Λ, ∆𝑡 <
∆𝑥2

𝜀Λ
, 

|𝑢𝑖,𝑗∆𝑥𝑃𝑟| ≤ 2, |𝑣𝑖,𝑗∆𝑦𝑃𝑟| ≤ 2, ∆𝑡 <  𝑆𝑃𝑟 ∆𝑥2. 

 

Thus the applied numerical scheme for the considered 

problem is unconditionally stable. The considered scheme is 

also consistent as local truncation error tends to zero as the step 

lengths in all direction tends to zeros. Hence the considered 

scheme is convergent by Lax's equivalence theorem [21]. 

 

 

5. NUMERICAL COMPUTATIONS 
 

The numerical solution of the unknown flow variables 

𝜓, 𝜉, 𝑇 for the considered problem has been calculated with the 

help of MATLAB. We have chosen the relevant parameters in 

the governing equations like Prandtl number (Pr) and Darcy 

number (Da), porosity (ε), Grashof number (Gr) compatible 

with the considered problem. 
 

5.1 Algorithms for stream function-vorticity formulation 

 

(i) Set initial conditions at time 𝑡 =  0 for 𝜓, 𝜉, 𝑇. 

(ii) Calculate 𝜉𝑖,𝑗 at time level 𝑡 + 𝛥𝑡 for each interior grid 

point from (13) and (17). 

(iii) Obtain 𝜓𝑖,𝑗  at all points by solving Eq. (3) using new ξ 

values at interior points. 

(iv) Update velocities by calculating 𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
. 

(v) Calculate 𝑇𝑖,𝑗  at time level 𝑡 +  𝛥𝑡 for each interior 

grid point from (14) and (18) using 𝑢 and 𝑣 values at 

interior points. 

(vi) Update 𝜉𝑖,𝑗  at the boundaries using 𝜓 and 𝜉 values at 

internal points. 

(vii)  Return to Step (ii) if the solution is not converged. 

 

 

6. RESULTS AND DISCUSSION 

 

This section discusses the numerical results of streamline 

contours, isotherm contours, and the average Nusselt number 

at the left and right walls of the square enclosure. The results 

are analyzed for different values of Darcy number (Da = 0.01, 

0.001), viscosity ratio (Λ = 1, 3), Grashof number (Gr = 

50,000), porosity (ε = 0.2), and Prandtl number (Pr = 7) for 

two different cases as mentioned above. The numerical 

computations are carried out in a transient form at different 

time levels t = 0.01, 0.1, 0.5, 1, 10 and many more We have 

observed that the numerical results attain their steady-state 

solutions for Darcy number Da = 0.001 and the viscosity ratios 

(Λ = 1, 3) at time level t = 1.5. In contrast, it has oscillating 

behavior for Darcy number Da = 0.01 and both the viscosity 

ratios (Λ = 1, 3) after a specific time period. 
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6.1 Case: 1 

 

Figures 2 to 5 present the streamline contours for a parallel 

sided lid-driven cavity problem with different values of Darcy 

number (Da = 0.01, 0.001) and viscosity ratios (Λ = 1, 3) at 

various time levels. The streamline contours have different 

behavior for distinct viscosity ratios at Da = 0.01. Figure 2 

depicts the streamline contours for Darcy number Da = 0.01 

and viscosity ratio (Λ = 1) at distinct time levels. The 

streamline contours attain an elliptic shape near the horizontal 

walls of the cavity at time level t = 0.01. The two small circular 

type contours are generated near the left and right wall of the 

cavity, inside a single contour of absolute value 0.1 at t = 0.1. 

The four contours are formed about the horizontal and vertical 

line through the mid of the cavity at t = 0.5. As time increases 

from t = 0.5 to 1, the two small contours on the diagonal corner 

along with a large circular contour with centre at (0.5, 0.5) are 

developed. This large circular contour moves in an anti-

clockwise direction. With an increment of time t = 1 to 2.6, the 

weaker top-diagonal contour starts expanding (with a 

clockwise rotation) and shifting the large anti-clockwise 

rotating contour towards the right vertical wall. And finally, 

the clockwise rotating contour occupies the whole cavity with 

two weaker contours in the anti-diagonal corner of the cavity 

at time level t = 2.7. 

The weaker contour in the left-bottom corner of the cavity 

starts expanding with an anti-clockwise rotation and vanishing 

the larger clockwise rotating shape with an increment of time 

t = 2.7 to 5.2. The streamline contours attain the same position 

as it was at the time level of t = 1. This occupying and 

vanishing the clockwise or anti-clockwise rotating shapes 

continue as time increases due to the oscillating behavior in 

the average Nusselt number at Da = 0.01 (see Figure 10). 

Figure 3 illustrates the streamlined contours for Da = 0.01 

and viscosity ratio (Λ = 3) at different time levels. The 

streamline contours of viscosity ratio (Λ = 3) are similar to Λ 

= 1 at time t = 0.01, but the intensity of the streamline contours 

are higher than that of Λ = 1. At t = 0.1, the innermost 

streamline contours regarding the mid-horizontal line through 

the geometric centre of the cavity look like a human foot as it 

has a depression. The streamline contours above the geometric 

centre of the cavity have a clockwise rotation. In contrast, it 

has an anti-clockwise rotation in the bottom half of the cavity. 

It attains a nano-car structure as time increases 0.5 to 1. This 

behavior retains till time level t = 7.8, and then it starts 

changing its behavior as time increases. As time increases t = 

10 to 11.2, the clockwise rotating elliptic streamline contours 

dominate the anti-clockwise rotating contours present in the 

lower half of the cavity. The streamline contours in the lower 

half of the domain start expanding and shifts the clockwise 

streamlined contours in the top left corner of the cavity as time 

increases from 11.33 to 11.37. With an increment in time t = 

11.37 to 11.48, the clockwise rotating streamlined contours 

start dominating the anti-clockwise one in the lower half of the 

cavity. This process continues as time increases due to the 

periodicity of the average Nusselt number for Da = 0.01 and Λ 

= 3 (see Figure 10). 

 

 
t = 0.01 

 
t = 0.1 

 
t = 0.5 

 
t = 1 

 
t = 2.5 

 
t = 2.6 t = 2.7 

 
t = 3.5 

 
t = 4.5 t = 4.7 t= 4.9 

 
t = 5.2 

Figure 2. Streamline contours for two-sided lid-driven square porous cavity with Da = 0.01 and Λ = 1 
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t = 0.01 t = 0.1 t = 0.5 
 

t = 1 

t = 10 
 

t = 11.2 
 

t = 11.33 
 

t = 11.37 

t = 11.48 t = 11.50 
 

t = 11.70 
 

t = 11.8 

 

Figure 3. Streamline contours for two-sided lid-driven square porous cavity with Da = 0.01 and Λ = 3 

 

Figures 4 and 5 show the streamline contours for Da = 0.001 

with viscosity ratios Λ = 1 and Λ = 3 respectively. The 

streamline contours for Λ = 1 and Λ = 3 are having a similar 

behavior at a particular time level t = 0.01, 0.1, 0.5, 1, 10. The 

streamlined contours about the horizontal centerline of the 

cavity are elliptic. They have a bend towards the mid of the 

right vertical wall of the domain for both the viscosity ratio Λ 

= 1, 3. The difference is in the magnitude of the stream 

function ψ. The absolute value of stream function ψ decreased 

with an increase of viscosity ratio Λ = 1 to 3 and a decrease of 

Darcy number from Da = 0.01 to 0.001. 

The isotherm contours for different values of Darcy number 

(Da = 0.01,0.001), viscosity ratio (Λ = 1, 3) at different time 

levels are presented in Figures 6 to 9. The isotherm contours 

shift towards the cavity's midpoint with an increment of time t 

= 0.01 to 0.1. These contours settle near the domain's boundary 

at time t = 1. As time increases from 1 to 2.6, the isotherm 

contours occupy almost the whole cavity except the middle 

part of the lower half of the domain. The left-half region of the 

cavity contains cold profiles, while the other half includes the 

hot one. With an increment of time from 2.6 to 4.5, the cold 

isotherm contours start occupying the whole cavity by pushing 

the hot isotherms towards the right wall. The contours occupy 

a ψ type structure and leave the top middle region of the 

domain at t = 4.7. Further, as time increases 4.7 to 5.2, 

isotherm contours attain the same structure as a case of time t 

= 1. Now, this process continues again and again due to the 

periodicity of the average Nusselt number. 

Figure 7 depicts the isotherm contours for Da = 0.01 and Λ 

= 3 at different time levels. The isotherm contours are 

symmetric about the horizontal line in the mid of the cavity at 

t = 0.5. The temperature profiles shifts from the hot (right) wall 

to the cold (left) wall in an electric bulb-like structure. The 

cold isotherm from the left vertical wall moves along the top 

and bottom's mid-wall. While the hot isotherm contours move 

towards the left wall from the middle of the right wall at t = 

0.5 and 1. This position shifts upward along the right boundary 

as time increases from 1 to 11.20. Further, it tends anti-

diagonally as time rises from 11.20 to 11.37. These contours 

start changing their position to the original one (at t = 1), and 

then it oscillates between two shapes (that occurred at a time 

level 1 and 11.37) as time increases. 

Figures 8 and 9 show the isotherm contours for Da = 0.001 

with viscosity ratio Λ = 1 and 3 at distinct time levels. The 

isotherm contours behave like that of Da=0.01, Λ = 3 till time 

t = 1 and then attain its steady state. Figures 8 and 9 depict that 

the cold isotherm contours occupy the region near the left, top, 

and bottom wall of the cavity from t = 0.5 onwards for both 

viscosity ratios 1 and 3, Da = 0.001. In contrast, the hot 

isotherm contours occupy the area near the right boundary and 

the middle part of the domain as a Conical Flask placed 

vertically at time level 0.5 and then attain a test-tube structure. 

Figures 10 and 11 present the average Nusselt number along 

the left and right wall of the cavity for different values of 
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Darcy number (Da = 0.01,0.001) and viscosity ratio (Λ = 1, 3). 

Figure 10 illustrates the average Nusselt number at both left 

and right wall oscillate periodically after t = 2 with a period of 

2.06 for the viscosity ratio Λ = 1 and Da = 0.01. While for Λ = 

3, the average Nusselt number at both side walls first attains a 

steady-state (at approximately t = 1) and then starts oscillating 

with a minor frequency till 11.206. This frequency enlarges 

after 11.206 and attains a steady oscillating behavior with a 

period of 0.29. Figure 11 shows that the average Nusselt 

number at both sides has the same behavior for both the 

viscosity ratio Λ = 1 and 3, at Da = 0.001. The average Nusselt 

number at the left (or right) wall first decrease, then increases, 

again decreases, and settles steady-state solution at t = 1.25. 

The numerical simulations were carried out till time level 40 

and found it attains steady-state solutions after t = 1.25. 

 

 
t = 0.01 

 
t = 0.1 

 
t = 0.5 

 
t = 1,10,40 

 

Figure 4. Streamline contours for two-sided lid-driven square porous cavity with Da = 0.001 and Λ = 1 

 

t = 0.01 
 

t = 0.1 
 

t = 0.5 t = 1,10,40 

 

Figure 5. Streamline contours for two-sided lid-driven square porous cavity with Da = 0.001 and Λ = 3 

 

 
t = 0.01 t = 0.1 t = 0.5 t = 1 

t = 2.5 t = 2.6 t = 2.7 t = 3.5 
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t = 4.5 t = 4.7 t = 4.9 t = 5.2 
 

Figure 6. Isotherms contours for two-sided lid-driven square porous cavity with Da = 0.01 and Λ = 1 
 

t = 0.01 t = 0.1 t = 0.5 t = 1 

t = 10 t = 11.2 t = 11.33 t = 11.37 

t = 11.48 t = 11.50 t = 11.70 t = 11.80 
 

Figure 7. Isotherms contours for two-sided lid-driven square porous cavity with Da = 0.01 and Λ = 3 
 

t = 0.01 t = 0.1 t = 0.5 t = 1,10,40 
 

Figure 8. Isotherms contours for two-sided lid-driven square porous cavity with Da = 0.001, Λ = 1 
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t = 0.01 t = 0.1 t = 0.5 t = 1,10,40 
 

Figure 9. Isotherms contours for two-sided lid-driven square porous cavity with Da = 0.001, Λ = 3 
 

 
(a) Left Wall 

 
(b) Right Wall 

 
(a) Left Wall 

 
(b) Right Wall 

 

Figure 10. Average Nusselt-Number for a two-sided lid-

driven square porous cavity with Da = 0.01, Λ = 1 and 3, at 

the left and right wall 

 

Figure 11. Average Nusselt-Number for a two-sided lid-

driven square porous cavity with Da = 0.001, Λ = 1 and 3, at 

left and right wall 
 

6.2 Case: 2 
 

In this subsection, we will discuss the numerical results for 

Case 2, in which all the four walls of the cavity are kept 

moving. The top, bottom, and left, the right walls move with a 

uniform velocity from left to right, right to the left and top to 

down, down to the top, respectively. The top and bottom walls 

are maintained at constant temperature T = 1 and -1, 

respectively. The heat flux is provided at the left and right 

walls of the cavity. 

The streamline contours for Darcy number Da = 0.01, 0.001 

and viscosity ratio Λ = 1, 3, are depicted in Figures 12 and 13 

at different time levels. The two streamline contours are 

formed one above and the other below the geometric centre of 

the cavity at t = 0.01. These contours reduce to a single circular 

contour with some inclination towards the diagonal of the 

cavity at t = 0.1. The two small contours inside large contours 

are generated as time increases from t = 0.1 to 0.5. These 

contours reduce their sizes with an increment of time and 

attain a steady-state at t = 1 onwards. The inclination of the 

streamline contours towards the diagonal is greater for Λ = 1 

in comparison to Λ = 3. 

Figures 14 and 15 show two streamline contours are 

generated about the geometric center of the square cavity at t 

= 0.01. These two contours take a peanut-like shape with 

bends diagonally at t = 0.1. The streamline contours are 

arranged almost perpendicular to the horizontal axis as time 

increased from t = 0.1 to 0.5 and attained steady-state. The 

stream function ψ decreases with increasing viscosity ratio Λ 

= 1 to 3 for Darcy number Da = 0.01 and 0.001. The stream 

function ψ decreases with decreasing Darcy number from Da 

= 0.01 to 0.001 at a particular viscosity ratio. 

Figures 16 to 19 present the isotherm contours for different 

values of Darcy number (Da = 0.01,0.001) and viscosity ratios 

Λ = 1 and Λ = 3 at different time level t  = 0.01, 0.1, 0.5, 1 and 

10. Figures 16 and 17 show that the isotherm contours are 

straight lines near the top and bottom walls of the cavity at t = 

0.01. The isotherm contours of the top wall shift towards the 

cavity's left wall at t  = 0.1 while contours of the bottom wall 

shift towards the right wall. The maximal temperature between 

the top and bottom walls increases from 0 to 0.2 as time 

changes from 0.01 to 0.1. In the middle of the cavity, isotherm 

contours bend sharply for viscosity ratio Λ = 1 in comparison 

to Λ = 3. As time changes from 0.1 to 0.5, isotherm contours 

from the bottom wall increases then decreases and again 

increases to approach the top wall for both viscosity ratio (Λ = 

1, 3). The effect of viscosity ratio is negligible after t = 0.5 

onwards. The isotherm contours attain their steady-state 

solution after t = 0.5.  

Figures 16 to 19 illustrate that the isotherm contours behave 

almost the same for Darcy numbers Da = 0.01 and 0.001. The 

variation in contours becomes negligible for Λ = 1, 3 at Da = 

0.001. At t = 0.5, isotherm contours increase smoothly from 

the bottom wall to approach the top wall. 

Figures 20 and 21 present the average Nusselt number along 

the left and right wall of the cavity for different values of 

Darcy number (Da = 0.01, 0.001) and viscosity ratio Λ = 1 ,3. 

The average Nusselt number at the left (or right) wall has the 

same behavior for both viscosity ratio Λ = 1 and 3, at a 

particular Darcy number. Figure 20 shows that the average 

Nusselt number at the left (or right) wall first increases, then 

decreases, and finally attains steady solution for both viscosity 

ratios Λ = 1 and 3. 

Figure 21a shows that the average Nusselt number at the left 

wall first decreases then increases and again decreases to attain 

the steady-state solution for both viscosity ratios Λ = 1 and 3, 

at Da = 0.001. The average Nusselt number at the right wall 

was first raised then reduced to achieve a steady-state solution 

(see Figure 21b).
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(a) t = 0.01 (b) t = 0.1 (c) t = 0.5 (d) t = 1,10 
 

Figure 12. Streamline contours for four-sided lid driven square porous cavity with Da = 0.01, Λ = 1 
 

(a) t = 0.01 (b) t = 0.1 (c) t = 0.5 (d) t = 1,10 
 

Figure 13. Streamline contours for four-sided lid driven square porous cavity with Da = 0.01, Λ = 3 
 

(a) t = 0.01 (b) t = 0.1 (c) t = 0.5 (d) t = 1, 10 
 

Figure 14. Streamline contours for four-sided lid driven square porous cavity with Da = 0.001, Λ = 1 
 

(a) t = 0.01 (b) t = 0.1 (c) t = 0.5 (d) t = 1, 10 
 

Figure 15. Streamline contours for four-sided lid driven square porous cavity with Da = 0.001, Λ = 3 
 

(a) t = 0.01 (b) t = 0.1 
(c) t = 0.5 (d) t = 1, 10 

 

Figure 16. Isotherms contours for four-sided lid driven square porous cavity with Da = 0.01, Λ = 1 
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(a) t = 0.01 (b) t = 0.1 (c) t = 0.5 (d) t = 1,10 

 

Figure 17. Isotherms contours for four-sided lid driven square porous cavity with Da = 0.01, Λ = 3 

 

 
(a) t = 0.01 

 
(b) t = 0.1 

 
                (c)  t = 0.5 

     
        (d) t = 1,10 

 

Figure 18. Isotherms contours for four-sided lid driven square porous cavity with Da = 0.001, Λ = 1 

 

(a) t=0.01 (b) t=0.1   
 

Figure 19. Isotherms contours for four-sided lid driven square porous cavity with Da = 0.001, Λ = 3 

 

(a) Left Wall 
 

(b) Right Wall 

 
(a) Left Wall 

 
(b) Right Wall 

 

Figure 20. Average Nusselt-Number for a four-sided lid-driven 

square porous cavity with Da = 0.01, Λ = 1 and 3, at left and 

right wall 

 

Figure 21. Average Nusselt-Number for a four-sided lid-driven 

square porous cavity with Da = 0.001, Λ = 1 and 3, at left and 

right wall 

 

 

The average Nusselt number at the left (right) wall decrease 

with an increase of viscosity ratio from Λ=1 to 3 for both the 

Darcy number (Da = 0.01, 0.001). It also decreases with a 

decrease of Darcy number from Da = 0.01 to 0.001 at a 

particular viscosity ratio (Λ = 1 and 3). 

 

7. CODE VALIDATION 

 

To validate our present computer code, we have compared 

the streamline contours and isotherm contours with the results 

of Venkatachalappa et al. [1], in which all walls are kept 
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stationary. It has been found that our results and those of [1] 

are good in agreement (see Figures 22 and 23). 

 

 
(a) Da = 0.01, Λ = 1            (b) Da = 0.001, Λ = 1 

 
(c) Da = 0.01, Λ = 1             (d) Da = 0.001, Λ = 1 

 

Figure 22. Comparison between the present result (top) and 

Venkatachalappa et al. [1] of streamline contours for Da = 

0.01, 0.001 with viscosity ratio Λ = 1 

 

 
(a) Da = 0.01, Λ = 1           (b) Da = 0.001, Λ = 1 

 
(c) Da = 0.01, Λ = 1            (d) Da = 0.001, Λ = 1 

 

Figure 23. Comparison between the present result (top) 

and Venkatachalappa et al. [1] of isotherms contours for Da 

= 0.01, 0.001 with viscosity ratio Λ = 1 

 

8. CONCLUSIONS 

 

This paper investigates the mixed convection inside a two-

sided and four-sided lid-driven square cavity filled with 

porous media. We have employed the finite difference method 

to calculate the numerical solutions. We have compared our 

present results with the particular case in which all four walls 

of the cavity are stationary with previously published work and 

found to be in good agreement. We can conclude the following 

points from the current study. 

 

Case 1: Two-sided lid-driven square cavity 

 

I. The absolute value of ψ decreases with an increase of 

viscosity ratio Λ = 1 to 3 and a decrease of Darcy 

number Da = 0.01 to 0.001. 

II. The viscosity ratio has a significant role in the 

numerical computation of isotherm contours at Da = 

0.01. The effect of viscosity ratio Λ = 1, 3 is 

negligible with decreasing of Darcy number Da = 

0.01 to 0.001. 

III. The average Nusselt number at the left and right wall 

has oscillating behavior for Da = 0.01 with viscosity 

ratio Λ = 1 and 3. The average Nusselt number at the 

left and right wall for Λ = 3 attains an approximate 

steady-state solution at t = 1.25. 

 

Case 2: Four-sided lid-driven square cavity 

 

I. The stream function ψ decreases with an increasing 

of viscosity ratio Λ = 1 to 3 and a decreases of Darcy 

number from Da = 0.01 to 0.001. 

II. The absolute value of average Nusselt number at left 

(or right) wall decrease with an increase of viscosity 

ratio from Λ = 1 to 3 and a decreasing of Darcy 

number from Da = 0.01 to 0.001. 
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NOMENCLATURE 

 

Da Darcy number 

𝑔 Acceleration due to gravity  

Gr Grashof number 

K thermal conductivity, W.m-1. K-1 

L Length of the cavity 

𝑛 Number of grid points 

𝑁𝑢̅̅ ̅̅  Average Nusselt number  

P Dimensionless pressure 

𝑃𝑟 Prandtl number 

Re Reynolds number 

S Ratio of specific heat 

T Dimensionless temperature 

𝜃 Dimensional Temperature 

𝜃0 Reference Temperature 

𝑡 Dimensionless Time 

𝑡’ Dimensional Time 

𝑢, 𝑣 Dimensionless Component of velocity 

𝑢’, 𝑣’ Dimensional Component of velocity 

𝑥, 𝑦 Dimensionless Cartesian Co-ordinates 

𝑥′, 𝑦′ Dimensional Cartesian Co-ordinates 

∆𝑥, ∆𝑦 Grid spacing along x and y axis. 

∆t Grid spacing along 𝑡-direction 

 

Greek symbols 

 

 thermal diffusivity, m2. s-1 

 thermal expansion coefficient, K-1 

𝛬 viscosity ratio 

𝜃 dimensionless temperature 

ν kinematic viscosity 

Ω Dimensional vorticity 

ξ Dimensionless vorticity 

λ Eigenvalues of matrix  

Ψ Dimensionless stream function 

𝛹′ Dimensional stream function 

ε Porosity 

μ Dynamic viscosity 
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Subscripts 

L Left wall 

R Right wall 

i,j Grid points 
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