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This work proposes a sensorless control strategy for the induction motor (IM) using a 

Backstepping control and a nonlinear observer based on the circle-criterion approach. The 

Backstepping is a powerful control strategy that deals with nonlinear higher-order systems 

and includes non-measurable parameters related to the (IM). The nonlinear observer 

approach is intended to determine these important parameters. The circle-criterion 

approach is employed to determine the observer gain matrices as a solution of LMI (linear 

matrix inequalities) that guarantee the stability conditions of the designed observer. The 

main objective of this method is to solve the problem of the nonlinearities of the system 

which ensure the global asymptotic convergence of the observed dynamics and to improve 

the performance of the induction motors. The efficiency and correctness of the proposed 

scheme are proven by several numerical simulations. 
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1. INTRODUCTION

The induction motors are the most useful motors in 

electrical modern industrial society, because of their good 

performance: simplicity, robustness, low price and easy 

maintenance necessities [1, 2]. However, (IM) are known as 

multivariable nonlinear time-varying systems. Thus, entail 

other problems for motor control, fault diagnostic and 

conditions monitoring [1]. In the past years, and with 

technological advancements in power electronics and digital 

electronics field, several nonlinear control theories of the 

induction motor have been proposed and became industrial 

standard for medium and high performance applications. They 

were formulated and developed to replace classical control 

strategies such as scalar control and vector control which can 

ensure limited performance. In several industrial applications, 

it is indispensable to use more advanced controls which are 

consistent with the envisaged performance but more complex. 

Among the strategies applied to induction motor control that 

ensure high performance, we find, the input-output feedback 

linearization technique, the passivity-based control, the 

flatness strategy, the sliding mode technique and hybrid 

control [3-8]. Since the last decades, Backstepping control has 

become the best famous control strategy for a large range of 

nonlinear systems classes [9-11]. This strategy provides the 

capacity to ensure the global stabilization of the system and 

deals a better performance in both steady state and transient 

operations, even with system uncertainties and load 

disturbance [9]. Moreover, this technique essentially uses the 

Lyapunov function for the conception of the control law. The 

implementation of advanced control approaches requires 

accurate and reliable estimation of non-measurable parameters 

[10, 11]. 

We note that the estimation of non-measurable state 

variables is based on the use of a dynamic system called state 

observer which uses the measurable inputs and outputs of the 

system. 

We also note that the importance is not limited only in the 

sensorless control, but also we find it in the approach of 

maintenance, diagnosis and monitoring of systems [1, 12]. 

In recent decades, several works have been published on 

nonlinear observers. The scan of literature relating to the 

control of system displays that the design of nonlinear 

observers can be organized into three essential classes. The 

first tries to eliminate nonlinearities from the system using the 

linearization technique or a non-linear state transformation in 

order to linearize the original system [5, 12]. However, its 

disadvantage lies in the imposed restrictive conditions which 

can barely be fulfilled by a physical system. In this context of 

linearization approach, one could mention the extended 

Luenberger observer and extended Kalman filter [13]. The 

second approach is the high gain observer which tries to use a 

single high gain output correction term for the purpose of 

overcoming system nonlinearities [14]. High-gain observers 

are a robust state estimator and disturbances attenuator. 

However, their disadvantages are: the large oscillation in the 

transient response, the block triangular structures, and 

sensitivity regarding measurement disturbances. 

The third class of approaches concerns nonlinear observers 

which attempts to directly exploit the nonlinearity of the 

system. The main non-linearity properties which are exploited 

are Lipschitz and the sector properties [15-17]. This last class 

of approaches to design nonlinear observer for nonlinear 

systems has been recently developed. Now, it has reached the 

maturity to be exploited in the machinery application to benefit 

from its advantages. 

Several works relating to sensorless control using the 

Backstepping strategy have been cited in the literature. 

Trabelsi et al. [10] suggested a sensorless control system based 

on a Backstepping technique and an adaptive sliding mode 

observer to estimate the non-measurable parameters of the 

induction motor. This combination has been used for systems 
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with unmodeled or parasitic dynamics and parametric 

uncertainties. The results obtained have shown that the 

proposed scheme is robust in term of parametric variations and 

gives adequate results in terms of rejection of load 

disturbances and of flux and velocity trajectory tracking. 

Moutchou et al. [18] suggested a sensorless Backstepping 

control combined with MRAS approach to estimate the speed 

and, governed by an adaptation law relating to the flux 

estimated errors. The obtained results illustrate that this 

scheme has a good performance and permits a perfect 

decoupling between the torque and flux of the (IM). On the 

other hand, a level of robustness is guaranteed with respect to 

the parametric variations. The compensation of the rotor 

resistance variation and the load torque has been studied by 

Djeghali et al. [19]. They proposed a diagram composed of the 

Backstepping strategy and a second order sliding mode 

observer to estimate the flux and velocity from stator current 

measurements. The obtained results illustrate the effectiveness 

and the robustness of the suggested control scheme. To resolve 

the observation problem by assuming that the load torque and 

stator resistance vary slowly, an approach based on 

Backstepping control and an adaptive interconnected observer 

for a linear stepping motor (LSM) drive system is proposed by 

Ting and Chang [20]. The authors confirm the correctness and 

effectiveness of the proposed approach by several simulations 

and experimental results. Abdelhak and Bachir [21] suggested 

a sensorless speed control scheme of the (IM) based on the 

association of the Backstepping strategy and a speed observer 

based on the high gain method. This proposition is intended to 

solve the problem of nonlinearities of the system and to 

enhance, the reliability and robustness of asynchronous motors. 

The obtained results indicated that this control scheme gives 

good performance and makes it possible to bypass the 

shortcomings of conventional methods. 

To the best of our knowledge, in all of the related research 

to the combination of Backstepping control and the nonlinear 

observer based on the circle criterion of the induction motor 

has not been examined. For that, in this work we examine this 

scheme of sensorless control of induction motor. The used 

observer appearing in the third approach, directly treats the 

nonlinearities of the system with less restrictive conditions, 

unlike other methods which try to eliminate them using a non-

linear state transformation or to dominate them by a high gain 

term of correction [5, 12].  

This observer is applicable to a class of systems that can be 

decomposed in linear and nonlinear parts with a condition that 

the nonlinear part is a time-varying function that satisfies the 

sector property. The observer gain matrices are determined as 

a solution of LMI which guarantees the overall asymptotic 

convergence of the observed dynamics. 

Practically, this combination allows the sensorless control 

of the induction machine with the ability to solve the problem 

of non-linearities of the system, ensure good performance for 

the trajectory tracking, improve reliability in case of 

uncertainties of the system and load disturbance rejection. 

The rest of this work is structured as follows: the design of 

the circle-criterion based nonlinear observer is defined in 

section two. Section three investigates the considered 

asynchronous motor nonlinear model. In section four we recall 

the Backstepping control technique. The simulation results 

and comments are presented in the fifth section. Finally, the 

conclusion is drawn in section sixth. 

 

2. CIRCLE CRITERION BASED NONLINEAR 

OBSERVER CONCEPTION 

 

The basic form of this approach was initiated by Zemouche 

and Boutayeb [15]. Unlike other methods which use a 

nonlinear state transformation, or by a high gain correction 

term to remove nonlinearities from the system, this approach, 

with reference to the circle criterion, focuses on the 

exploitation of nonlinearities of the system for the synthesis of 

a nonlinear observer with the minimum restriction. 

Furthermore, this approach is used in the class of nonlinear 

systems which can be decomposed into linear and nonlinear 

parts provided that the nonlinearities fulfill the sector property 

[12].   

 

2.1 Staple sector properties 

 

A nonlinearity function h(v,t) such as h(v,t):[0+∞[×Rp→Rp 

is said to appertain to the sector :[0+∞[ if vh(v,t)≥0.  

This form of writing defines the sector property of a 

nonlinear function. 

It corresponds to the following form: 

 

(𝑠1 − 𝑠2)[ℎ(𝑠1, 𝑡) − ℎ(𝑠2, 𝑡)] ≥ 0∀𝑠1, 𝑠2 ∈ 𝑅+  (1) 

 

where: 𝑠1 − 𝑠2 = 𝑣 and [ℎ(𝑠1, 𝑡) − ℎ(𝑠2, 𝑡)] = ℎ(𝑣, 𝑡), s1 and 

s2 are real positive numbers.  

According to the relation (1), h(v,t) is non-decreasing. 

Moreover, if the function is continuously differentiable, then 

the form of the preceding relation is also equivalent to [22, 23]: 

 
𝑑

𝑑𝑣
ℎ(𝑣, 𝑡) ≥ 0∀𝑣 ∈ 𝑅  (2) 

 

If h(v,t) does not replenish the positivity condition (2), a 

new function g(v,t) is inserted in the following form. 

 

𝑔(𝑣, 𝑡) = ℎ(𝑣, 𝑡) + 𝜎𝑣, 𝜎 > ‖
𝑑

𝑑𝑧
ℎ(𝑣, 𝑡)‖ , ∀𝑣 ∈ 𝑅  (3) 

 

We deduce that:  

 
𝑑

𝑑𝑣
𝑔(𝑣, 𝑡) =

𝑑

𝑑𝑧
ℎ(𝑣, 𝑡) + 𝜎 ≥ 0∀𝑣 ∈ 𝑅  (4) 

 

The sector property can be written for the multivariable case 

as follows: 𝑣𝑇ℎ(𝑣, 𝑡) ≥ 0. Where v and h(v,t) are respectively 

vectors of appropriate dimension. 

 

2.2 Nonlinear observer conception 

 

We consider a nonlinear system modeled as following [22, 

24]. 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝜑[𝑢(𝑡), 𝑦(𝑡)] + 𝐺ℎ[𝐻. 𝑥(𝑡)]  (5) 

 

𝑦(𝑡) = 𝐶𝑥(𝑡) (6) 

 

where,  

➢ A, C and G are recognized constant matrices. 

➢ The pair (A, C) is supposed to be observable. 

➢ The term 𝜑[𝑢(𝑡), 𝑦(𝑡)]  is an arbitrary function 

depending on the input u(t) and output y(t). 

➢ ℎ[𝐻. 𝑥(𝑡)] a function verifying the property of the 

sector. 
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To implement this observer, we evoke the principal theorem 

and the conditions used in this paper while respecting the 

sector property.  

 

Theorem 1: Consider a nonlinear system of the form (5)-(6) 

with the nonlinear part gratifying the circle criterion equations 

(1)-(4) [22, 24]. If there exist a symmetric and positive definite 

matrix 𝑃 ∈ 𝑅𝑛𝑥𝑛 and a set of row vectors 𝐾 ∈ 𝑅𝑝 such that the 

following linear matrix inequalities (LMI) hold: 

 

(𝐴 − 𝐿𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐿𝐶) + 𝑄 ≤ 0  (7) 

 

𝑃𝐺 + (𝐻 − 𝐾𝑜𝐶)𝑇 = 0  (8) 

 

Thus, the design of the nonlinear observer is given by: 

 

�̇̂�(𝑡) = 𝐴�̂�(𝑡) + 𝜑[𝑢(𝑡), 𝑦(𝑡)] + 𝐿[𝑦(𝑡) − �̂�(𝑡)] 
+𝐺ℎ[𝐻�̂�(𝑡) + 𝐾𝑜(𝑦(𝑡) − �̂�(𝑡))]  

(9) 

 

�̂�(𝑡) = 𝐶�̂�(𝑡)  (10) 

 

with: �̂�(𝑡) and �̂�(𝑡) are the estimate of the state 𝑥(𝑡) and the 

output 𝑦(𝑡) vector respectively. 

 

𝑙𝑖𝑚𝑡→∞ 𝑒 (𝑡) = 𝑥(𝑡) − �̂�(𝑡) 

 

where, 

𝑄 = 𝜀𝐼𝑛: A known matrix of positive sign. 

In: An n-th order unity matrix. 

ε: A small real number of positive sign. 

The nonlinear observer design refers to the determination of 

the gain matrices L and K0 verifying the LMI conditions (7)-

(8).  

One can notice that the nonlinear observer structure is 

composed of a linear part, that is like to the linear Luenberger 

observer, and a nonlinear part that is a supplementary term 

which characterizes the time-varying nonlinearities verifying 

the sector property.  

Based on the demonstration introduced in refs. [22, 23], we 

present the following expanded proof of the theorem. 

 

Proof:  

𝑒(𝑡) = 𝑥(𝑡) − �̂�(𝑡), represent the state estimation error.  

With �̂�(𝑡)  is the estimate of the state vector x(t) of the 

nonlinear system (5)-(6).  

The dynamics of the state estimation error are then: 

 

�̇�(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡) + 𝐺. [ℎ(𝐻. 𝑥(𝑡)) −
ℎ(𝐻. �̂�(𝑡) + 𝐾𝑜(𝑦(𝑡) − �̂�(𝑡))]  

(11) 

 

Let 𝑠1 = 𝐻. 𝑥(𝑡), and 𝑠2 = 𝐻. �̂�(𝑡) + 𝐾𝑜(𝑦(𝑡) − �̂�(𝑡)). 

By setting 𝑣 = 𝑠1 − 𝑠2 = (𝐻 − 𝐾𝑜𝐶)𝑒(𝑡) the term between 

brackets in (11) can be seen as a function of the variable v and 

then: [ℎ(𝑠1) − ℎ(𝑠2)] = ℎ(𝑣, 𝑡). 

The error dynamics in (11) can be rewritten in another form 

by taking into account the previous result: 

 

�̇�(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡) + 𝐺. ℎ(𝑣, 𝑡)  (12) 

 

𝑣 = (𝐻 − 𝐾𝑜𝐶)𝑒(𝑡)  (13) 

 

We notice that the error dynamics, Eqns. (12)-(13), once 

more, can be considered as a linear system controlled by a 

time-varying nonlinearity function h(v,t) and verifying the 

sector property.  

It is clear that the problem of nonlinear observer design is 

then equivalent to the stabilization of the error dynamic 

problem based on the relations (12)-(13). 

To this end, a candidate Lyapunov function is taken into 

account. With the help of Eqns. (12) and (13), the derivative 

of the above function becomes: 

 

�̇� = 𝑒𝑇[(𝐴 − 𝐿𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐿𝐶)]𝑒 

+ℎ
𝑇(𝑣, 𝑡)𝐺𝑇𝑃𝑒 + 𝑒𝑇𝑃𝐺ℎ(𝑣, 𝑡)  

(14) 

 

By setting: 

 

(𝐴 − 𝐿𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐿𝐶) ≤ −𝑄  (15) 

 

And,  

 

𝑃𝐺 = −(𝐻 − 𝐾𝑜𝐶)𝑇  (16) 

 

With 𝑄 = 𝜀𝐼𝑛  and 𝜀 > 0, the derivative of the Lyapunov 

function can be rewritten as: 

 

�̇� ≤ −𝑒𝑇𝑄𝑒 − 2. 𝑣𝑇 . ℎ(𝑣, 𝑡)  (17) 

 

It can be seen that the conception of the non-linear observer 

based on the circle criterion makes it possible to remove the 

global Lipschitz restrictions and avoid the high gains. 

Nevertheless, it introduces conditions (LMI). 

 

 

3. INDUCTION MOTOR NONLINEAR MODEL 

 

In this work, the nonlinear model of the (IM) in the 

stationary reference frame (α-β), with five state variables, 

namely stator currents (𝑖𝑠𝛼 , 𝑖𝑠𝛽) , rotor flux (𝜙𝑟𝛽 , 𝜙𝑟𝛽)  and 

rotor angular speed ω can be given by [25]: 

 
𝑑

𝑑𝑡
𝑖𝑠𝛼 = −𝛾𝑖𝑠𝛼 +

𝐾

𝑇𝑟
𝜙𝑟𝛼 + 𝐾𝜔𝜙𝑟𝛽 +

1

𝜎𝑙𝑠
𝑢𝑠𝛼  (18) 

 
𝑑

𝑑𝑡
𝑖𝑠𝛽 = −𝛾𝑖𝑠𝛽 − 𝐾𝜔𝜙𝑟𝛼 +

𝐾

𝑇𝑟

𝜙𝑟𝛽 +
1

𝜎𝑙𝑠
𝑢𝑠𝛽 

 
(19) 

 
𝑑

𝑑𝑡
𝜙𝑟𝛼 =

𝑀

𝑇𝑟
𝑖𝑠𝛼 −

1

𝑇𝑟
𝜙𝑟𝛼 − 𝜔𝜙𝑟𝛽  (20) 

 
𝑑

𝑑𝑡
𝜙𝑟𝛽 =

𝑀

𝑇𝑟
𝑖𝑠𝛽 + 𝜔𝜙𝑟𝛼 −

1

𝑇𝑟
𝜙𝑟𝛽  (21) 

 
𝑑

𝑑𝑡
𝛺 =

𝑝𝑀

𝑗𝐿𝑟
(𝜙𝑟𝛼𝑖𝑠𝛽 − 𝜙𝑟𝛽𝑖𝑠𝛼) − 𝑘𝑓𝛺 − 𝑘𝑙𝑇𝑙   (22) 

 

where, 𝜎 = 1 −
𝑀2

𝐿𝑠𝐿𝑟
, 𝛾 =

1

𝜎
(

1

𝑇𝑠
+

1−𝜎

𝑇𝑟
) , 𝑘𝑓 =

𝑓

𝑗
, 𝑘𝑙 =

𝑝

𝑗
, and 

𝜔 = 𝑝𝛺. 

The indexes s and r refer to the stator and the rotor 

components respectively. i and u are the current and voltage 

vector, p is the number of pair poles, φ is the flux vector, R is 

the resistance, L is the inductance, M is the mutual inductance. 

Ts and Tr are the stator and the rotor time constant respectively, 

ω is the rotor angular velocity, f is the friction coefficient, j is 

the moment of inertia coefficient, Ω is the mechanical speed 

of the rotor and finally Tl is the mechanical load torque. 

For simplicity, the following notations are introduced: 
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𝑥1 = 𝑖𝑠𝛼 , 𝑥2 = 𝑖𝑠𝛽 ,𝑥3 = 𝜑𝑟𝛼 , 𝑥4 = 𝜑𝑟𝛽 , 𝑥5 = Ω 

 

It is clear that the product of the components of the rotor 

flux by the angular speed in the four first equations, and the 

product of the state variables in the dynamic equation of the 

system on the other hand, constitutes the nonlinearity of the 

mathematical model of the asynchronous motor. 

Furthermore, if the variation of the parameters of the 

machine as a function of time is taken into account, such as the 

stator resistance (rotor), a supplementary equation involving 

this variation must be added, which further complicates the 

system. In this work, we only deal with the non-linearity 

caused by the variation of the rotor angular speed.  

In this work, the proposed sensorless control based on the 

Backstepping strategy is used in combination with a nonlinear 

state observer designed via the circle criterion approach for 

induction motor. 

The equations of the system (18)-(22) depend on the flux 

parameters 𝜙𝑟𝛼  and 𝜙𝑟𝛽 . This parameter is a bounded state 

variable. 

To gratify sector conditions (1)-(4), the nonlinearities of the 

mathematical model is expressed as 𝜔𝜙𝑟𝛼. 

And we can write: 

 

𝜔 𝜙𝑟𝛼 = (𝜔𝜙𝑟𝛼 + 𝜎𝜔) − 𝜎𝜔  (23) 

 

One can prove that:  

 
𝜕

𝜕𝜔
(𝜔𝜙𝑟𝛼 + 𝜎𝜔) = 𝜙𝑟𝛼 + 𝜎 ≥ 0  (24) 

 

With ||φrα||≤1, then one can choose σ=1. 

We notice again that the system is composed of a linear part 

and a non-linear part verifying the sector property. 

The implementation of the proposed scheme requires the 

determination of non-measurable state variables such as, rotor 

flux and rotor angular speed, based on available measurements 

of stator currents and stator supply voltage. 

 

 

4. SPEED AND FLUX BACKSTEPPING 

CONTROLLER DESIGN 

 

The Backstepping strategy is founded on recursive 

functions suitable as virtual command input for first-order 

subsystems. So, this strategy is devised in several stages. Each 

step addresses a unique input-output conception problem, and 

each stage furnishes a reference for the following conception 

stage. The performance and global stability are guaranteed by 

the Lyapunov function [10, 11].  

The design of the Backstepping strategy is organized in two 

stages. 

 

Step 1 

To guarantee a right tracking error, it is needful to determine 

the desired trajectories that the system should follow as well 

as the design of the controllers. 

So, we specify a reference trajectory,𝑦𝑟𝑒𝑓 = (Ω𝑟𝑒𝑓 , 𝜑𝑟𝑒𝑓
2 ), 

where Ω𝑟𝑒𝑓  𝑎𝑛𝑑 𝜑𝑟𝑒𝑓
2  are speed and rotor flux module 

reference trajectories. We denote 𝑥5𝑑 = Ω𝑟𝑒𝑓 , 𝑥6𝑑 = 𝜑𝑟𝑒𝑓
2  

with 𝜑𝑟
2 = 𝜑𝑟𝛼

2 + 𝜑𝑟𝛽
2 . 

where, 

𝑧1 = 𝑥5𝑑 − 𝑥5  (25) 

 

𝑧2 = 𝑥6𝑑 − 𝑥6  (26) 

 

𝑧1 and 𝑒1𝜑  are the speed tracking error and the flux 

magnitude tracking error respectively. 

The dynamic error equations are: 

 

�̇�1 = �̇�5𝑑 − [
𝑝𝑀

𝑗𝐿𝑟
(𝑥3𝑥2 − 𝑥4𝑥1) −

𝑇𝑙

𝑗
−

𝑓

𝑗
𝑥5]  (27) 

 

�̇�2 = �̇�6𝑑 − [
2𝑀

𝑇𝑟
(𝑥3𝑥1 + 𝑥4𝑥2)] +

2

𝑇𝑟
𝑥6  (28) 

 

The expressions of virtual control are defined below: 

 

𝛼1 = [
𝑝𝑀

𝑗𝐿𝑟
(𝑥3𝑥2 − 𝑥4𝑥1)]  (29) 

 

𝛽1 = [
2𝑀

𝑇𝑟
(𝑥3𝑥1 + 𝑥4𝑥2)]  (30) 

  

Eqns. (27) and (28) can be written in the following form: 

 

�̇�1 = �̇�5𝑑 − 𝛼1 +
𝑇𝑙

𝑗
+

𝑓

𝑗
𝑥5  (31) 

 

�̇�2 = �̇�6𝑑 − 𝛽1 +
2

𝑇𝑟
𝑥6  (32) 

 

The dynamic stability of the errors is based on the selection 

of the candidate Lyapunov function: 

 

𝑣1 =
1

2
[𝑧1

2 + 𝑧2
2]  (33) 

 

We derive the Eq. (33), we get: 

 

�̇�1 = 𝑧1�̇�1+𝑧2�̇�2  (34) 

 

The negativity of the Lyapunov function is obtained by 

choosing the derivatives as follows: 

 

�̇�1 = −𝑐1𝑧1  (35) 

 

�̇�2 = −𝑐2𝑧2  (36) 

 

The expressions of virtual control become: 

 

𝛼1 = 𝑐1𝑧1 + �̇�5𝑑 +
𝑇𝑙

𝑗
+

𝑓

𝑗
𝑥5  (37) 

 

𝛽1 = 𝑐2𝑧2 + �̇�6𝑑 +
2

𝑇𝑟
(𝑥6𝑑 − 𝑧2)  (38) 

 

where, 𝑐1 and 𝑐2: positive gains.  

The dynamic of closed loop is defined by 𝑐1 and 𝑐2. 

So, the virtual control in the Eqns. (37)-(38) are selected to 

meet the requirements of the control purposes and also furnish 

references for the following steps in Backstepping control 

strategy conception. 

 

Step 2 

In this step, we define a new dynamic of the errors: 

 

𝑧3 = α1 − [
𝑝𝑀

𝑗𝐿𝑟
(𝑥3𝑥2 − 𝑥4𝑥1)]  (39) 
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𝑧4 = 𝛽1 − [
2𝑀

𝑇𝑟
(𝑥3𝑥1 + 𝑥4𝑥2)]  (40) 

 

𝑧3 and 𝑧4: A new dynamics of the errors. 

The dynamics errors are given now in terms of 𝑧3 and 𝑧4. 

 

�̇�1 = −𝑐1𝑧1 + 𝑧3  (41) 

 

ż2 = −c2z2 + z4  (42) 

 

The errors dynamics of the Eqns. (39) and (40) are given by: 

 

�̇�3 = 𝛼2 − [
𝑝𝐾

𝑗
(𝑥3𝑢𝑠𝛽 − 𝑥4𝑢𝑠𝛼)]  (43) 

 

�̇�4 = 𝛽2 − [2𝐾𝑅𝑟(𝑥3𝑢𝑠𝛼 + 𝑥𝑢𝑠𝛽)]  (44) 

 

where,  

𝛼2 = �̇�1 +
𝑝𝑀

𝑗𝐿𝑟
[(𝛾 +

1

𝑇𝑟
) (𝑥3𝑥2 − 𝑥4𝑥1)] +

𝑝𝑀

𝑗𝐿𝑟
[𝑝Ω[(𝑥3𝑥1 +

𝑥4𝑥2) + 𝐾𝑥6]],  

𝛽2 = �̇�1 +
2𝑀

𝑇𝑟
[(𝛾 +

1

𝑇𝑟
) (𝑥3𝑥1 + 𝑥4𝑥2) −

𝐾

𝑇𝑟
𝑥6] +

2𝑀

𝑇𝑟
[𝑝Ω(𝑥3𝑥2 − 𝑥4𝑥1) −

𝑀

𝑇𝑟
(𝑥1

2 + 𝑥2
2)]. 

 

It's clear that the real control components appear in the Eqns. 

(43) and (44). Therefore, we can build the final Lyapunov 

function as: 

 

𝑣2 =
1

2
[𝑧1

2 + 𝑧2
2 + 𝑧3

2 + 𝑧4
2]  (45) 

 

By using relations (41)-(44) the time derivative of the final 

Lyapunov function can be expressed as: 

 

�̇�2 = −𝑐1𝑧1
2 + 𝑧1𝑧3 − 𝑐2𝑧2

2 + 𝑧2𝑧4 − 𝑐3𝑧3
2  

−𝑐4𝑧4
2+𝑧3 (𝑧1 + 𝑐3𝑧3 + α2 −

𝑝𝐾

𝑗
(𝑥3𝑢𝑠𝛽 − 𝑥4𝑢𝑠𝛼))  

+𝑧4(𝑧2 + 𝑐4𝑧4 + 𝛽2 − 2𝐾𝑅𝑟[(𝑥3𝑢𝑠𝛼 + 𝑥4𝑢𝑠𝛽)]) 

(46) 

 

where, 

𝑐3 and 𝑐4: positive design gains.  

𝑐3 and 𝑐4 define the dynamic of closed loop. 

The negativity of the Lyapunov function is conditioned by: 

 

�̇�2 = −𝑐1𝑧1
2 − 𝑐2𝑧2

2 − 𝑐3𝑧3
2 − 𝑐4𝑧4

2 ≤ 0 (47) 

 

We select voltage control as follows: 

 

𝑐3𝑧3 + 𝑧1 + α2 −
𝑝𝐾

𝑗
(𝑥3𝑢𝑠𝛽 − 𝑥4𝑢𝑠𝛼) = 0 (48) 

 

𝑐4𝑧4 + 𝑧2 + 𝛽2 − 2𝐾𝑅𝑟[(𝑥3𝑢𝑠𝛼 + 𝑥4𝑢𝑠𝛽)] = 0 (49) 

 

The stator voltages then deduced as follows:  

 

𝑢𝑠𝛼 =
1

𝑥6
[
(𝛽2+𝑧2+𝑐4𝑧4)

2𝐾𝑅𝑟
𝑥3 −

𝑗

𝑝𝐾
[𝛼2 + 𝑧1 + 𝑐3𝑧3]𝑥4]  (50) 

 

𝑢𝑠𝛽 =
1

𝑥6
[
(𝛽2+𝑧2+𝑐4𝑧4)

2𝐾𝑅𝑟
𝑥4 +

𝑗

𝑝𝐾
[𝛼2 + 𝑧1 + 𝑐3𝑧3]𝑥3]  (51) 

 

 

 

 

5. SIMULATION RESULTS AND ANALYSIS 

 

To illustrate the performance of the scheme using the 

combination of the Backstepping control and the nonlinear 

observer based on the circle criterion, we use the parameters 

of the (IM) given in Table 1. The basic block diagram of the 

suggested approach is illustrated in Figure 1. 

 

Table 1. Induction motor parameters 

 
Parameters Symbols Value Unit 

Motor’s power Pa 1.5 KW 

Stator voltage U 220 V 

Number of pair poles p 2 / 

stator frequency F 50 HZ 

Load Torque Tl 5 N.m 

Stator inductance Ls 0.274 H 

Rotor inductance Lr 0.274 H 

Mutual inductance M 0.258 H 

Stator resistance Rs 4.850 𝛺 

Rotor resistance Rr 3.805 𝛺 

Rotor angular velocity w 157 rd/s 

Friction coefficient f 0.00114 N.s/rd 

Inertia coefficient j 0.0031 Kg2/s 

 

 
 

Figure 1. Simulation block diagram 

 

Two steps are necessary to carry out the simulation of the 

proposed scheme. 

Step 1 

Solving the LMI conditions, relation (15)-(16) in order to 

determine the gain matrices of the observer. 

Step 2 

Implement the Backstepping based nonlinear sensorless 

control of (IM).  

To accomplish the first step of the simulation test and 

implement the proposed observer, taking into account the 

different parameters of (IM), the asynchronous motor model is 

put into standard form the relations (9)-(10). 

Thereafter, the LMI conditions, relations (7)-(8) are 

resolved, thus we obtain the gain matrices L and Koi of the 

nonlinear observer: 

 

𝐿 =

[
 
 
 
 
−1.6749 0.1188
0.1188 −1.6749

−0.7172 −0.1075
−0.1075 −0.7172
1.6201 −1.6201]
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𝐾01 = [−1.6037 −0.7381], 𝐾02 = [0.7381 1.6037], 
𝐾03 = [0.3948 −0.9193], 𝐾04 = [−0.9193 0.3948]. 
 

The Lyapunov matrix obtained, equivalent to this LMI 

feasibility test, with 𝜀 = 0.04, is:  

 

𝑃 =

[
 
 
 
 

0.1550 −0.0710 0.0514 0.1486 0.0274
−0.0710 0.1550 0.1486 0.0514 −0.0274
0.0514 0.1486 5.6010 0.4659 −0.0505
0.1486 0.0514 0.4659 5.6010 0.0505
0.0274 −0.0274 −0.0505 0.0505 0.0173 ]

 
 
 
 

 

 

The next stage of simulation test, consists of injecting the 

gain matrices found in the first step in the expression of the 

nonlinear observer, relation (9)-(10), using the Matlab 

program to simulate the proposed scheme as shown in Figure 

1. 

The obtained simulation results of the proposed scheme are 

given as follows: 

Figures 2 and 3 show the electromechanical torque and the 

rotor angular speed variations respectively, with respect to the 

simulation tests. 

The variation profile is: 

The load torque Tl = 5 Nm introduced at time t = 2.5 Sec 

and 6.5 Sec. In parallel, the machine undergoes a variation of 

the angular speed w_ref =50 rd/s (low speed), w_ref =220 rd/s 

(high speed), w_ref =-157 rd/s (speed inversion) and w_ref 

=50 rd/sfrom t = 0.5 Sec, 2 sec, 4 Sec and 6 Sec respectively. 

From Figures 2 and 3, it is clear that the estimated state 

variables thoroughly follow the desired trajectories of the 

induction motor. 

The rotor flux modulus is given by Figure 4. We can notice 

that the flux reaches its reference value without any overshoot 

or oscillations. 

The results of the simulation obtained from the Figures 3 

and 4 illustrate that all the parameters of the (IM) are changed 

following the variations imposed by the load torque Figure 2. 

The measured and estimated components (alpha, beta) of 

stator currents are given by Figures 5 and 6 respectively. It is 

clear that these estimated parameters of the induction motor 

perfectly follow the desired trajectories. 

From the results obtained, it is noted that the system-based 

nonlinear observer efficiently estimates the unmeasured state 

variables of (IM). Moreover, these estimated parameters 

follow the imposed variations of the load torque while 

respecting the proposed control law. 

 

 
 

Figure 2. Load, Measured and estimated Electromechanical 

Torque 

 

 
 

Figure 3. Rotor speed (Reference measured and estimated) 

evolution according to load variations 

 

 
 

Figure 4. Rotor flux norm modulus (reference measured and 

estimated) and estimation error 

 

 
 

Figure 5. Alpha-stator current components and its estimation 

error 

 

 
 

Figure 6. Beta-stator current components and its estimation 

error 
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6. CONCLUSION 

 

In this article, we have studied a sensorless control strategy 

for the induction motor (IM) using a Backstepping control and 

a nonlinear observer based on the circle-criterion method. 

The proposed scheme has been introduced to solve the 

problem of non-linearities of the system, ensure good 

performance for the trajectory tracking, improve reliability in 

case of uncertainties of the system and load disturbance 

rejection. 

Obtained simulation results illustrate that this suggested 

scheme ensures a perfect control regardless of the profile 

trajectories physically imposed on the induction motor. It has 

been proven that the suggested backstepping control offers 

satisfactory results in terms of velocity and flux reference 

tracking and load disturbance rejection. The implementation 

of a nonlinear observer has participated effectively to estimate 

the non-measurable parameters that are necessary for the 

nonlinear control. However, it introduces linear matrix 

inequality (LMI) conditions. 
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