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The limited availability of local climatological stations and the limitations to predict the 

wind speed (WS) accurately are significant barriers to the expansion of wind energy 

(WE) projects worldwide. A methodology to forecast accurately the WS at the local 

scale can be used to overcome these barriers. This study proposes a methodology to 

forecast the WS with high-resolution and long-term horizons, which combines a Fourier 

model and a nonlinear autoregressive network (NAR). Given the nonlinearities of the 

WS variations, a NAR model is used to forecast the WS based on the variability 

identified with the Fourier analysis. The NAR modelled successfully 1.7 years of wind-

speed with 3 hours of the time interval, what may be considered the longest forecasting 

horizon with high resolution at the moment. 
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1. INTRODUCTION

Renewable energy applications have been growing in the 

last two decades as a result of policies and strategies to 

mitigate climatic change, and it is currently growing faster 

than other energy sources [1]. In particular, the generation of 

electricity is one main emitter of greenhouse gases (GHG), 

accounting for around 25% of global emissions [2]. Electricity 

generation is one main application of RES [3]. The use of RES 

supported 24% of the global electricity demand in 2016, while 

it is forecasted that in 2030 it will support some 30% [4]. 

Worldwide, wind energy (WE) follows hydroelectric 

energy as the most widespread RES, which is explained 

because of its technological maturity [5], environmental 

advantages [6], and lower costs as compared to other RES [7]. 

In emerging economies like China, there is an increasing trend 

to invest in WE (i.e. inland and offshore applications), 

accounting for 87 % of the investments in RES [8]. Currently, 

there is a need to research further to identify areas with high 

WE potential, which in practice will require to forecast 

accurately the WS with a long-term horizon and high-time 

interval resolution [9].  

The electricity output of wind turbines largely depends on 

the weather conditions and their natural variability [10]. 

Forecasting the electricity production of wind farms (WF) 

based on the weather forecast is one of the main challenges to 

deliver large amounts of wind-based electricity to electric 

grids [11]. Since electric grids must guarantee a stable service 

regardless of the variability of the WS, forecasting the 

performance of wind turbines is critical [4, 12], which depends 

on the WS [13]. Forecasting the electricity output of (WF) 

during its exploitation is a cornerstone for costs/benefits 

assessment, electricity dispatch planning [14], optimizing 

operational parameters and the performance of wind turbines 

[15], and optimizing the load balancing [14]. Furthermore, it 

is essential for the adequate selection of WFs location and their 

capacity planning [16]. Frequently, the electricity output of 

wind turbines is forecasted using a fixed-weighted measure of 

its nominal generation capacity, and historic atmospheric data 

[17]. 

Forecasting the WS has been widely investigated [18], and 

several models with probabilistic approaches [19] or methods 

considering different time horizons are available in the 

specialized literature [20-23]. However, given its insufficient 

accuracy, there is a need to develop new approaches [11]. The 

lack of meteorological data and local climatological stations 

make in difficulties to locally forecast the WS with adequate 

accuracy [24]. Particularly, in Colombia, the limitations to 

accurately predict the WS are one main barrier to expand the 

implementation of WE projects [25]. 

Therefore, this research coupled a Fourier model and a 

Autoregressive Neural Network to forecast the WS at the local 

scale with a long-term horizon and high-time interval, for 

locations with limited or no availability of meteorological data. 

To overcome the lack of data in locations without 

meteorological stations, data from the North American 

Regional Reanalysis (NARR) is used [26]. 

1.1 Literature review 

There are different time horizons to forecast the WS [27]: 

• Very short-term: ≤ 30 min [28].

• Short-term: 30 min ÷ 6 hours.

• Medium-term: 6 hours ÷ 1 day.

• Long-term: > 1 day [29].

Another classification was proposed for the time horizons 

[30]: 

• Immediate-short-term (hourly periods and less than a
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day). 

• Short-term forecasting (next day).  

• long-term forecasting (several days in the future).  

 

Using numerical modeling and in-situ data assimilation, 

three models with a resolution at the mesoscale and the 

microscale were developed to assess the wind energy potential 

in two different locations [31]. The results show that neither 

the mesoscale nor the mesoscale-microscale models are 

applicable at local scales. Another, model non-hydrostatic 

primitive equations (MM5) were used to generate a wind atlas 

over Greece for a typical year, to estimate the national WE 

potential [32]. Using the kernel density estimation model 

(KDE) the WE of 10,698 meteorological stations in China 

were assessed [33]. In this case, the daily average of the WS 

was forecasted for 5 years (2010-2014). Moreover, statistical 

models like the autoregressive conditional heteroskedasticity 

and the autoregressive integrated moving average were 

implemented to assess the hourly fluctuations of the WS in 

WE applications [34]. In a different study, a multi-step 

forecast of the WS with a 4 days horizon was developed with 

a hybrid scheme [35]; the scheme integrated the physical 

weather model (WRF) (wrf-model.org), a novel fuzzy logic 

system, and the Cuckoo search optimization. This hybrid 

model was used to forecast the WS for 96 points considering 

a short-term horizon. However, results show that the higher 

horizontal resolution not always ensure high precision. A 

different hybrid model (ie. hybrid machine intelligent SVR) 

was used to assess the WS and the resulting WE for the 

immediate-short-term horizon in four WF locations in 

different countries [36]. The results show that the WS 

forecasting was improved for short term periods of wind 

events.  

To forecast WS for short-term horizons, other studies use a 

linear fuzzy neural network [37], multivariate autoregressive 

moving average model [38], and wavelet transforms with the 

convolutional neural network [30], which is strongly 

recommended for short-term horizon [39-42]. In particular, 

support vector machine (SVM) models have good results 

forecasting WS for short-term horizon [43].  

 

Table 1. AI techniques to forecast the WS with high time interval resolution 

 
Method Comments 

Locally recurrent neural network [44] 
TH – 72 h TI – 1 h Uses of 3 learning algorithms: Decoupled RPE, Neuron Linear 

Model RPE, and Neuron Non-linear Model RPE. 

Ridgelet neural network (RNN) [45] 
TH – 29 days TI – 1 h Uses differential evolution algorithm including a novel operator 

to forecast the WS. 

Elman neural network [46] 
TH – 3h TI – 30 min An artificial neural network is combined with an adaptive 

Bayesian learning procedure and a Gaussian approximation process. 

Nonlinear autoregressive network with 

exogenous inputs (NARX) [47] 

TH – 1 year TI – 1 h Use of two-layer feed-forward backpropagation networks, with 6 

and 30 neurons in the middle and output layers. 

No negative constraint theory (NNCT) 

integrated with the AI methods [48] 

TH – 10.4 days TI–1 h Combines the no negative constraint theory (NNCT) with AI 

methods 

Extreme Learning Machine (ELM), Ljung-Box 

Q-test (LBQ) and Auto-Regressive Integrated 

Moving Average (SARIMA) [49] 

TH–63 days TI – 1 day The extreme learning machine (ELM) is combined with the 

Ljung-Box Q-test (LBQ), and the Auto-Regressive Integrated Moving Average 

(SARIMA) 

Discrete-time Markov chain models [50] 
TH –2 h TI – 10 min Independent evaluation of a first and a second-order Markov 

chain model. 

Secondary Decomposition Algorithm (SDA) 

and the Elman neural network [51] 

TH –1 day TI – 30 min To forecast the WS, the wavelet packet decomposition (WPD) 

is combined with the fast ensemble empirical mode decomposition (FEEMD) to filter 

the Elman neural networks. 

Multi-objective differential evolution (MODE) 

algorithm [52] 

TH – 7.08 days TI – 1h Optimization of multiple contradictory objectives, using the 

MODE algorithm combined with an SVM and the LUBE method. 

Extreme Learning Machine (ELM) [53] TH – 6h TI – 1h Use of a bidirectional mechanism and a backward ELM network. 

Machine learning methods (MLM) [15] 

TH – 6 days TI – 10 min Use of 5 MLM strategies (Recursive, Direct, DirRec, MIMO, 

DIRMO), and 3 strategies derived from the simple transformation of the MIMO and 

DIRMO approaches. 

Non-linear autoregressive (exogenous) model 

(NAR) [54] 

TH – 1 day TI – 1 hour Use of a general regression neural network GRNN (ARIMA), 

which identify the results, and a Fibonacci search method. 

Artificial neural network (ANN) and support 

vector machine (SVM) [55] 

TH – 31 days TI – 1 hour Use of empirical mode decomposition (EMD) for signal 

decomposition to facilitate the forecasting with ANN and SVM. 

Backpropagation Neural Network (BP-NN) [56] 

TH – 11.04 days TI – 1 hour Signal filtering using an empirical mode decomposition 

(EMD), combined with the BP-NN integrated with a Genetic Algorithm to forecast the 

WS 

Linear and a nonlinear autoregressive moving 

average model with exogenous inputs 

(ARMAX) [57] 

TH – 1 day TI – 1 hour Use of ARMAX techniques, including the linear, SMOreg 

(based in an SVM), the Bagging algorithm, and the M5R algorithm. 

Machine Learning Technique. [58] 

 

TH – 6.25 days TI – 1 hour Use of a two-layer MLT system with a data-driven multi-

model. 

Neuro-fuzzy inference system (ANFIS) [59] 

 

TH – 2,6,12 h TI – 1 h Use of the Pearson correlation coefficient to preprocesses the 

data, and, afterward, application of three individual forecasting models: BP-NN, radial 

basis function neural network (RBF-NN) and least squares support vector machine 

(LSSVM) in the ANFIS system. 

Back propagation Neural Network (BPNN) 

combined with discrete wavelet transform 

(DWT) and brain storm optimization (BSO) 

[60] 

TH – 7 days TI – 10 min Use of 10 - 12 hidden layers of wind speed for training. The 

model applies the DWT for removing the noises, then, the BSO selects optimal 

parameters for the BPNN. 
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Artificial Neural Network (ANN) and 

Geometric model (GM) [61] 

 

TH – 7 days TI – 1-10 min Use of 3 layers of wind (direction, speed, power) for 

training and 2 layers of wind (direction, speed) for prediction. 

Charged 

Search System Algorithm (CSSA) integrated 

with a Lower Upper Boundary Approximation 

(LUBA) neural network 

Use of the Numeral Weather Prediction (NWP) data to train the CSSA-LUBA model. 

TH - Time horizon TI - Time interval 

 

Table 1 shows different applications of artificial 

intelligence (AI) techniques used to forecast the WS for high 

time interval resolution. 

Table 1 shows that to forecast the WS at the local scale, data 

is used to train the networks of artificial intelligence methods, 

which come from in-situ measured time series during less than 

30 years. Additionally, the longer time horizon considered to 

forecast the WS is one year. Most of the artificial intelligence 

and stochastic methods used to forecast the WS needed a 

filtering or signal decomposition step to reduce the non-

linearities of the input training data used. 

 

 

2. METHODOLOGY 

 

This study combines the Fourier analysis with a nonlinear 

autoregressive network to forecast the WS at the local scale. 

Commonly, the programmer must transform the NAR neural 

network to a close loop for the multistep-ahead prediction [59], 

however, this study used the open loop mode with target (input) 

data generated by a Fourier model for the multistep-ahead 

prediction.  

 

2.1 Fourier analysis 

 

Harmonic analysis decomposes time series in either 

harmonics or regular waves with specified parameters to 

identify the natural oscillations of climate variables. The use 

of the Fourier coefficients in the real-time series is the sum of 

its harmonic waves: 

 

𝑦(𝑡𝑛) =
𝑎𝑜

2
+ ∑ 𝑎𝑘 ∙ 𝑐𝑜𝑠(𝜔𝑘𝑡𝑛)

𝑀

𝑘=1

+ 𝑏𝑘 ∙ 𝑠𝑒𝑛(𝜔𝑘𝑡𝑛) (1) 

 

In this case, the time (𝑡𝑛)  and the angular frequency 

(𝜔𝑛) are calculated as: 

 

𝑡𝑛 = 𝑛 ∙ ∆𝑡 (2) 

 

𝜔𝑛 = 2 ∙ 𝜋 ∙
𝑘

𝑁
= 2 ∙ 𝜋 ∙ 𝑓𝑘 (3) 

 

where, 𝑘 is the harmonic, 𝜔𝑛 Angular frequency, 𝑘 is the k-th 

harmonic, 𝑀  the number of identified harmonics, ∆𝑡 time 

interval, 𝑛 number of observations in the time series.  

Then, the minimum value of the frequency is calculated as:  

 

𝑘 = 1 → 𝑓0 =
1

𝑁
→ 𝜔1 =

2 ∙ 𝜋

𝑁
 (4) 

 

The minimum value of the frequency (maximum period) 

that could be within the dynamics of the time series depends 

of the length of dataset. Hence, it is recommended for wind 

speed modelling through Fourier analysis, that time series 

gathers the natural variability of the parameter, e.g climate 

variability events such as Pacific Decadal Oscillations which 

have approximatively 10 years of period [62]. In this sense, 

this study recommends using datasets of WS =>10 years, to 

consider this natural cycle in the calculations of the Fourier 

coefficients.  

Moreover, to calculate the maximum frequency is 

considered that 𝑓0 < 𝑓 < 𝑓𝑀: 

 

𝑘 = 𝑀 → 𝑓𝑀 =
1

2 ∙ ∆𝑡
→ 𝜔1 =

𝜋

∆𝑡
, 𝑀 =

𝑁

2
 (5) 

 

The Fourier coefficients are determined as: 

 

𝑎0 =
2

𝑁
+ ∑ 𝑦(𝑡𝑛)

𝑀

𝑛=1

 (6) 

 

𝑎𝑘 =
2

𝑁
+ ∑ 𝑦(𝑡𝑛) ∙ cos (𝜔𝑘𝑡𝑛)

𝑁

𝑛=1

 (7) 

 

𝑎𝑁 2⁄ =
1

𝑁
+ ∑ 𝑦(𝑡𝑛) ∙ cos(𝜋 ∙ 𝑡𝑛)

𝑁

𝑛=1

 (8) 

 

𝑏𝑘 =
2

𝑁
+ ∑ 𝑦(𝑡𝑛) ∙ sin (𝜔𝑘 ∙ 𝑡𝑛)

𝑁

𝑛=1

 (9) 

 

The amplitude of each harmonic is calculated as: 

 

𝑐𝑘
2 = 𝑎𝑘

2 + 𝑏𝑘
2
 (10) 

 

The phase of each harmonic is: 

 

𝜃𝑘 = 𝑡𝑎𝑛−1
𝑏𝑘

𝑎𝑘

 (11) 

 

Then, the signal is calculated as: 

 

𝑦(𝑡𝑛) =
𝐶𝑜

2
+ ∑ 𝐶𝑘 ∙ 𝑐𝑜𝑠(𝜔𝑘𝑡𝑛 − 𝜃𝑘)

𝑀

𝑘=1

 (12) 

 

The signal is the Fourier modelled time series, and its 

precision for simulating the raw time series depends on the 

number of selected harmonics for the 𝑦(𝑡𝑛) calculation (12). 

When calculating the Fourier parameters for long time series, 

computational restrictions could appear because of software-

hardware limitations. Therefore, to avoid the computational 

restrictions such as out of memory, the identification of main 

harmonics through a spectral analysis (wind periodograms) 

may reduce the number of computational operations. This 

study recommends comparing the 𝑦(𝑡𝑛) calculated with all the 

harmonics against a 𝑦(𝑡𝑛) calculated with the most energetic 

harmonics (ke). These ke can be identified with the more 
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distinctive amplitudes in the periodogram. The final number 

of selected harmonics will depend of the accuracy of the 

Fourier model for simulating the raw data and the capability 

of the computer for handling the intense CPU-RAM processes.  

Because of its lower computational requirements, the fast 

Fourier transform (FFT) is used for the Fourier analysis to 

compute the discrete Fourier transform (DFT). Thus, the 

numerical series is transformed from the time domain into a 

signal with a frequency domain. The FFT solves polynomial 

multiplication, filtering algorithms, differential equations, etc. 

[60, 61]. The mathematical basis of the FFT and DFT are 

discussed in the literature [63, 64]. The main issue of FTT is 

the Gibbs-Wilbraham phenomenon, introducing jumps 

discontinuity in the decomposition of discontinuous functions 

into cosine and sine waves finite series. On occasions, the 

Gibbs-Wilbraham phenomenon results in an overshoot of the 

convergence of the partial sum when a function is expanded 

[65]. Some approaches to addressing the Gibb-Wilbraham 

phenomenon includes the application of either a continuous 

wavelet [66] or a discrete wavelet [67] transforms. 

 

2.2 Nonlinear autoregressive network (NAR) 

 

The NAR model is an artificial neural network, including 

inputs from time series y(t), weights (w), bias (b), hidden 

layers (k), and outputs y(t) [68]. The inputs-outputs y(t) are 

signals that each neuron receives and sends, and its synaptic 

activity depended of the weights, which are considered as a 

synaptic efficacy that excite (w > 0) or inhibit (w < 0) the 

neuron response. In this sense, when setting the weights values, 

assigning positive w will activate the neuron and negative 

values will inhibit it. The hidden layers are the half of neurons 

utilized in the input and output layers, and there is no a general 

criterion for assigning the number of hidden layers, however, 

a performance assessment of the NAR model could reveal if 

hidden layers would be necessary. 

During the training process of the NAR model, the initial w 

values could be equal to 1, however, the weight values can be 

assigned aleatory to explore a better fit of the expected results. 

Assigning high 𝜂 (Learning rate) imply that w will have a high 

change each cycle of training (epoch), contrary to assigning 𝜂 

values below of 0.25, what provoke low changes over the w. 

Low 𝜂 values represent a slow adjustment of w values easing 

a more precise adjustment of the model, but too low 𝜂 must be 

avoided because it could provoke that model falls in local 

minima and clog. Because it is expected that NAR model 

mimics the target data with the most feasible precision, the 𝜂 

of this study was 0.25, that represents that 25 % of the input 

data will be used for training the NAR model. 

 

 
 

Figure 1. NAR configuration in open loop mode 

 

The NAR includes the dynamic back response using the 

output time series as input during the network training, which 

increases the learning rate (𝜂) of the perceptrons. Additionally, 

the NAR introduces a time delay (td) that supply some past 

predictions, thus improving its autocorrelation and covariance: 

𝑦(𝑡 + ℎ) = 𝑓(𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑡𝑑) (13) 

 

where, ℎ  is the forecasting time horizon. As reference, a 

previous model configuration performed by the authors [24] 

was considered and is depicted in Figure 1. 

In this case, a hidden layer uses a sigmoid function to 

activate weights and a linear equation is used in the output 

layer validation. The input data is feed to the NAR considering 

the output results. The backpropagation method is used to 

update the weights with consecutive forward and backward 

steps, and the bias (b) may be known as the effect of applying 

a transformation of the weighted sum. The neti is constructed 

according to Eq. (12): 

 

𝑛𝑒𝑡𝑖 = ∑ 𝑤𝑘𝑗 ∙ 𝑦𝑗 ∙ 𝑏 (14) 

 

The NAR validates the partial results (𝑧𝑗) with a sigmoid 

function:  

 

𝑧𝑗 =
1

(1 + 𝑒−𝑛𝑒𝑡𝑖)
 (15) 

 

If the partial results are accurate, they are selected. 

Before the finish of the forward step, the total or partial nett 

is determined to calculate the error:  

 

𝑧𝑡 = ∑ 𝑤𝑘𝑗 ∙ 𝑧𝑗 (16) 

 

𝑒𝑟𝑟𝑜𝑟𝑖= 1-𝑧𝑡 (17) 

 

The forward step ends when the error is smaller than the 

admissible value defined. Then, the backward propagation 

starts, assessing the output gradients and hidden layers with a 

local gradient (𝛿𝑗): 

 

𝛿𝑗= 𝑒𝑟𝑟𝑜𝑟𝑖 ∙ 𝑧𝑗 ∙(1-𝑧𝑗) (18) 

 

𝛿𝑖 = ∑ 𝛿𝑗 ∙ 𝑤𝑘𝑗 ∙ 𝑧𝑗∙(1-𝑧𝑗) (19) 

 

Then, the local gradient was backward propagated along the 

network using the Delta rule [69], then the NAR stops until 

recalculated weights meet the user criterium. The Delta rule is 

considered a gradient descent learning rule that allows to 

updating the w values of single-layer neural networks every 

training cycle (epoch), then, the Delta rule is a mechanism that 

add or subtract the error magnitude to the w values till the 

model reach a suitable adjustment. Hence, the weights are 

recalculated using the Delta rule: 

 

∆𝑤𝑘𝑗 = 𝜂 ∙ 𝛿𝑖 ∙ 𝑧𝑖 (20) 

 

Finally, the new weights are calculated: 

 

𝑤𝑘𝑗 = 𝑤𝑘𝑗 + ∆𝑤𝑘𝑗  (21) 

 

The NAR is used to define parameters to predict the time 

series, including the number of layers, the weights, and the 

biases. Figure 2 shows the methodology used in this study.  

Step 1 initiates by extracting the WS data available from 

NARR for the specific location to be studied, then the data 

time series are extracted. Following, during the climate 
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variability analysis (step 2) the natural variations and 

oscillations are identified in a periodogram (i.e. step 2a). 

Furthermore, in step 2b (Figure 2), the Fourier parameters 

selected in step 2a are used to model the WS. Afterward, the 

Reanalysis data is used to train and validate the artificial neural 

network.  

The data model combined with the Fourier transforms are 

used as input-target to predict the WS (step 3a). Then, linear 

regression (scatter plot) is developed in step 3b to evaluate the 

quality of the Hybrid Fourier-NAR modeled data by 

comparing it to the in situ data extracted from NARR (raw 

data). The scatter plot shows how the data raw-modelled ratio 

is distributed and the ratio direction-strength between the 

independent (raw data), and the dependent values (modelled 

data). Accordingly, a normally distributed ratio, with positive 

correlation coefficient (r > 0.7) and a low Root Mean Squared 

Error (RMSE) will ease the performance assessment of the 

Hybrid Fourier-NAR model. The pseudo code of the Hybrid 

Fourier-NAR model (Figure 2) is shown next: 

 

READ Reanalysis data 

DETERMINE one location (pixel) of the study area 

EXTRACT time series 

COMPUTE Fourier model parameters 

DISPLAY periodogram 

DO spectral analysis 

SET Fourier parameters (amplitude, phase, frequency) and 

time horizon (e.g 10 years). 

SUM Fourier harmonics to obtain modelled time series. 

COMPARE the modelled and raw time series. 

EXTRACT 1-2 years from the modelled time series  

ADD Fourier modelled time series at the end of the 

Reanalysis time series (combined time series).  

INITIALIZE the NAR model. 

READ input data (combined time series) 

SET neural network parameters (w, b, layers, input-outputs). 

TRAIN the NAR model with 𝜂 = 0.25 in open loop mode. 

VALIDATE NAR modelled data against raw data (input 

data). 

CALCULATE statistical parameters (r-correlation, RMSE) 

for validation and performance assessment of the NAR model 

(error histogram, epochs). 

IF statistical parameters don’t meet the user requirements 

SET new neural network parameters (w, b, layers, input-

outputs). 

ELSE remove trends in Fourier modelled time series 

TRAIN the NAR model with 𝜂 = 0.25 in open loop mode. 

VALIDATE NAR modelled data against raw data (input 

data). 

CALCULATE statistical parameters (r-correlation, 

RMSE), for validation and performance assessment of the 

NAR model (error histogram, epochs). 

END 

 

 
 

Figure 2. Wind forecasting methodology 

 

 

3. RESULTS AND DISCUSSION  
 

The method described in Figure 2 was used to forecast the 

WS in Barranquilla (Colombia). 
 

3.1 Data extraction 
 

 
 

Figure 3. Wind speed data from the NARR database for 

Barranquilla (Colombia) 

The WS data from the NARR database was extracted from 

one pixel for the period defined [70]. Figure 3 shows a 

snapshot of Barranquilla in NARR.  

The cross (+) indicates the coordinates of the selected pixel 

(i.e. 11.101637 N and 74.767269 W). The NARR database has 

been measuring the WS since January 1st, 1979. Data is 

measured with 0.3 degrees of spatial resolution (i.e. 32 km), 

for time intervals of three hours. In this study, data between 

1979 and 2017 (i.e. over 30 years of data) was used for the 

climate variability analysis. 
 

3.2 Identification of natural variability 

 

Figure 4 shows the periodogram generated with the Fourier 

analysis. 

The climatic variability occurs at different durations, for 

example, sea-breeze varies within the day, while there are 

seasonal (5.5 months) and annual (10.9 months) variabilities. 

Other effects vary in longer periods in the amplitude of the WS 
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natural cycles, the effects of ‘El Niño’ varies in 5.39 years, 

while and the Pacific Decadal Oscillation varies in 11.08 years. 

A simulation of 10.27 years time horizon with 30,000 values 

of the WS at 3 hours of the time interval, was developed using 

the Fourier model for Barranquilla, Colombia (Figure 5). 

 

 
(a) 

 
(b) 

 

Figure 4. Wind speed periodogram for Barranquilla 

(Colombia). a) Periodogram (1979 – 2017) b) Zoomed 

periodogram for around 1 year 

 

 
 

Figure 5. Wind speed for 10.27 years of time horizon in 

Barranquilla (period: from 01:00 h of 01-01-1979 to 02:00 h 

of 27-02-1990) 

 

The results show that the oscillation modeled from Fourier 

analysis follows the trend of the measured data, although for 

some periods the accuracy was under the standards defined. 

Then, the Fourier model was validated with a scattering 

analysis by correlating the raw data (i.e. the 30,000 measures 

used) and the model results. The resulting correlation is low 

(i.e. R2 = 0.22). These results show that, given the non-

linearities of climate variability, the Fourier model cannot be 

used for the accurate simulation of the WS variations for long 

time horizons. However, the scattering analysis was developed 

for a time horizon of around 1 year, resulting in higher 

correlations (i.e. R2 varied between 0.6 and 0.7), which is 

adequate for input data in the NAR model. A time horizon of 

1.71 years (dash-line rectangle in Figure 5) was considered in 

the Fourier model to generate the input data used in the NAR 

model. 

3.3 Forecasting the wind speed 

 

MATLAB software was used, and different neuronal 

network designs were tested for the NAR model of 

Barranquilla. The neuronal network design of one hidden layer 

and three delays showed the best results. Data obtained from 

the Fourier analysis was feed to the NAR model, to consider 

the non-linearities of the WS. The NAR was trained and 

calibrated using the data from the 10.27 years at 3 hours of 

time intervals (Figure 6), what correspond to a time period 

between 00:00 h of 01-01-1979 year to 03:00 hr 27-02-1990 

year. This data was also used to validate de forecasted data. 

The first 25 % of the data (i.e. 7500 values) were used to train 

the NAR, while the second 25 % (7500 records) of the data 

was utilized to validate the NAR. Finally, the remaining 50% 

(i.e. 15000 measures) were used to validate the results. 

Considering that NAR models mimic the inputs data, this 

study replaced the input raw data records between 2.5*104 to 

3*104 with the modelled Fourier data, what generated the 

combined time series mentioned above in the pseudo code 

(Figure 6a). The dash-lined rectangle represents a forecasting 

horizon (multistep-ahead prediction) between 03:00 hr of 06-

13-1988 year to 03:00 hr 27-02-1990 year (1.71 years).  

The performance of the Hybrid Fourier-NAR model 

revealed that residuals retrieved during the forecasting were 

lower compared to the residuals of the validation stage (Figure 

6a). In this sense, The Fourier input data not only provide the 

targets (combined time series) for the Neural model, but also 

gathers the natural variability of the wind speed what allowed 

reducing the residuals. The results of the standard NAR model 

(Figure 6b) evidenced that the model could not simulate the 

wind speed because after several step-ahead predictions the 

wind speed kept in 3.83 m/s. Accordingly, was evidenced that 

Hybrid Fourier-NAR model outperformed the NAR model.   

 

 
(a) 

 
(b) 

 

Figure 6. Results of the wind speed forecasted methodology 

for Barranquilla a) Hybrid Fourier-NAR modelled data and 

residuals, b) NAR modelled data and zoom over the 

forecasting period 

 

The Figure 7a shows the validation of the WS forecasting, 

where the Fourier-NAR model reached a high r-correlation (r 

= 0.96) and a root mean squared error (RMSE) of 0.60 m/s, a 

low error that is significatively important for the cut-in wind 
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speed of wind turbines. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 7. Validation of wind speed results: Fourier-NAR 

model 

 

The Fourier-NAR model reported a high efficiency because 

of the low number of achieved epochs Figure 7b. The error 

distribution of the Fourier-NAR model depicted a positive 

skew what suggests that model is conservative. Also, was 

evidenced that the model tends to underestimate rather than 

overestimating due to the distribution of negative errors 

(Figure 7c). To increase the r-correlation during the validation 

of the hybrid Fourier-NAR model, a quality control of the 

input data (raw time series) could be performed, which consist 

in removing outlier WS values after a cumulative frequency 

analysis and the removing of linear-nonlinear trends of the 

time series. These trends could be generated by induced errors 

during the recording of WS data, e.g technical problems of WS 

sensors, or due to the effect of climate-change associated to 

the global warming. Because Fourier is a numerical approach 

dependent of sin-cos functions, is proper removing signals that 

do not belong to the natural behavior of the system. This study 

recommends removing these trends only for the input data of 

the Fourier-NAR model, because the training stage of the 

NAR model requires a raw time series without alterations (step 

3a, Figure 2).  

Because of the statistical results of the model assessment, 

the use of Fourier model is proper (Figure 5) because it 

allowed to provide the target (input) data (1.7 years) for the 

open loop forecasting (Figure 6a), solving the difficulties of 

feeding the NAR models with input data with long-term and 

high-time interval resolution. As was shown in the literature 

review, the NAR models are good mimics of target (input) 

time series what means a multistep-back prediction 

(simulating the past), but when simulating to the future 

(multistep-ahead prediction), fails because it need inputs (WS) 

that have not occurred in the real life. In addition, NAR models 

in close loop mode fails when performing for long time series, 

as was evidenced in Figure 6b.  

After the model assessments, the statistical results 

demonstrated the accuracy of the Fourier-NAR model to 

forecast the WS. Table 2 depicts the structure of the NAR 

model calibrated for Barranquilla city.  

 

Table 2. Parameters and statistical results structure of the 

calibrated NAR model for Barranquilla 

 
City Barranquilla 

Time delay 1, 7, 13, 19 

Input weights  0.7310    0.1441    0.0009   -0.0411 

Layer weight 1.2632 

Bias 0.0193, -0.0325 

r coefficient 0.96 

p-value  0 

Learning rate 0.25 

 

A correlation coefficient of 0.96 between the WS forecasted 

and the data extracted from NARR shows the accuracy of the 

forecasting process for 1.7 years of time horizon. These results 

demanded limited computing capacities, which is a further 

advantage of the NAR model developed. 

 

 

4. CONCLUSIONS 

 

The hybrid Fourier-NAR model utilized validated 

Reanalysis data and forecasted accurately the WS at the local 

scale for 1.7 years of time horizons at 3 hours of the time 

interval, what may be considered as the longest local wind-

speed forecasting at the moment. This approach can be 

implemented in locations without meteorological stations, 

which is the case for many locations worldwide, to assess the 

wind energy potential and define opportunities to exploit wind 

turbines at the local scale. Given its low computational 

demand, this method is a viable alternative for forecasting the 

wind speed at the local scale and thus, to overcome the lack of 

data precluding the implementation of wind turbines for 

different locations worldwide. 
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