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Sustainable management of water supplies faces a comprehensive challenge due to global 

climate change. Improving forecasts of streamflow based on erratic precipitation is a 

significant activity nowadays. In recent years, the techniques of data-driven have been widely 

used in the hydrological parameter’s prediction especially streamflow. In the current research, 

a deep learning model namely Long Short-Term Memory (LSTM), and two conventional 

machine learning models namely, Random Forest (RF), and Tree Boost (TB) were used to 

predict the streamflow of the Kowmung river at Cedar Ford in Australia. Different scenarios 

proposed to determine the optimal combination of input predictor variables, and the input 

predictor variables were selected based on the auto-correlation function (ACF). Model output 

was evaluated using indices of the root mean square error (RMSE), and the Nash and Sutcliffe 

coefficient (NSE). The findings showed that the LSTM model outperformed RF and TB in 

predicting the streamflow with RMSE and NSE equal to 102.411, and 0.911 respectively. for 

the LSTM model. The proposed model could adopt by hydrologists to solve the problems 

associated with forecasting daily streamflow with high precision. This study may not be 

generalized because of the geographical condition and the nature of the data for each location. 
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1. INTRODUCTION

Streamflow is a dynamic process which is not easily 

predictable. This process is defined by a huge parameter 

numbers, such as evapotranspiration, temperature, 

precipitation, land use, and is characterized by a non-linear 

relationship between the flow and the characteristics of its 

water body. Models for predicting streamflow can be 

categorized as physics-based, and data-driven models. 

Physically-based models are data-intensive and include a wide 

range of parameters based on rainfall quantity, intensity and 

distribution, physiography of the watershed, land use, and 

human activities. However, consistent model performance is 

not always guaranteed, depending on the area of research and 

the particular intent. These parameters are not easy to obtain 

and it is extremely difficult for many watersheds to obtain 

accurate and adequate data, which results in low model results 

[1]. Over the last decades, the hydrologists have popularly 

used the soft computing methods for streamflow modeling. 

Since Artificial Neural Network (ANN) has ability to model 

linear and non-linear systems even without making any 

assumption, the models of ANN were widely used in various 

water science subjects [2-6]. 

ANN have been widely used to solve a broad range of 

hydrological problems including rainfall-runoff modelling [7, 

8], hydrological time-series modeling and reservoir operations 

[9, 10], groundwater modeling [11-14], and regional flood 

frequency analysis [15]. ANN-based hydrological prediction 

models can effectively define the input-output relationship in 

hydrological systems which can address the shortcomings of 

the traditional parameterized modeling approach. ANNs can 

also provide reliable outputs for complex rainfall-runoff 

modeling-using historical data research. Thus, in the past 

decade, ANNs have become popular and are generally used in 

streamflow predictions to lessen flood-induced damage. Yuan 

et al. [16] investigated the accuracy of short-term hybrid 

memory (LSTM), for which the ant lion optimizer (ALO) 

algorithm optimized its parameters by predicting the monthly 

streamflow. The results showed that the historical monthly 

flux was calculated more accurately when using LSTM-ALO 

compared to other models. 

In computer science, machines demonstrate AI, as opposed 

to the animals and humans representing natural intelligence. 

AI technologies have been widely used in recent years to 

address a great range of the issues of water engineering. These 

include gene expression programming (GEP), evolutionary 

polynomial regression (EPR), model tree (MT), adaptive 

neuro-fuzzy inference system (ANFIS), extreme learning 

machine and support vector machine. Different investigations 

have also used AI approaches particularly for river flow 

forecasting. However, developing a detailed model for 

forecasting flow is a challenge, as many (nonlinear) variables 

in the catchment influence rainfall – runoff processes. Using 

the raw data directly for modeling may not yield permissible 

results, but applying a pre-processing method can improve 

model performance [17]. 
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Although many studies have applied ensemble techniques 

to the hydrological sector, studies on the sensitivity of artificial 

intelligence (AI) models are still in short supply. The main 

objective in this paper is to predict streamflow at river 

Kowmung. At Kowming river, three methods are used to 

estimate daily streamflow. The study area and hydrological 

data with the LSTM, RF, and TB methodologies are briefly 

listed in the section below. Section 3 displays the results of the 

proposed models and their comparisons. The conclusion of the 

study is explained in section 4. 

2. MATERIALS AND METHODS

2.1 Study area and data 

The Kowmung river at Cedar Ford is selected as a study area 

for this project (Figure 1). The Kowmung river is located in 

the Hawkesbury Nepean catchment near the Warragamba dam 

at New South Wales (NSW) in Australia. The majority of the 

Kowmung River's 80-kilometer stretch lies within Kanangra-

Boyd National Park. Blue Mountains National Park lies within 

the river's lower reaches. For more than 100 years, the river 

and the catchment have drawn enthusiastic interest from 

nature lovers but have also been the site of natural resource use 

and significant mining and forestry proposals. The 

subcatchment occupies some 76000 hectares, and Kanangra-

Boyd National Park is home to just under 75% of the 

subcatchment. The remaining land is either rural freehold or 

pine plantations maintained by State Forests NSW. The 

subcatchment includes the headwaters of the Kowmung river, 

which provides potable water to Sydney 's major water storage 

at Lake Burragorang (Warragamba Dam) along with the 

Kanangra and Jenolan rivers [18]. The study area is shown in 

Figure 1. 

Figure 1. The map of the selected study area [19] 

The daily streamflow is collected at Kowmung river at 

cedar Ford next to Lake Burragorang near Warragamba dam 

from 1/1/2008 to 1/7/2017 by WaterNSW [20]. Figure 2 shows 

the daily streamflow of Kowmung river. 

Figure 2. The daily streamflow of Kowmung river from 

1/1/2008 to 1/7/2017 

2.2 LSTM 

In 1997, Hochreiter and Schmidhuber [21] implemented 

LSTM to solve the gradient blowing up or disappearing 

problem, which used memory cells and gates to monitor the 

long-term information that was stored in the network or held 

away. 

gt =  σ(Ugxt + Wght−1 + bf) (1) 

it =  σ(Uixt + Wiht−1 + bi) (2) 

c̃t =  tanh(Ucxt + Wcht−1 + bc) (3) 

ct =  gt ∗  ct−1 + it ∗ c̃t (4) 

ot =  σ(Uoxt + Woht−1 + bo) (5) 

ht =  ot ∗ tanh (ct) (6) 

U and W are input weights in various gates: gate input (it),

gate modulate input (c̃t), gate forget (gt), and gate output (ot).

b is a bias function, ct t is a cell state, ht is a hidden condition.

Both of these controllers decide how much information from 

the last loop should be obtained, and how much to transfer to 

the new state. 

2.3 Random forest (RF) 

RF is a forest created by many decision trees. For each split, 

the difference is the random subset among the RF and decision 

tree. This model is developed to solve the issues of 

classification and regression. For one of the classification 

modeling classes, a set of forecaster values is used by RF. 

Alternatively, the target variable is calculated to be the random 

wood, depending on the regression modeling predictors. The 

Single Tree Ensemble votes to the most common class for 

modelling classification. In the regression analysis the results 

for the target variable are calculated on average, Eq. (7).  

Random Forest Prediction =  
1

𝑘
 ∑ 𝑘𝑡ℎ

𝑘

k=1

(7) 
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where, k represents the forest trees themselves [22]. 

2.4 Tree Boost (TB) 

The TB algorithm [23] was developed by Jerome Friedman. 

The model was developed to increase the precision of the 

decision tree model with the application of the boosting 

algorithm. Boosting often applies a predictive feature in a 

series, and adds each test result to boost the accuracy of a 

sample. A number of decision trees make up TB. The TB 

algorithm can be described as: 

Target = E + C1 x Tr1 + C2 x Tr2 (M)
+ ⋯ Cn x Trn (M)

(8) 

where, E is the sequence starting value, which represents the 

target variable's mean value; M is a pseudo-residual asset 

value matrix, Tr1 (M) , Tr2 (M) , ... Trn (M)  are trees equipped 

with the residual pseudo, and C1, C2, ... Cn is the coefficients of 

the predicted tree node values which are calculated by the 

algorithm of TB.  

2.5 Determination of model inputs 

One of the key problems in hydrological modeling is the 

determinations of the optimal input variables. The Auto-

Correlation (ACF) method is used in order select the best input 

variables for each model. Daily streamflow as a target variable 

was the cross-correlation function for the Kowmung river, and 

the input variables were calculated based on different time lags. 

ACF results for the proposed models are shown in Figure 3. 

The results of ACF in Figure 3 showed a significant 

correlation between the daily streamflow data for the 

Kowmung river for the time lags, (Qt-1, Qt-2, Qt-3, and Qt-4). In 

this research, four different input’s variables combinations 

were proposed for the models. The input variables’ 

combinations of the four proposed models (Model A, Model 

B, Model C, and Model D) are summarized in Table 1. 

Figure 3. ACF value for the selected models 

Table 1. Model combinations 

Model Target Variable Input Combination 

Model A Qt Qt-1 

Model B Qt Qt-1, Qt-2 

Model C Qt Qt-1, Qt-2, Qt-3 

Model D Qt Qt-1, Qt-2, Qt-3, Qt-4 

2.6 Performance criteria 

RMSE and NSE were used for the performance criteria of 

this study: 

RMSE = √
1

n
 ∑ (Qo − Qp)2

n

i=1
 (9) 

NSE =  1 −
∑ (Qo − Qp)2n

i=1

∑ (Qo − Qo̅̅̅̅ )2n
i=1

(10) 

The mean value of the observed streamflow is where QP 

and Qo are observed and expected streamflow values, 

respectively Qo̅̅̅̅ . The optimal NSE value is 1. The RMSE

index describes the average error range by giving greater 

weight to large errors. 

3. RESULTS AND DISCUSSION

The three models proposed in this study were used to 

establish the optimal models producing daily streamflow. In 

this analysis, Table 2 summarized the results of the statistical 

indices for each model. Table 2 shows that model B which 

used (Qt-1, and Qt-2) daily streamflow of the Kowmung river as 

the input variable is the optimal input combination model B 

compared to model A, model C, and model D for LSTM and 

TB models. However, Model D is the optimal combination of 

inputs for the RF model. The Model B was chosen to compare 

the accuracy of the three models proposed to 

predict daily streamflow to the Kowmung river. The results 

show that the LSTM model outperformed RF and TB in 

predicting the streamflow at Kowmung river with RMSE and 

NSE equal to 102.411, and 0.911 respectively. The optimal 

results are highlighted in Table 2. Furthermore, TB 

outperformed RF model. In Model B, the RMSE is 102.411, 

NSE is 0.911 for the LSTM, and RMSE is 368.214, NSE= 

0.733 for TB model. In Model D, RMSE is 482.123, NSE is 

0.542 for the RF model. Figure 4 provides a comparison of the 

observed and predicted streamflow of the daily time-series, 

and scatter plot for the proposed models. 

Table 2. The statistical indices’ results for the proposed 

models 

Models 
LSTM Random Forest Tree Boost 

RMSE NSE RMSE NSE RMSE NSE 

Model A 109.740 0.891 496.978 0.515 374.352 0.724 

Model B 102.411 0.911 492.239 0.522 368.214 0.733 

Model C 112.078 0.873 522.234 0.462 377.615 0.719 

Model D 110.507 0.887 482.123 0.542 376.927 0.720 
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Figure 4. Comparison of observed and predicted daily streamflow, and scatter plot for the LSTM, BT, and RF models 

4. CONCLUSION

In this research, three models, LSTM, TB, and RF, were 

applied to develop models to predict daily streamflow for 

Kowmung river using historical daily streamflow data from 

1/1/2008 to 1/7/2017. For each proposed model, the auto-

correlation function (ACF) was used to choose the most 

accurate predictor variables. The findings showed that the 

LSTM model outperformed RF and TB in predicting the 

streamflow with RMSE and NSE equal to 102.411, and 0.911 

respectively for the LSTM model. Moreover, TB 

outperformed RF model. The proposed LSTM model could 

adopt by hydrologists to solve the problems associated with 

forecasting daily streamflow with high precision. This study 

may not be generalized because of the geographical condition 

and the nature of the data for each location, however, its 

recommended for future research to apply the LSTM model 

for predicting hydrological parameters in different locations. 
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NOMENCLATURE 

AI artificial intelligence 

RF random forest 

TB tree boost 

ACF Auto-correlation function 

RMSE Root mean square error 

NSE Nash and Sutcliffe coefficient 

ANN artificial neural network 

ALO Ant lion optimizer 
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