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Several methods have been used to predict daily solar radiation in recent years, such as 

artificial intelligence and hybrid models. In this paper, a Wavelet coupled Gaussian 

Process Regression (W-GPR) model was proposed to predict the daily solar radiation 

received on a horizontal surface in Ghardaia (Algeria). A statistical period of four years 

(2013 -2016) was used where the first three years (2013-2015) are used to train model and 

the last year (2016) to test the model for predicting daily total solar radiation. Different 

types of wave mother and different combinations of input data were evaluated based on 

the minimum air temperature, relative humidity and extraterrestrial solar radiation on a 

horizontal surface. The results demonstrated the effectiveness of the new hybrid model W-

GPR compared to the classical GPR model in terms of Root Mean Square Error (RMSE), 

relative Root Mean Square Error (rRMSE), Mean Absolute Error (MAE) and 

determination coefficient (R2). 
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1. INTRODUCTION

The potential of solar energy is a set of data which describes 

the evolution of the solar radiation available at a particular 

place during a given period. It is used to simulate the potential 

functioning of solar energy systems. The study of the potential 

of solar energy is the starting point of any investigation on 

solar energy. The precise knowledge of global solar radiation 

(GSR) available in the long-term data is necessary to design 

and implement a good solar system [1]. The insufficient 

number of meteorological stations in which global solar 

radiation is recorded, as well as the lack of access to solar 

radiation measurement stations, have encouraged researchers 

to develop models suitable for predicting solar radiation using 

different meteorological data, based on available 

meteorological parameters such as relative humidity (RH), air 

temperature (T), wind speed (v), duration of sunlight (S). 

Several empirical formulas have been proposed for estimating 

solar radiation. However models based on the solar period are 

the most precise empirical models [2]. Among the current 

models, the model proposed by Angstrom [3], which gives a 

simple formula that, determines the relationship between GSR 

and the duration of sunlight. Unfortunately, this model cannot 

perform high tests; therefore, models that are more accurate 

are needed. Many researchers [4] have used Autoregressive 

Integrated Moving Average (ARIMA) and Seasonal 

Autoregressive Integrated Moving Average (SARIMA).  

A deterministic time series is one, which can be expressed 

explicitly by an analytic expression. It has no random or 

probabilistic aspects. In mathematical terms, it can be 

described exactly for all time in terms of a Taylor series 

expansion provided that all its derivatives are known at some 

arbitrary time. Its past and future are completely specified by 

the values of these derivatives at that time. If so, then we can 

always predict its future behavior and state how it behaved in 

the past. However, the main limitation of these forecasting 

models is the lack of a deterministic cause [5]. To overcome 

this limitation, researchers use other modeling techniques, 

including statistical learning machines such as Artificial neural 

network (ANN), support vector machine (SVM) and neuro-

fuzzy. In ref. [6] radial basis functions (RBF) have been used 

to estimate the daily GSR in Medina (Saudi Arabia) and 

showed that the RBF was able to predict daily GSR at high 

resolution. Åenkal and Kuleli [7] used Multiple Layer 

Perception (MLP) to forecast GSR in twelve regions of Turkey, 

two types of delay were used (weekly and annual), the results 

showed a better forecast with RMSE (91W/m2).  

Some researchers have achieved considerable results using 

the Extreme Learning Machine (ELM) algorithm due to its 

rapid implementation and ease of training. In ref. [8], the 

Kernel based extreme learning machine (KELM) has been 

used to model the daily GSR. Many tests are performed, the 

results reveal that the basis of the KELM model Tmin and Tmax 

achieves higher precision, in particular when using Tmax, and 

Tmax -Tmin inputs (R2 = 0.90, RMSE = 2.02 MJ/m2, rRMSE = 

11.25 %,).  

Gaussian process regression (GPR) algorithm has been used 

successfully in recent years in remote sensing and Earth 

sciences [9, 10]. When using (GPR), is directly captures the 

model uncertainty, you are able to add prior knowledge and 

specifications about the shape of the model by selecting 

different kernel functions. For example, you may choose 

different priors. Is the model smooth, is it sparse, Should it be 

able to change drastically, Should it be differentiable. In 

addition to good computational performance and stability, 

GPR is simpler and generally more robust than other statistical 

regression tools, requires a relatively small training data set, 

which can adopt highly flexible kernel functions, fast training 
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speed and accuracy and provide better prediction areas. In ref. 

[11], a GRP model was used to predict daily GSR, where the 

results showed better performance than conventional methods. 

In ref. [12], the authors used data from four years (2005-2008) 

to develop the model, the results obtained show that the GPR 

model gives better precision. Adaptive-network-based fuzzy 

inference system (ANFIS) model was used in ref. [13] to 

predict the global daily influence in Egypt; the authors used 

ten years of data (1991-2000) to develop the model. This 

method is a combination of logic and ANN, good accuracy 

was obtained.  

In recent years, hybrid models based on wavelets have been 

used to improve accuracy. A coupled SVM-Wavelet method 

has been proposed by Shamshirband et al. [14] to estimate the 

diffuse solar radiation for the city of Kerman (Iran), R2 = 

0.96 % and RMSE = 0.69 (MJ/m2).  

In this paper, the W-GPR hybrid model is used to predict 

global solar radiation in a Saharan climate. To achieve high 

accuracy, the best-input data and the most efficient model 

must be determined. Finally, to demonstrate the effectiveness 

of the proposed W-GPR model, the obtained results are 

compared to those of the classical GPR model. 

 

 

2. METHODOLOGY 
 

2.1 Study region and meteorological data 

 

The study area covers the province of Ghardaa (32.2° - 

32.82° N, and 3.7° and 4.5° E), which is located in the desert 

region of Algeria (Figure 1), and at an altitude of 450m. 

Rainfall during the year is low in Ghardaia, it is classified as 

BWh climat [15]. In Ghardaia. The average precipitation is 68 

mm, the average annual temperature is 21.0℃. The city has 

great solar potential throughout the year due to its location (the 

average daily solar radiation received is approximately 6000 

Wh.m2) on a horizontal surface. The data sets used for this 

study include the total daily solar radiation on a horizontal 

surface measured and recorded at the Applied Research Unit 

for Renewable Energies URAER for the four-year period from 

January 1 (2013) to December 31 (2016). The first three years 

set of 2013-2015 was used as the training data set while the 

last year (2016) is used to test the different models. 

 

2.2 Refinement of data 

 

The accuracy of the models is greatly affected by the quality 

of the data used. It is preferable to perform the data cleaning 

procedure for improving the quality of the data by filtering it 

from any error or doubt. 

The dataset of the daily solar radiation used includes 

unreliable values [16]. Therefore, we carried out a procedure 

in this work to filter the raw data before the design of the daily 

GSR. 

1. For the knowledge of the inaccurate daily SR values, the 

daily clearness index K is calculated, the values which are 

outside the range 0.015 < K < 1 have been deleted [17]. 

2. A month is deleted from the dataset, if the incorrect 

values are greater than five days in this month; if the number 

is less than five, the values are replaced by correct values based 

on the interpolation [18]. Due to certain atmospheric 

phenomena such as cloud extinction and aerosol extinction 

that occur when solar radiation travels through the atmosphere, 

all values of H must be less than H0 in the data available, 

which means K < 1. 

In Table 1, the variables used as inputs are very appropriate, 

where the close agreement is between Tmin, Tmax, Tmean, H0 

and solar radiation. The lowest value of solar radiation is 

recorded during the month of December and the highest value 

is recorded in the month of July. In terms of relative humidity, 

this is the opposite of solar radiation, where the highest value 

is recorded during the month of July and the lowest value in 

the month of December. 

The minimum temperature data and the minimum, medium 

and maximum humidity data are positively skewed with the 

average skewness factors of 0.02, 0.37, 0.24, 0.43 respectively, 

while the maximum and medium temperature data and 

extraterrestrial solar radiation, and daily incident solar 

radiation are negatively skewed with the average skewness 

factors of -0.04, -0.02, -0.24, -0.15, as expected. 

 

 
Figure 1. The study area site 

 

Table 1. The climatological cycle of daily global solar radiation for the study period 
 

Inputs data Min Max Mea Std Ske Kur r 

Train 

Tmin 1.20 34.90 17.15 8.01 0.001 1.78 0.63 

Tmax 10.70 47.30 29.43 9.11 -0.070 1.79 0.69 

Tmean 1.20 34.90 21.15 8.01 0.001 1.78 0.63 

RHmin 18.26 51.02 21.15 10.80 0.442 2.76 -0.66 

RHmean 18.25 97.50 49.94 17.86 0.323 2.32 -0.65 

H0 18.25 41.43 31.40 8.05 -0.271 1.59 0.90 

H 9.26 30.81 20.84 5.79 -0.060 1.68 1 

Test 

Tmin 3.03 33.70 17.28 7.84 0.070 1.69 0.69 

Tmax 11.80 45.80 29.25 8.90 0.016 1.69 0.74 

Tmean 7.20 38.90 23.01 8.49 0.046 1.67 0.73 

RHmin 0.50 57.02 22.69 11.32 0.472 2.98 -0.71 

RHmean 18.20 95.50 50.02 17.82 0.323 2.41 -0.70 

H0 30.91 41.43 18.25 8.26 -0.205 1.53 0.94 

H 9.20 29.96 20.72 5.95 -0.116 1.65 1 
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Statistically, two numerical measures of shape (skewness 

and excess kurtosis) can be used to test for normality. For 

kurtosis, the general guideline is that if the number is greater 

than +1, the distribution is peaked. If skewness is not close to 

zero, then your data set is not Gaussian distributed [19] as 

expected, all the data can be considered as Gaussian in their 

distributional behaviors. All the data can be considered as 

Gaussian in their distributional behaviors (Table 1). 

 

2.3 Gaussian process regression (GPR) 

 

GPR is a non-parametric model based on the Gaussian 

probability distribution [20]; it can be defined as a collection 

of random variables, of which any finite number GP has a joint 

Gaussian distribution [21]. Thus, a GP is completely specified 

by its 2nd order statistics, 

 

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (1) 

 

where, m(x) and 𝑘(𝑥, 𝑥 ′) are the mean and covariance function 

of a real process f(x) respectively. 

Suppose that a training set {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1 … … 𝑛}  The 

relationship between the 𝑝 − dimensional predictor 𝑥 ∈ ℝ𝑝 

and the target variable 𝑦 is expressed as: 

 

𝑦 = 𝑓(𝑥) + 𝜀 (2) 

 

where, 𝜀  is assumed to be an additive idd Gaussian noise, 

𝜀~Ν(0, 𝜎𝑛
2). 

The prior on the noisy observation becomes: 

 

𝑐𝑜𝑣(𝑦) = 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 (3) 

 

where, I denote the identy matrix of size n. 

The joint distribution of the observed target values and the 

function values at the test locations prior is given by: 

 

|
𝑦
𝑓∗

| ~Ν (0. |
𝐾(𝑋, 𝑋) + 𝜎𝑛

2 𝐾(𝑋∗, 𝑋)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)
|) (4) 

 

where, 𝐾(𝑋, 𝑋∗)𝑛×𝑛∗
denotes the covariance (or Gram) matrix 

between training test and also for different matrix 

𝐾(𝑋∗, 𝑋), 𝐾(𝑋∗, 𝑋∗)𝑎𝑛𝑑𝐾(𝑋, 𝑋). 
The predictive equations for GPR becomes [22]. 

 

𝑓∗|𝑋, 𝑦, 𝑋∗ ~Ν(𝑓∗,̅  cov(𝑓∗)) (5) 

 

where,  

 

𝑐𝑜𝑣(𝑓∗ =  𝐾(𝑋∗, 𝑋∗) − 𝑓∗̅𝐾(𝑋, 𝑋∗) (6) 

 

for a single test point 𝑋∗ , the predictive distribution is a 

Gaussian distribution with mean and covariance given by: 

 

𝑓∗ = 𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝑦 (7) 

 

𝕍[𝑓∗] = 𝑘(𝑥∗, 𝑥∗) − 𝑓∗̅𝑘∗ (8) 

 

where: 𝐾 =  𝐾(𝑋, 𝑋), 𝐾∗ = 𝐾(𝑋, 𝑋∗)  and 𝑘(𝑥∗) = 𝑘∗  denote 

the vector of covariances between the test point and the n 

training points. In the Eqns. (8) and (9), (𝐾 + 𝜎𝑛
2𝐼)−1 can be 

calculated using Cholesky factorization [23]. 

 

2.4 Wavelet decomposition 

 

The main motivation for using wavelet decomposition (WD) 

is the simple analysis of the series obtained. For many years, 

WD (or Wavelet transform) has been mixed with time series 

models as a preprocessing technique. WD uses a set of filters 

to decompose the original time series iteratively, so that 

separate forecasting models can be applied to each component.  

The continuous wavelet transform (CWT) of a function f(t), 

compared to the mother wavelet 𝜓(𝑡) can be written by the 

following integral [24]: 

 

𝐹𝑤(𝑎, 𝜏) = |𝑎|−
1
2 ∫ 𝑓(𝑡)𝜓∗(

1 − 𝜏

𝑎

+∞

−∞

)𝑑𝑡 (9) 

 

where, (*) represents the operation of the complex conjugation, 

𝜏𝜖ℝ  is the translational value and 𝑎𝜖ℝ+∗  is the scaling 

coefficient. Unlike the Fourier transformation, the CWT has 

been discretized and is known as the discrete wavelet 

transform (DWT).  

The approach is an implementation of the wavelet transform 

by scaling and translation of the wavelets in discrete time. In 

this case, the wavelets are given by: 

 

𝜓𝑛,𝑘(𝑡) = |𝑎0
𝑛|−

1
2𝜓(

1 − 𝑘𝜏0𝑎0
𝑛

𝑎0
𝑛 ) (10) 

 

where, n and k are integers and 𝑎 = 𝑎0
𝑛 , 𝜏 = 𝑘𝜏0𝑎0

𝑛. 

More details on Wavelet transform can be found in the 

literature [24] and [25]. 

 

2.5 Structure of the hybrid model 

 

We use W-GPR to predict daily solar radiation in the desert 

region. Through this study, we used wavelet analysis to 

decompose the time series of meteorological data into 

different components. The optimal GPR parameters are 

represented in the flow chart of Figure 2 based on the wavelet 

transform algorithm.  

 

 
 

Figure 2. The flow chart of the proposed model of the 

wavelet-Gaussian process regression W-GPR 
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2.6 Model input data 

 

Figure 3 shows the DWCs of the seven input variables using 

coiflet type wavelets (Table 2) with three levels of detailed 

decompositions and one level of approximation, where the 

approximate level has the lowest frequency. Many works use 

the entire wavelet sub-series [26], while other works delete the 

detail component and keep the remaining sub-series as noise 

based on the correlation coefficient [27]. 

In the proposed approach, we consider each wavelet-

decomposed signal in its original form to capture their random 

attributes and their physical structure; on this basis, we insert 

the entire substring into the W-GPR model. 

 

 
 

Figure 3. DWC of the inputs of the W-GPR model from 

01-Jan-2013 to 31-December-2015 for Ghardaia Aero 

 

Table 2. Effect of the wavelet type on model accuracy 

 
 R2 MAE MSE RMSE 

db4 0.93 1.72 6.28 2.02 

db8 0.94 1.30 5.89 1. 74 

sym2 0.94 1.33 7.14 2.32 

Sym8 0.94 1.27 5.71 1.89 

coif1 0.96 1.02 5.25 1.81 

coif3 0.95 1.14 5.34 1.83 

coif5 0.93 2.93 17.31 3.66 

dmey 0.94 1.41 5.31 1.83 

 

2.7 Performance evaluation 

 

The performance of the proposed models (W-GPR) are 

tested based on the following statistical measures: 

 

r2

=
(∑ (Hn,Obs − H̅n,Obs)n

n=1 (Hn,Pred − H̅n,Pred))2

∑ (Hn,Obs − H̅n,Obs)2N
i=1 ∑ (Hn,Pred − H̅n,Pred)2n

n=1

 
(11) 

 

RMSE = √∑ (Hn,Obs − Hn,Pred)
2n

n=1

N
 (12) 

 

MAE =
1

N
∑ |(Hn,Pred − Hn,Obs)|N

i=1    (13) 

 

where, 

Hi,Obs :observed values 

Hn,Pred: predicted values 

𝐻n,obs: mean value of observations. 

𝐻 n,pred: mean value of predictions. 

N: total number of data. 

r2: Coefficient of determination. 

RMSE: Root Mean Square Error. 

MAE: Mean Absolute Error. 

rRMSE: relative Root Mean Square Error. 

 

According to Paul et al. [28] the performance of the model 

by considering the rRMSE is defined as: 

             rRMS E < 10 % the performance is Excellent. 

10 % < rRMS E < 20 % the performance is Good. 

20 % < rRMS E < 30 % the performance is Fair. 

             rRMS E > 30 % the performance is Poor. 

 

 

3. RESULTS 
 

3.1 Effect of wavelet type 

 

Because of the importance of choosing the type of wavelets 

to decompose the variable input into details and approximation 

components in the precision of the models [29, 30], Table 2 

presented the results of the application of eight mother wavelet, 

the highest precision concerns coif1 (Coiflet) (RMSE = 1.81 

MJ/ m2Day). 

In this paper, extraterrestrial solar radiation H0 was used as 

the primary predictor variable, and then the input 

combinations were divided into three groups:   

 

𝑊 − 𝐺𝑃𝑅1 ∶  

 {

M1 = [H0, Tmax]

M2 = [H0, Tmax, Tmin]

M3 = [H0, Tmax, Tmin, Tmean]
 

𝑊 − 𝐺𝑃𝑅2 ∶  

 {

M4 =  [H0, RHmean]

M5 =  [H0, RHmean, RHmin]

M6 =  [H0, RHmean, RHmin, RHmax]
 

 𝑊 − 𝐺𝑃𝑅3 ∶  

{

M7 =  [H0, Tmax , RHmean, Tmin, RHmin]

M8 = [H0, Tmax , RHmean, Tmin, RHmin, Tmean]

M9 =  [H0, Tmax , RHmean, Tmin, RHmin, RHmax]

M10 = [All predictors variables]

 

 

Careful examination of Table 3 shows that the best 

performance that can be obtained is to include all inputs except 

the Tmean (M2) for the first group (W-GPR1), with R2 = 0.95 

and, rRMSE = 11.76 % compared to R2= 0.95 and rRMSE = 

12.10% (M3). For the second group (W-GPR2) the 

performance is better in (M4) with R2= 0.94 and rRMSE = 

12.59% compared to R2= 0.94, rRMSE = 12.80% (M5), for 

(W-GPR3) the performance of the model is best in (M9) 

verified by R2 = 0.96 and rRMSE = 11.21 % in (M9) compared 

to R2= 0.96, rRMSE = 11.34 % in (M10). 

By comparing the forecasts of the three models, the third 

group (W-GPR3) exceeds the expectations of the other models. 

The correlation coefficient not only records the highest values 

(0.96) compared to (0.95) for GPR3, (0.913) for W-GPR1 and 

(0.95) for W-GPR2, but also marks the lowest value of rRMSE 

(11.21%) compared to (12.52 %) for the classic model. 
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Table 3. Effect of the wavelet type on model accuracy 

 

Input combinations 
Wavelet-coupled (W-GPR) model Classical (non-wavelet) GPR model 

R2 MAE MSE RMSE rRMSE R2 MAE MSE RMSE rRMSE 

M1[H0, Tmax] 0.94 1.24 7.16 2.18 12.40 0.94 1.4 7.91 2.4 13.69 

M2[H0, Tmax,Tmin] 0.95 1.06 5.81 1.93 11.76 0.94 1.29 7 2.23 12.87 

M3 [H0, Tmax,Tmin, Tmean] 0.95 1.11 6.17 2.00 12.10 0.94 1.31 7.22 2.27 13.06 

M4 [H0, RHmean] 0.94 1.20 6.50 2.10 12.59 0.94 1.34 7.13 2.26 12.99 

M5 [H0, RHmean,RHmin] 0.94 1.20 6.93 2.14 12.80 0.94 1.35 7.07 2.25 12.93 

M6 [H0, RHmean,RHmin, RHmax] 0.94 1.19 6.58 2.11 12.66 0.94 1.3 6.79 2.2 12.68 

M7 [H0, Tmax, RHmean, Tmin, RHmin] 0.95 1.07 5.51 1.91 11.67 0.95 1.25 6.80 2.2 12.69 

M8 [H0, Tmax, RHmean, Tmin, RHmin, Tmean] 0.95 1.09 5.89 1.94 11.84 0.95 1.26 6.84 2.21 12.73 

M9 [H0, Tmax, RHmean, Tmin, RHmin, RHmax] 0.96 1.02 5.25 1.81 11.21 0.95 1.22 6.38 2.12 12.31 

M10 [All] 0.96 1.04 5.38 1.84 11.34 0.95 1.24 6.61 2.16 12.52 

 

The ideal value of R2 is one, which means a perfect match 

between predicted and measured values. The scatterplot of the 

predicted value Hn,pred and the measured Hn,obs are shown in 

Figure 4, the model M9 is considered to be the optimal 

combination (R2 = 0.96). 

 

 
 

Figure 4. Scatterplots of the regression value of solar 

radiation versus the measured, with different input 

combinations 

 

Visual representation of statistics has a big role in 

understanding the error range, to know the propagation of the 

error Pe, we use the histogram, based on this representation the 

prediction errors are large for the GPR model and although 

they are relatively less for W -GPR (M9) as shown in Figure 5. 

Which confirms the results obtained in Table 3. 

Figure 6 shows the performance of the M9 model with W-

GPR, GPR based on rRMSE measurement. W-GPR shows 

better performance than with the GPR model.  

Figure 7 traces the prediction error (Pe = Hn,pred – Hn,obs). 

Input combinations of Table 2 are used. According to Table 3 

and Figure 6, the comparison between the classical model and 

the W-GPR models shows that the use of the wavelet 

transform increases the precision of the model in the forecasts.  

 

 
 

Figure 5. The spread of prediction error for (W-GPR) 

compared with GPR model 

 

 
 

Figure 6. Comparison of the performance of the W-GPR 

with GPR 

 

 
 

Figure 7. The prediction error in test period 
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To better see the occurrence of large errors in forecasting, 

the predicted daily global solar radiation and observed values 

over the testing period (year 2016) are depicted in Figure 8. It 

is clearly illustrated that great changes of weather types of two 

consecutive days (sunny days to overcast days and overcast 

days to sunny days) result in large errors of forecasting. 

 

 
 

Figure 8. Measured global radiation versus estimated best 

W-GPR model M9 

 

In some cases, the model is not capable to predict values of 

solar radiation with accuracy. The reason behind this issue is 

that some events presented to the model in the validation phase 

are not similar to those used in the training process. 

 

 

4. CONCLUSION 
 

Since the prediction of solar radiation is very important in 

the management of solar systems. This paper investigated the 

possibility of prediction of W-GPR model, for daily solar 

radiation with high precision. Ten W-GPR models were 

developed using different combinations of inputs: Tmin, Tmax, 

RHmin, RHmax, RHmean and H0. In order to evaluate the 

models and test their accuracy on the prediction, we used five 

statistical indicators. The results showed the significant effect 

of the wavelet type on the precision of the W-GPR models, 

where the wavelet type coif1 (Coiflet) has the highest 

precision, and the combination H0, Tmin, Tmax, RHmin, RHmax, 

RHmean offers great precision compared to the other proposed 

W-GPR models. To demonstrate the accuracy of the W-GPR 

model, its predictions are compared to the classical model 

(GPR). The results showed a significant improvement in the 

performance of the W-GPR model appearing in the statistical 

indices  R2 = 0.960, MAE=1.02 MJ/m2day, MSE=5.25 

MJ/m2day, RMSE= 1.81 MJ/m2day, rRMSE= 11.21%. Finally, 

this model can be used to predict daily solar radiation in areas 

with a similar climate and can be further improved by 

introducing other variables, which should be the focus of our 

future work. 
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NOMENCLATURE 

 

𝐻0 Extra-terrestrial solar radiation (MJ/m2 Day) 

𝐺𝑆𝐶 Solar constant (1367 W/m2) 

𝛿 Solar declination (rad) 

𝜔𝑠 Mean sunrise hour angle (rad) 

𝜑 Latitude of the region (rad) 

K Clearness index 

nday day number of the year 

𝐻𝑛,𝑂𝑏𝑠 observed values (MJ/m2 Day) 

𝐻𝑛,𝑃𝑟𝑒𝑑 predicted values (MJ/m2 Day) 

𝐻𝑛,𝑂𝑏𝑠 Mean value of observations (MJ/m2 Day) 

𝐻𝑛,𝑃𝑟𝑒𝑑 Mean value of predictions (MJ/m2 Day) 

MAE Mean Absolute bias Error (MJ/m2 Day) 

MSE Mean Square Error (MJ/m2 Day) 

RMSE Root Mean Square Error (MJ/m2 Day) 

rRMSE normalized Relative Mean Square Error (%) 

r Correlation Coefficient  

R2 Détermination Coefficient  

 

 

APPENDIX 
 

H0 as the extraterrestrial solar radiation is computed as [31]: 

 

𝐻0 =
24×3600

𝜋
𝐺𝑠𝑐  (1 +

0.033 cos(3600×𝑛𝑑𝑎𝑦)

365
) (cos(𝜑) sin(𝜔𝑠 ) +

𝜋𝜔𝑠

180
) sin(𝜑) sin(𝛿)   

 

where: 

Gsc: Solar constant (1367 W/m2) [32]. 

𝜑: Latitude of the location. 

nday: Day number of the year. 

𝛿 and  𝜔 : Daily solar declination and sunset hour angle, 

respectively calculated by:  

 

𝛿 =
23.45𝜋

180
sin [

360

365
(𝑛𝑑𝑎𝑦 + 284)](3) 

𝜔𝑠 = arccos [− tan(𝛿) tan(𝜑)] 
 

Clearness Index (K): is a ratio of measured solar radiation 

in a locale relative to the extraterrestrial solar radiation. 
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