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 As mobile devices with multiple cameras have been widespread, the cameras can be used 

for generating stereo images for depth sensing. However, it is difficult to use the raw 

images from the cameras because the cameras have different characteristics such as 

resolutions, distortions, and field of view in many cases. In this paper, we suggest methods 

to generate the stereo images from the heterogeneous cameras within 0.329 seconds and 

verify the methods. Although we use the images from a smartphone to generate the stereo 

images, the suggested methods can be used for any other devices with heterogeneous 

cameras. To the best of our knowledge, the suggested methods are the world-first one that 

generates the stereo images from the images by real mobile devices. 
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1. INTRODUCTION 

 

Over the last decade, mobile devices such as smartphones 

have been widespread, and the performance of hardware has 

been significantly improved. For example, the performance of 

mobile CPU has increased 193.61 times from 2010 to 2019 

(Nexus One: 1,279, Pixel 4 XL: 247,622, CPUMark [1]), and 

the performance of mobile GPU has increased 18.17 times 

during the same period (Nexus One: 360, Pixel 4 XL: 6,540, 

3D Graphics Mark [1]). Also, the resolutions of a display and 

a camera have respectively increased 11.4 times (Nexus One: 

WVGA 480 × 800, Pixel 4 XL: QHD 1,440 × 3,040), and 3.2 

times (Nexus One: 5 MPixels, Pixel 4 XL: 16 MPixels). These 

improvements of mobile hardware have enabled real-time 

rendering of complex scenes with multiple light sources and 

many 3D meshes.  

Besides the advancement of mobile hardware, mobile-based 

Head-Mounted Displays (HMD) such as Cardboard, 

Daydream, and Gear VR appeared at an affordable price. As a 

result, mobile Virtual Reality (VR) has been used in the fields 

such as education, healthcare, tourism, simulation, and games 

because it can be conveniently used without complex video 

tracking equipment and wires. In addition to these mobile VR, 

Augmented Reality (AR), which uses mobile GPU to render 

virtual objects on top of images from a camera, is also used in 

various fields such as education, marketing, and games. 

When playing the VR/ AR contents, it is essential to render 

virtual objects on top of the surrounding environments, and the 

virtual objects need to respond appropriately to changes in the 

environments. For this purpose, the depth information should 

be obtained from the camera and the 3D models should be 

reconstructed in real-time. Besides the AR, the depth 

information is important for gesture recognition, autonomous 

drone, robot, and car systems. 

To get the depth information, Time of Flight (ToF) [2], 

Structured Light (SL) [3], Stereo Vision [4], and Deep Neural 

Network (DNN) [5] can be used. ToF is used by Microsoft's 

Kinect and Intel's RealSense [6] and measures the speed at 

which signals are issues and returned to the camera. SL shoots 

infrared lights, which is invisible to the human eye, in a grid/ 

a horizon/ a point form and analyzes the observed light 

patterns to determine the depth of the scene. The stereo vision 

uses two or more pre-known cameras’ locations for sensing 

the depth and extracts 3D information by matching the relative 

positions of objects in the images. DNN pre-trains various 

scenes and depth information in the network and uses the 

network to estimate depth maps with a single image.  

All these methods have their advantages and disadvantages. 

For example, ToF and SL require special hardware for the 

purpose, but the stereo vision and the DNN only require the 

software and need additional processing times for the camera 

calibration and the estimation, respectively. 

Meanwhile, various vendors have released mobile devices 

containing multiple cameras on the front and back sides. For 

example, some devices with four cameras on the back [7] have 

been released recently [8]. As a result, it became possible to 

use the cameras to sense the depth and finally reconstruct 3D 

models. However, it is difficult to directly use the existing 

stereo matching algorithms among the multiple cameras and 

the raw images because the cameras have different 

characteristics such as lens, resolutions, and Field of View 

(FoV). However, it can significantly improve the AR 

experience that the smartphones utilize the recently 

widespread multiple cameras for depth sensing. 

For the depth sensing from these cameras, we researched 

and developed methods to generate stereo images from any 

heterogeneous cameras. The contributions of this paper can be 

summarized as follows. First, we described our methods to 

generate the stereo image from the cameras that have different 

characteristics. Second, we verify our methods with the 

images from real mobile devices, and successfully the image 

within 0.329 seconds. 

This paper is organized as follows. Section 2 introduces the 

camera calibration as related works. Section 3 describes our 

methods to generate stereo images from heterogeneous 

cameras, and Section 4 evaluates the methods. Section 5 

summarizes the results of the algorithms. 
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2. RELATED WORKS 
 

This section describes the related works to understand this 

paper. 

 

2.1 Stereo vision 

 

A person receives two-dimensional images from the two 

distant eyes and recognizes three-dimensional objects. 

Similarly to these process, stereo vision uses two cameras that 

are displaced horizontally/ vertically from one another. After 

two images are obtained from the separate cameras, the pixels 

in them are compared, matching points are found, and the 

relative depth information is obtained in the form of a disparity 

map.  

During the process, stereo images are taken from two 

cameras. To use the stereo image for depth sensing, at least 

two images are required. Both images should be located at the 

positions with the different x positions and the same y position. 

Due to the similarity with the human recognition, the stereo 

vision has been widely researched. For example, Fehrman and 

McGough [9] use 16 webcams to build a camera array and 

achieves 17 frames per second. Kaczmarek [10] uses 5 web 

cameras for the robotic arm. However, the existing research 

assumes that the same cameras are used. 

 

2.2 Heterogeneous camera 

 

Recently, multiple cameras are integrated into a smartphone, 

and the cameras have different characteristics in many cases 

because a camera can supplement each other. For example, 

one of the back cameras is normal, but another back camera 

may have a wide-angle lens to capture more areas. It may have 

a telephoto lens to capture an image from a long distance. The 

cameras can also have different resolutions (e.g., 16 million 

pixels with a wide-angle lens, 12 million pixels with a normal 

angle) or different FoV. Due to these different characteristics, 

it is difficult to use the existing stereo-matching algorithm to 

match pixels within two images. 

In this paper, we suggest methods to overcome these 

problems. 

 

2.3 Camera calibration  

 

The camera obtains images by projecting the lights from 3D 

space into a 2D plane. This transformation from a space to a 

plane can be modeled through the below Eq. (1): 

 

[
𝑋′

𝑌′

1

] = 𝐴𝑅𝑇 [

𝑋
𝑌
𝑍
1

] (1) 

 

In Eq. (1), (X, Y, Z) is the coordinate of a 3D point in the 

world coordinate system and (X’, Y’) is the coordinate of a 2D 

point on a 2D plane in the camera coordinate system. R and T 

are the rotation/ translation matrices to transform the world 

coordinate into the camera coordinate and are the extrinsic 

parameters to a camera. On the other hand, A represents the 

intrinsic parameters of a camera. The combination of A and RT 

is called the camera matrix or projection matrix and finally 

converts a 3D point into a 2D point. 

The extrinsic parameters are related to the geometric 

relationship between the camera and the world, such as the 

camera's position, orientation (fan, tilt), and intrinsic 

parameters are related to the camera's characteristics such as 

focal length, principal point, and skew coefficient. Camera 

calibration is the process of finding the intrinsic parameter, A, 

in Eq. (1). 

Because each camera has a different lens, the captured 

image from a camera can have a distortion. Two major kinds 

of distortion are radial and tangential distortions [11]. Radial 

distortion happens because the lens is spherical, and makes 

straight lines appear curved. Tangential distortion occurs 

because the image-taking lens is not aligned perfectly parallel 

to the imaging plane, so some areas in the image may look 

nearer than expected. These distortions can be modelled by 

focal length, principal point, and skew coefficient, which can 

be expressed by the matrix A in Eq. (1). 

 

 

3. GENERATION OF THE STEREO IMAGES 
 

This section describes the suggested methods to generate 

stereo images from the heterogeneous camera. 

 

3.1 Undistorting image 

 

Because each camera has its own distortion, the obtained 

images should be normalized first, and matrix A is calculated 

through the below Figure 1. 

 

 
 

Figure 1. Image for the camera calibration 

 

Figure 1 is used to get the intrinsic matrix A and extrinsic 

matrix of a camera for the normalization. Then, the calculated 

matrix is stored for future usage. Later, the obtained images 

from the camera are undistorted by the pre-stored matrix.  

 

3.2 Matching feature points 

 

In Subsection 3.1, our methods first calculate the intrinsic 

matrix, A, and the extrinsic of each camera to decrease the 

difference among cameras, then undistort the images from the 

cameras. After undistorting, the feature points need to be 

found from the camera and matched to find the magnification 

ratio of width and height. Figure 2 illustrates the examples of 

found points and matches. 

In Figure 2, the feature points in both images are found/ 

matched and connected to each other by the green lines after 

undistorting by the intrinsic matrix, A. 

These processes consist of finding feature points and 

finding matches between the found feature points. To find 

feature points, SIFT (Scale Invariant Feature Transformation) 

[12], SURF (Speeded Up Robust Features) [13] and ORB 

(Oriented and Rotated BRIEF) [14] algorithms can be used. 

Among these algorithms, we used the SIFT algorithm because 

it shows the best performance on mobile devices [15]. To 

match the feature points, the FLANN (Fast Library for 
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Approximate Nearest Neighbors) is used due to its 

performance [16]. 

 

 
 

Figure 2. Found/ matched feature points from the calibrated 

images 

 

3.3 Scaling image 

 

Our methods try to match the FoVs of images through the 

obtained feature points. To do this, the more FoV image is 

scaled up to the less FoV image because more FoV image 

includes the point within less FoV image. To determine the 

upscale ratio, we find left/ right/ top/ bottom-most feature 

points as shown in Figure 3. 

 

 
 

Figure 3. Matched feature points 

 

In Figure 3, the left figure has less FoV, and the right figure 

has more one. Because the right figure includes the left one, 

our algorithm tries to scale up the right figure. To calculate the 

upscale ratio, the below Eq. (2) and (3) are used. 

 

𝑆𝑥 =
𝑥𝑟
1 − 𝑥𝑙

1

𝑥𝑟
2 − 𝑥𝑙

2 (2) 

 

𝑆𝑦 =
𝑦𝑟
1 − 𝑦𝑙

1

𝑦𝑟
2 − 𝑦𝑙

2 (3) 

 

Eq. (2) calculates the ratio of the horizontal difference of a 

left figure between the left-most feature and the right-most 

feature to a right figure. Eq. (3) calculates the vertical ratio. 

Then, our methods scale up the right figure in Figure 2. As the 

result, the width/ height of the right figure in Figure 2 has the 

same ratio as the left figure. 

3.4 Cropping image 

 

In Subsection 3.3, the more FoV image is scaled up to the 

less FoV image, thus both images have the same ratio as 

shown in Figure 4. However, the magnified figure has a 

different width/ height from the left figure as shown in Figure 

4. 

 

 
 

Figure 4. Scaled figures with different sizes 

 

In Figure 4, the right figure shows the upscaled results by 

Eq. (2) and (3). The difference between the right most-feature 

and the left-most feature in the left figure has the same width 

as the one in the right figure because the right figure is 

magnified. The difference between the bottom-most feature 

and the top-most feature also has the same height. However, 

two images have different the width/ height. 

Our goal is to generate the stereo images from 

heterogeneous cameras thus their sizes need to be the same. 

So, we calculate the dw and dh to crop the image in Figure 4 

through the below Eq. (4) and (5). 

 

𝑑𝑤 = 𝑥𝑙
2 ∗ 𝑆𝑥 − 𝑥𝑙

1 + 𝑑𝑖𝑓𝑓𝑥 (4) 

 

𝑑ℎ = 𝑦𝑡
2 ∗ 𝑆𝑦 − 𝑦𝑡

1 + 𝑑𝑖𝑓𝑓𝑦 (5) 

 

In Eq. (4) and (5), the dw and the dh are starting positions of 

the magnified figure, and the Sx and the Sy are the upscaling 

ratios calculated by Eq. (2) and (3). The diffx and the diffy are 

the difference between the two cameras. Eq. (4) means that it 

moves the origin point of the x-axis within the up-scaled image 

to diffx, and that of the y-axis to diffy. After calculating the dw 

and the dh by Eq. (4) and (5), we crop the rectangle from (dw, 

dh) to (W1, H1).  

As a result, both images have the same ratio and the same 

size, but the only difference is that the right figure moves to 

the camera difference. 

 

 

4. RESULTS 

 

To verify our methods described in Section 3, we captured 

images through LG’s LM-V500N that has 3 different cameras 

at the backside. The cameras have 12 million-pixel resolutions 

with a telescopic lens, 16 million-pixel resolutions with an 

ultrawide-angle lens and 12 million-pixel resolutions with a 

normal lens. Among them, we captured 36 images from 

normal/ ultra-wide-angle cameras. We used 34 captured 

images for the camera calibration and used 4 images to verify 

our results. When running all of the processes in Section 3, we 
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used OpenCV 4.4.0 and Python 3.85 on a laptop with Intel’s 

i5-8250U and 24 GB memory. 

Figure 5 illustrates 2 images from the captured 34 ones as 

examples. 

 

 
 

Figure 5. Capture images with different sizes by the 

heterogeneous cameras 

 

Figure 5 illustrates the examples that are captured from 

normal/ ultra-wide-angle cameras, respectively. 

After getting the calibration matrices of the normal/ ultra-

wide-angle cameras from 34 captured images like the left/ 

right figures in Figure 5, we used 2 captured images as shown 

in Figure 6 to verify our methods. 

 

 
 

Figure 6. Figures from different cameras 

 

The left figure is from the normal camera, and the right 

figure is from the ultra-wide-angle camera. After applying the 

calibration matrix, the figures are undistorted, and we can get 

the figures in Figure 7. 

Figure 7 looks like Figure 6, but a slight difference can be 

found when the images are enlarged. Especially, the bookshelf 

in Figure 6 is tilted, but that in Figure 7 is less tilted. 

After undistorting the images through the intrinsic matrix as 

shown in Figure 7, our methods tried to find the feature points 

with the SIFT algorithm. Then, our methods find the match 

between the normal and the ultra-wide-angle images with the 

FLANN library [16]. After matching the feature points, our 

methods enlarge the image from the ultra-wide-angle camera 

by Eq. (2) and (3) as described in Subsection 3.3. Then, the 

enlarged image is clipped by Eq. 4 and 5. We heuristically use 

20 as the diffx and 0 as the diffy. After all these procedures, we 

could successfully get the images shown in Figure 8. 

 

 
 

Figure 7. Calibrated figures from the obtained matrix 

 

Figure 8(a) shows the left/ right images captured from the 

normal/ ultra-wide-angle cameras, and Figure 8(b) illustrates 

the modified images by the suggested methods. The left image 

in Figure 8(b) is the undistorted result from the normal lens, 

and the right image in Figure 8(b) is the result that passed all 

the methods described in Section 3. At the right images within 

the Figure 8(b), the aliasing and the blurring effects are 

observed differently from the right image within the Figure 

8(a). Also, the second/ fourth right images within the Figure 

8(b) also shows the light effects differently from the left ones 

because two lenses are different. If the SIFT algorithm fails to 

find the feature points or the FLANN fails to find the matches 

between the feature points, our methods can fail to generate 

the stereo image. 
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  (a)                          (b)  

 

Figure 8. Generated stereo images from the heterogeneous cameras: (a) are original ones from the normal/ ultra-wide-angle lens 

(b) are from our methods 

 

We also measured the performance of these processes 10 

times and averaged the results in Table 1. 

 

Table 1. Elapsed time in Seconds 

 
Process Time in Seconds 

Undistorting image 69.096 

Finding feature points 0.246 

Matching 0.068 

Resizing 0.005 

Cropping 0.010 

 

Table 1 illustrates that most of the times are consumed when 

undistorting 34 images. When the undistorting time is 

excluded, 0.329 seconds are required to generate the right 

image from the ultra-wide-angle image. When we consider 

that the calibration matrix can be stored and reused, the 

required time is only 0.329 seconds. 

5. CONCLUSION 

 

As the recent smartphones include multiple cameras, they 

can be used for depth-sensing which is important to many 

applications such as augmented reality and gesture recognition. 

However, most of the cameras have heterogeneous 

characteristics, thus it is difficult to directly use the images 

from them. In this paper, we suggest methods that generate 

stereo images from any heterogeneous cameras. Our methods 

first generate an intrinsic matrix, find the feature points, 

matches them between 2 different images, resize the more FoV 

image, and finally clip the image. From these processes, we 

can successfully generate the right image within 0.329 seconds 

on average. 

However, our methods have future works as follows. We do 

not implement it on real mobile devices in real-time. In the 

future, we plan to implement them on real mobile devices and 

verify the methods. 
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