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Slope instability may be caused by the action of external load or the lack of internal shear 

strength. The traditional limit equilibrium method cannot accurately calculate the safety 

coefficient of slopes enhanced by fiber-reinforced cement piles. Few scholars have 

discussed the anti-slip property, structural form, and design calculation of fiber-

reinforced composite cement piles. Therefore, this paper chooses to analyze the influence 

of basalt fiber-reinforced cement-based composite (BFRCBC) on slope stability. On the 

one hand, the authors analyzed the anti-crack mechanism of BFRCBC: the strength 

analysis was carried out by the rule of mixtures, the anti-crack analysis was implemented 

by the fiber spacing theory, and the entire anti-crack process was discussed in details. On 

the other hand, the authors constructed a slope model, and performed the relevant stability 

analysis. Experimental results show that the BFRCBC cement piles can effectively 

enhance the stability of the slope. 
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1. INTRODUCTION

Slope is the most common form in engineering construction. 

Under natural and human interferences, some instable slopes 

will suffer from landslide, slump, collapse, or spalling, and 

evolve into a geological disaster that threatens lives and 

properties [1-3]. Slope instability is mainly caused by the 

action of external load or the lack of internal shear strength [4-

6]. Capable of enhancing slope stability, fiber-reinforced 

composite cement piles have attracted more and more 

attention from scholars. 

Researchers from different fields have researched 

extensively into the stability of pure soil slopes, and obtained 

various effective research methods [7-9]. Rusydy et al. [10] 

explored the properties and change laws of compaction, 

strength, and deformation of remolded cement-modified soil 

with different mix ratios, water contents, and compactness, 

carried out grey correlation analysis and numerical simulation 

of factors affecting slope stability, and optimized the mix ratio 

of cement-modified soil that maximizes the stability of high 

fill slope. 

The stability of tall and long slopes is threated by the silty 

clay, fill soil and unstable rock-soil layers [11-14]. There is not 

yet a unified code for the stability evaluation criteria of cement 

pile-reinforced slopes. To fill the gap, Dassanayake et al. [15] 

analyzed the strength and deformation features of cement pile-

reinforced slopes in terms of uniaxial compression, radial 

splitting, and triaxial compression, and applied the limit 

equilibrium method and finite-element strength reduction to 

the numerical simulation of anti-sliding mechanism of such 

slopes. 

Deep mixing or high-pressure jet grouting have been widely 

used to prepare the cement piles for reinforcement of 

foundation pits, slopes, and embankments [16-21]. De Vita et 

al. [22] constructed a horizontal shear test model for concrete 

pile composite foundation with a geometric similarity constant 

of 15:1, and conducted simplified calculation of overall 

stability and shear strength comparison of discrete cement soil 

piles and cement soil shear walls. Ramer et al. [23] introduced 

support vector machine (SVM), particle swarm optimization 

(PSO), and strength reduction method to optimize the design 

variables of the shear walls for cement concrete-reinforced 

slopes, and guaranteed the safety and stability of the slopes at 

the same time. Focusing on ecological permeable concrete 

with numerous pores and voids, Chang et al. [24] evaluated the 

overall protection and greening functions of the concrete in 

slope protection, and designed the concrete mix ratio meeting 

the application standards. Based on material mechanics 

method and finite-element method, Pang et al. [25] analyzed 

the slope stability and deformation of concrete gravity dams 

under different conditions, evaluated the seismic safety of each 

dam through compressive and tensile strength tests, and 

determined the stability safe coefficient (SSC) of concrete 

gravity dams under each condition. 

Currently, there is no unified code for stability analysis on 

cement pile-reinforced slopes. Few scholars have discussed 

the anti-slip property, structural form, and design calculation 

of fiber-reinforced composite cement piles. In addition, the 

traditional limit equilibrium method cannot accurately 

calculate the safety coefficient of slopes enhanced by fiber-

reinforced cement piles.  

Therefore, this paper chooses to analyze the influence of 

basalt fiber-reinforced cement-based composite (BFRCBC) 

on slope stability. Specifically, Section 2 analyzes the anti-

crack mechanism of BFRCBC: the strength analysis was 

carried out by the rule of mixtures, the anti-crack analysis was 

implemented by the fiber spacing theory, and the entire anti-

crack process was discussed in details. Section 3 sets up a 

slope model, and completes the relevant stability analysis. 

Experimental results show that the BFRCBC cement piles can 
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effectively enhance the stability of the slope. 

 

 

2. ANTI-CRACK MECHANISM OF BFRCBC  

 

2.1 Strength analysis 

 

Slope stability is greatly affected by the physical-

mechanical properties of the reinforced cement piles. The 

mixture of basalt fibers effectively improves the crack 

resistance of the piles. In actual slope projects, the basalt fibers 

are distributed in various directions across the cement matrix. 

Figure 1 shows the three-dimensional distribution of the fibers. 

To deeply explore the anti-crack mechanism of BFRCBC, this 

paper proposes the rule of mixtures for this composite. 

 

 
 

Figure 1. Three-dimensional distribution of the basalt fibers 

 

Let SQW, ΦQW, and TMQW be the stressed area, stress, and 

elastic modulus of basalt fibers, respectively; SJT, ΦJT, and 

TMJT be the stressed area, stress, and elastic modulus of 

cement matrix, respectively; SFH, ΦFH, and TMFH be the 

stressed area, stress, and elastic modulus of BFRCBC, 

respectively; ηQW and ηJT be the volume fractions of basalt 

fibers and cement matrix in BFRCBC, respectively; ΦFD be 

the tensile strength of BFRCBC; ΦQD
* and ΦJT

* be the tensile 

stresses at break of basalt fibers and cement matrix, 

respectively. 

Suppose basalt fibers, cement matrix, and BFRCBC have 

the same strains (ρQW=ρJT=ρFH). Then, ρQW, ρJT, and ρFH satisfy 

ΦFH=TMFH+ρFH, ΦQW=TMQW+ρQW, and ΦJT=TMJT+ρJT. Then, 

the strength of randomly distributed BFRCBC can be derived 

as:  

 

( )1'

FD j QD QW JT QWΦ ψ Φ Φ - = +  (1) 

 

The elastic modulus of BFRCBC can be calculated by:  

 

( )1FH j QW QW JT QWTM ψ TM V TM -V= +  (2) 

 

Let δα be the directional coefficient of basalt fibers; δQJ be 

the bond coefficient between basalt fibers and cement matrix; 

δQW be the effective length coefficient of basalt fibers. Then, 

the composite effective coefficient ψj related to all these three 

coefficients can be expressed as: 

 

j QJ QW   =  (3) 

 

The calculation methods of δα, δQJ, and δQW are detailed as 

follows. Based on the equal probability theory of fibers, it is 

assumed that the fibers farther from the edge of BFRCBC, 

which has been fully stirred during molding, are distributed in 

various directions across the cement matrix. Then, the 

directional coefficient δα that characterizes the distribution 

state of basalt fibers in cement matrix can be equivalent to the 

proportion of the basalt fibers in the stress direction of the 

cement matrix. Suppose the length of a basalt fiber equals the 

diameter R of the three-dimensional spherical space. Then, the 

probability that the basalt fiber falls on the position where its 

angle from the b-axis and the axis is α can be calculated by: 

 
2

2

1

2π2π

R sin d
sin d

R

 
 =  (4) 

 

 
 

Figure 2. Stress-strain situation of BFRCBC 

 

Figure 2 shows the stress-strain situation of BFRCBC. 

Taking the tensile stress direction of the composite as the 

positive direction of a-axis, δα can be calculated by: 
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δQJ mainly characterizes the bonding strength between 

basalt fibers and cement matrix. Let kR, ΦQD, and RB be the 

length, ultimate tensile strength, and diameter of basalt fibers, 

respectively; σ be the mean shear stress on the bonding surface 

between basalt fibers and cement matrix. Suppose minimum 

length of the shear zone where a basalt fiber is broken is half 

the critical fiber length kQJ. If the tensile stress on BFRCBC is 

in equilibrium with the bonding stress between basalt fibers 

and cement matrix, then: 

 

1 1

2 4

2

B QJ QD BσπR k Φ πR=  (6) 

 

kQJ, which limits the deformation of basalt fibers can be 

calculated by 

 

1

2
QJ QD Bk Φ R

σ
=  (7) 

 

Let ΦQW be the maximum tensile stress applied to pull out 

basalt fibers from cement matrix. Then, the ratio of ΦQW to 

ΦQD can be defined as:  

 

QW

QJ

QD
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δ
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=  (8) 
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Dependent on fiber type and bond length, the bond 

coefficient changes with stress. Basalt fibers cannot exert their 

full effect, when the length kR is smaller than kQJ. Once the 

cement matrix of BFRCBC is broken, the maximum tensile 

strength of basalt fibers in the positive direction can be 

calculated by: 

 

2 R

QW

B

k
Φ σ

R
=  (9) 

 

The corresponding bond coefficient δQJ can be calculated by: 
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2
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δ σ
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(10) 

 

If kR>kQJ, the ΦQW after the cement matrix of BFRCBC is 

broken can be calculated by: 

 

QW QDΦ Φ=  (11) 

 

Combining formulas (11) and (10): 

 

1
QW

QJ

QD

Φ
δ

Φ
= =  (12) 

 

The above analysis shows that, basalt fibers can fully exert 

their bonding effect if kR>kQJ, making the composite denser. 

It can be proved that basalt fibers are more likely to be 

pulled out from the cement matrix, if the buried depth kBL is 

smaller than kQJ. To obtain the exact value of δQW, it is assumed 

that the fracture surface of BFRCBC is perpendicular to a fiber. 

Let a be the length of the shorter end of the fiber embedded 

into the matrix. Then, δα and δQJ determine the maximum 

tensile stress that the fiber can withstand, which falls in [0, 

δαδQJΦQD]. Then, δQW must satisfy: 

 

2QW

α QJ QD BL

δ a

δ δ Φ k
=  (13) 

 

It is known that the maximum tensile stress that the fiber 

can withstand falls in [0, δαδQJΦQD] with a probability of 

2da/kBL, and appears at any position of the space with an equal 

probability. Thus, δQW can be simplified as:  
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If kBL>kQJ, the reinforcement effect of the basalt fiber varies, 

due to the changing relative position between the facture 

surface and the fiber. When the two intersects within the range 

of [kR, kQJ] at the middle, the probability for the fiber to appear 

at any position in the space is 2da/kR, and its reinforcement 

effect equals 1. Then, δQW can be calculated by:  
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When the cement matrix of BFRCBC cracks, the basalt 

fibers need to bear all the load. Let ρJD and ΦJD be the ultimate 

strain and ultimate tensile strength of cement matrix, 

respectively. Considering δα, δQJ, and δQW, when the volume 

fraction ηBL of basalt fibers is smaller than the critical volume 

fraction ηQJ, the ultimate tensile strength ΦFD of BFRCBC can 

be calculated by: 

 

( )

( )

1

1

FD α QJ QW JD BL QJ JD QJ

j JD BL QJ JD QJ

Φ δ δ δ ρ TM η Φ η

ψ ρ TM η Φ η

= + −

= + −
 (16) 

 

When ηBL>ηQJ, ΦFD can be calculated by:  

 

FD α QJ QW JD QW QJΦ δ δ δ ρ TM η=  (17) 

 

The critical volume fraction ηQJ can be calculated by:  

 

( )
JD

QJ

j QD JD BL JD

Φ
η

ψ Φ ρ TM Φ
=

− +
 (18) 

 

2.2 Anti-crack analysis 

 

The crack resistance of basalt fibers on the cracking of 

BFRCBC is greatly affected by the mean spacing between 

fibers. Let LEF be the critical stress intensity factor of BFRCBC; 

γ be the crack shape coefficient; H be the mean fiber spacing. 

Then, the initial cracking tensile strength of BFRCBC can be 

calculated by: 

 

SG EF

SN

L
Φ

γ H
=  (19) 

 

Formula (19) shows that H is negatively correlated with 

ΦSN
SG. Suppose there are MBF basalt fibers per unit area 

perpendicular to the stress direction. Then, H can be calculated 

by: 

 

1
BF

H
M

=  (20) 

 

MBF can be calculated by: 
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Considering δα, formula (21) can be rearranged into: 
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δ k πR k πR
= =  (22) 

 

Combining formulas (20) and (22): 

 

1
0.89 B

α BL

H R
δ η

=  (23) 

 

Thus, H is jointly determined by RB, δα, and ηBL. To optimize 

the anti-crack effect of basalt fibers, it is necessary to minimize 

RB, and maximize ηBL and δα.
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2.3 Anti-crack process 

 

To reveal the influence mechanism of BFRCBC’s crack 

resistance on slope stability, a cracked cement pile reinforced 

by basalt fibers was taken as an example. Figure 3 shows the 

anti-crack process of fiber-reinforced cement pile. The pile 

breakage was considered as the breaking of the basalt fiber and 

the work of the external force T. Then, the relationship 

between the work of external force WOF, energy consumption 

of cement matrix WSN, and energy consumption of the fiber 

WCS can be described as: 

 

A C FG G G= + OF SN CSW W W= +  (24) 

 

 
 

Figure 3. Anti-crack process of fiber-reinforced cement pile 

 

Let WES, WSD, and WST be the surface energy of crack 

propagation, the strain energy produced by the deformation of 

cement matrix, and the plastic deformation energy generated 

by the deformation, respectively. As the smallest term among 

the three, WST can be treated as a constant in crack propagation. 

Then, WSN can be described as:  

 

WSN ES SD STW W W= + +  (25) 

 

Let WDQ and WQB be the energy consumptions of the fiber 

breaking away from the crack surface and the fiber breakage, 

respectively. Then, WCS can be described as:  

 

CS DQ QBW W W= +  (26) 

 

To sum up, the relationship between the work of external 

force and the energy consumption of each part throughout 

cement pile breakage can be expressed as:  

 

FFG  GC SC VC PCG G G GSF= + + + +  

SN ES SD ST DQ QBW W W W W  W= + + + +  
(27) 

 

The whole process from crack propagation to cement pile 

breakage can be divided into five stages: incubation, 

generation, expansion, penetration, and breaking. It is assumed 

that the expansion and penetration stages are a unified whole 

with coordinated deformation, and the fibers solely bear all the 

external force for crack propagation. Eventually, the fibers 

break away from the upper and lower surfaces of the cement 

matrix. Let ΦTS and kL be the tensile strength and stick-off 

length of fibers, respectively; TMBL be the elastic modulus of 

basalt fibers. Then, the energy consumption WDQ of the fibers 

in the unified stage can be calculated by: 

 
2

2l

2

F d

SF F

F

G r
E


=  

2

2TS L

DQ B

BL

Φ k
W πR

2TM
=  

(28) 

 

Hence, WDQ is positively correlated with ΦTS, kL, and RB, 

and negatively with TMBL. The above analysis shows that the 

anti-crack effect of basalt fibers on BFRCBC can be likened 

to an energy transmission process, in which the fibers are 

pulled out or broken after the energy consumption reaches a 

certain level. 

 

 

3. SLOPE MODELING AND STABILITY ANALYSIS 

 

To further explore the influence of basalt fiber-reinforced 

cement piles on the stability and failure mode of slopes, this 

paper constructs a slope model as shown in Figure 4. The slope 

is 20m high with a slope ratio of 1: 2.5. The lower part of the 

slope is completely weathered granite, and the upper part is a 

layer of uniform silty clay. Figure 4 also shows the original 

cement piles used to enhance the slope structure. The 

numerical simulation of the slope stability with reinforced 

cement piles can be solved as a three-dimensional problem. 

During the solving process, the 3D model needs to be 

converted into a planar model; then, the safety coefficient of 

the slope needs to be calculated to obtain the stability score of 

the slope. 

 

 
 

Figure 4. Structure of original reinforced cement piles 

 

Based on the limit equilibrium method, this paper calculates 

the evaluation indices of stability of the established model. 

The reinforced cement piles were arranged discretely into the 

slope. Then, an arbitrary section was extracted from the slope, 

which contains the piles in the same direction along the slope 

and under the same stress. Let NS be the area replacement rate 

of the pile body inside the equivalent pile wall; βTC and βZT be 

the equivalent deformation moduli of the pile body and the 

silty clay layer, respectively. Then, the equivalent deformation 

modulus βDX per unit volume of the equivalent entity in the 

reinforcement area can be calculated by: 
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( )1DX S TC S ZTN N  = − +  (29) 

 

Let TMTC and TMZT be the equivalent weights of the pile 

body and the silty clay layer, respectively. Then, the 

equivalent weight TMDX per unit volume of the equivalent 

entity in the reinforcement area can be calculated by: 

 

( )1DX S TC S ZTTM N TM N TM= − +  (30) 

 

Let εTC and εZT be the equivalent cohesions of the pile body 

and the silty clay layer, respectively. Then, the equivalent 

cohesion εDX per unit volume of the equivalent entity in the 

reinforcement area can be calculated by: 

 

( )1DX S TC S ZTN N  = − +  (31) 

 

Let ψTC and ψZT be the equivalent internal friction angles of 

the pile body and the silty clay layer, respectively. Then, the 

equivalent internal friction angle ψDX per unit volume of the 

equivalent entity in the reinforcement area can be calculated 

by: 

 

( )1DX S TC S ZTtanψ N tanψ N tanψ= − +  (32) 

 

 
 

Figure 5. Structure of improved reinforced cement piles 

 

To enhance the safety factor of the slope, the original 

reinforced cement pile structure was improved by connecting 

the piles via lap joints into walls of good bending strength and 

rigidity. The improved structure is shown in Figure 5. Each 

wall provides the slip mass with a sliding resistance, while the 

slip mass drags the wall by a sliding force. During the ultimate 

equilibrium between the two forces, the sliding resistance of 

the granite layer in the slip mass between walls on the sliding 

surface μ can be calculated by: 

 

( )
1

0
tan /

2

SSB TC M TC TC

s S S

G G d

F T f

   



 = +
 

= + −

  (33) 

 

where, FS and TS are the sliding force induced by the dead 

weight of the slip mass and the landslide thrust of the slip mass, 

respectively; fS is the friction on the wall-soil interface. The 

sliding resistance of the wall on the sliding surface μ can be 

calculated by: 

( )
1

0

ˆ tan /

2

SSB TC M W TC

W S S

G G d

F T f

   



 = +
 

= + −

  (34) 

 

where, FW is the sliding force induced by the dead weight of 

the wall. Hence, the safety coefficient GSB of the slope is 

greatly affected by fS, FS, and TS. If the reinforced cement piles 

have a strong anti-crack effect, the probability of slope damage 

can be reduced to a certain extent at relatively large FS and TS. 

Compared with the slope enhanced by ordinary cement piles, 

the slope enhanced by the improved structure is very unlikely 

to suffer from instability of inter-wall slip mass after reaching 

ultimate equilibrium, because the maximum fS is only slightly 

smaller than the strength of the BFRCBC. In this case, the 

sliding resistance of the slip mass between the walls can be 

calculated 

 

( )
1

0

max

tan /

2

SSB TC M TC TC

s S

G G d

F T f

   



 = +
 

= + −

  (35) 

 

The sliding resistance of the wall can be calculated by:  

 

( )
1

0

max

ˆ tan /

2

SSB TC M W TC

W S

G G d

F T f

   



 = +
 

 + −

  (36) 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

Table 1. Compressive strength of BFRCBC with different 

dosages of fibers 

 
 Dosage 0 0.15 0.3 0.45 0.6 

Simulated 
value 

Compressive 

strength 
67.35 68.47 68.94 68.47 69.72 

Peak strain 0.207 0.206 0.215 0.215 0.237 

Test value 
Compressive 

strength 
65.8 68.9 65.7 64.2 64.5 

 

 
 

Figure 6. Load-displacement curves of cement piles with 

different dosages of fibers 

  

Uniaxial compression tests were designed for cement piles 

to disclose the change law of BFRCBC strength with different 

dosages of fibers. Figure 6 provides the load-displacement 

curves of cement piles mixed with 0%, 0.15%, 0.3%, 0.45%, 

and 0.6% fibers. Table 1 presents the compressive strength of 
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BFRCBC with different fiber dosages. It can be seen that the 

test compressive strengths of BFRCBC were basically 

consistent with the simulated values, with a very small error. 

With the growing fiber dosage, the compressive strength first 

increased and then declined. In the linear elastic phase, the 

dosage of basalt fibers had an increasingly small influence on 

the compressive strength and peak strain of BFRCBC. With 

the growth in fiber dosage, the basalt fibers gradually exerted 

its bonding effect, and the BFRCBC was enhanced more and 

more apparently. 

 

Table 2. Compressive strength of BFRCBC with different 

fiber lengths 

 
 Length 0 10 20 30 40 

Simulated 

value 

Compressive 

strength 
67.36 68.95 68.75 69.13 69.27 

Peak strain 0.207 0.207 0.216 0.216 0.216 

Test value 
Compressive 

strength 
65.6 68.2 65.4 64.6 64.8 

 

 
 

Figure 7. Load-displacement curves of cement piles with 

different fiber lengths 

 

 
 

Figure 8. Load-displacement curves of cement piles with 

different fiber diameters 

 

The length of basalt fiber could also affect the strength 

development of BFRCBC. Uniaxial compression tests were 

designed for cement piles to disclose the change law of 

BFRCBC strength with different fiber lengths. Figure 7 

provides the load-displacement curves of cement piles mixed 

with fibers of different lengths. Table 2 presents the 

compressive strength of BFRCBC with different fiber lengths. 

It can be seen that the increase of fiber length could slightly 

enhance the compressive strength of BFRCBC, and delay the 

deformation and cracking of cement piles. After the fiber 

length increased to 40mm, the compressive strength of 

BFRCBC was 2.56% greater than that of the reference group. 

However, as a flexible material, the basalt fibers should not be 

too long. Excessively long basalt fibers hinders the exertion of 

pile strength. 

Similarly, uniaxial compression tests were designed for 

cement piles to disclose the change law of BFRCBC strength 

with different fiber diameters: 0.3mm, 0.6mm, and 0.9mm. 

Figure 8 provides the load-displacement curves of cement 

piles mixed with fibers of different diameters. Table 3 presents 

the compressive strength of BFRCBC with different fiber 

diameters. The compressive strength of BFRCBC decreased 

with the rise in fiber diameter. The peak strength of cement 

piles was observed at the fiber diameter of 0.3mm, which is 

5.21% greater than that of the control group. Therefore, when 

the dosage and length of basalt fibers are fixed, properly 

reducing fiber diameter helps to improve the compressive 

strength and toughness of the cement piles. 

 

Table 3. Compressive strength of BFRCBC with different 

fiber diameters 

 
 Diameter 0 0.3 0.6 0.9 1.2 

Simulated 

value 

Compressive 

strength 
66.36 69.82 69.94 70.13 71.05 

Peak strain 0.207 0.235 0.241 0.241 0.243 

Test value 
Compressive 

strength 
65.7 66.2 67.1 67.2 64.5 

 

 
 

Figure 9. Stress at reference points under original and 

improved reinforcement structures 

 

To further analyze the enhancement effects of different 

reinforced cement pile structures on slopes that are instable 

due to damages, this paper randomly samples the main stresses 

of Gaussian integral points on the upper part of the cement 

piles in the independent shear slip band. Figure 9 compares the 

stress states and failure envelopes of each point before and 

after the structural improvement. Before the improvement, 

most stress state points were within the failure envelope; after 

the improvement, most stress points were on the envelope. 

Therefore, the cement piles belong to elastic state and failure 

state before and after the improvement, respectively. In the 

former case, the shear strength of the piles is not fully exerted. 

That is, under the same area replacement ratio, the improved 

structure has a higher slope safety coefficient than the original 
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structure. 

Figure 10 shows how the deformation modulus affects slope 

stability. As the deformation modulus increased from 0MPa to 

1,000MPa, large displacement could be observed at the point 

of abrupt change on the load-displacement curve of cement 

piles, but the safety coefficient of the enhanced slope changed 

very slightly, which could be neglected. Similarly, Figure 11 

shows how the Poisson’s ratio affects slope stability. As the 

Poisson’s ratio increased from 0 to 0.5, the plastic zone of 

cement piles changed significantly, but the safety coefficient 

of the enhanced slope was not sensitive to the change of 

Poisson’s ratio: it basically remained unchanged. 

 

 
 

Figure 10. Influence of deformation modulus on slope 

stability 

 

 
 

Figure 11. Influence of Poisson's ratio on slope stability 

 

The stability of natural soil slopes is significantly affected 

by shear strength parameters like cohesion and internal friction 

angle. The proposed slope model was subject to slope stability 

analysis, with the aim to obtain the change laws of the safety 

coefficient of the cement pile-enhanced slope with the 

variation in shear strength parameters. Figures 12 and 13 

record how the cohesion and internal friction angle affect slope 

stability, respectively. After structural improvement, the 

safety coefficient of the slope model increased linearly with 

the growing cohesion. By contrast, the increase of safety 

coefficient was rather small before the improvement. With the 

widening of internal friction angle, the safety coefficients of 

the slope model increased in both original and improved 

structures. The safety coefficient of the improved structure 

increased faster than that of the original structure, indicating 

that the cement piles in the improved structure exerted more 

anti-shear effect than those in the original structure. The 

improved strength of BFRCBC clearly amplifies the stability 

of cement pile-enhanced slope.  

 

 
 

Figure 12. Influence of cohesion on slope stability 

 

 
 

Figure 13. Influence of internal friction angle on slope 

stability 

 

 

5. CONCLUSIONS 

 

This paper carries out a two-fold analysis on the influence 

of BFRCBC over slope stability. For one thing, the anti-crack 

mechanism of BFRCBC was analyzed: the strength analysis 

was carried out by the rule of mixtures, the anti-crack analysis 

was implemented by the fiber spacing theory, and the entire 

anti-crack process was discussed in details. For another, 

uniaxial compression tests were performed on cement piles to 

obtain the change laws of BFRCBC with different fiber 

dosages, fiber lengths, and fiber diameters. Through the tests, 

the authors evaluated how the slope stability is affected by 

deformation modulus, Poisson’s ratio, cohesion, and internal 

friction angle. The results show that the slope enhanced by 

BFRCBC cement piles is very stable. 
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