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 Object detection in images is an important task in image processing and computer vision. 

Many approaches are available for object detection. For example, there are numerous 

algorithms for object positioning and classification in images. However, the current methods 

perform poorly and lack experimental verification. Thus, it is a fascinating and challenging 

issue to position and classify image objects. Drawing on the recent advances in image object 

detection, this paper develops a region-based efficient network for accurate object detection 

in images. To improve the overall detection performance, image object detection was treated 

as a twofold problem, involving object proposal generation and object classification. First, 

a framework was designed to generate high-quality, class-independent, accurate proposals. 

Then, these proposals, together with their input images, were imported to our network to 

learn convolutional features. To boost detection efficiency, the number of proposals was 

reduced by a network refinement module, leaving only a few eligible candidate proposals. 

After that, the refined candidate proposals were loaded into the detection module to classify 

the objects. The proposed model was tested on the test set of the famous PASCAL Visual 

Object Classes Challenge 2007 (VOC2007). The results clearly demonstrate that our model 

achieved robust overall detection efficiency over existing approaches using fewer or more 

proposals, in terms of recall, mean average best overlap (MABO), and mean average 

precision (mAP). 
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1. INTRODUCTION 

 

Object detection a prominent problem in machine vision 

and computer vision. In many applications, object detection 

devices are a crucial component. Object detection has been 

widely used for applications and systems of environmental 

reasoning [1-5]. Therefore, rigorous research in this field is 

always active and essential. 

The goal of object detection is to locate and classify 

different objects in an image automatically. The detection 

process could be affected by various factors, such as low 

image quality, noise, and background interference. Therefore, 

it is challenging to realize state-of-the-art speed and quality in 

object detection. To overcome this challenge, numerous 

approaches have been proposed to detect objects in images 

efficiently [6, 7]. 

Currently, object detection systems mostly comprise of two 

stages: positioning of objects in an image, and classifying 

these positions. Rather than single stage optimization, the two 

stages must be improved simultaneously to achieve desired 

detection performance.  

The generation of object proposals draws a bounding box 

on the regions containing the objects of interest in the target 

image. Focusing only on the candidate proposals that are 

believed to contain the desired objects, this technique aims to 

reduce the computing load of solving the pixel-by-pixel 

similarity among objects in the entire image. An ideal object 

proposal generator should achieve a high recall with a limited 

number of proposals. 

For two-stage object detection tasks, the object proposals 

can be generated by Rantalankila’s method [8], geodesic 

object proposal (GOP) [9], Rahtu’s method [10], image 

window objectness measurement (Objectness) [11], binarized 

normed gradients (BING) [12], randomized prim’s algorithm 

[13], selective search [14], cascade support vector machine 

(CSVM) [15], learning to propose objects (LPO) [16], edge 

boxes [17], multiscale combinatorial grouping (MCG) [18], 

Endres’ method [19], DeepBox [20], regional proposal 

network (RPN), DeepMask [21], SharpMask [22], and 

constrained parametric min-cuts [23]. However, these 

techniques face some noticeable limits in object detection, 

namely, low positioning accuracy, lack of scoring mechanism, 

high computing cost, low precision, class dependence, etc. 

With the development of deep learning (DL), the 

classification accuracy of detection systems has been 

constantly improving. Lots of efforts have been invested to 

advance DL frameworks for robust object classification. 

Convolutional neural networks (CNNs) are powerful 

frameworks for the classification stage in object detection. The 

most representative CNNs include AlexNet [24], ResNet [25], 

DenseNet [26], network in network [27], GoogleNet [28], 

VGGNet [29], and other variants. The classification 

performance of these networks has been optimized by 

numerous regularization methods [30, 31]. However, the 

CNNs face limitations in model size, computing cost, and 

memory consumption, and are redundant and dubious to 

particular proposal generation methods. 
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The current region-based or proposal-based object detectors 

include region-based CNN (R-CNN) [32], spatial pyramid 

pooling network (SPPnet) [33], Fast R-CNN [34], Faster R-

CNN [35], region-based fully convolutional network (R-FCN) 

[36], Mask R-CNN [37], and Cascade R-CNN [38].  

Being the earliest region-based detector, R-CNN generates 

top-down region proposals for the target image through 

selective search, and classifies the positions into different 

categories. Despite its simple structure, this network brings a 

high computing cost, because each region is executed 

separately, and a large disk space is occupied by multistage 

training. Furthermore, R-CNN is slow in test, and only 

compatible with fixed-size input.  

Therefore, R-CNN was improved into SPPnet, which 

supports variable-size input and share computing. Like R-

CNN, SPPnet also needs a large disk space for multistage 

training, and operates slowly in object detection. 

Later, Ross Girshick improved R-CNN and SPPnet into 

Fast R-CNN for object detection. Fast R-CNN processes the 

entire image at once, while R-CNN processes the image region 

by region. This network outperforms R-CNN and SPPnet both 

in computing cost and memory. The training is sped up by 

reducing the number of forward computations. The main 

disadvantage of Fast R-CNN lies in the selective search for 

proposals from the image. 

Next, Faster R-CNN was developed based on two modules: 

deep CNN (DCNN) and Fast R-CNN detector. The former is 

responsible for proposal generation, and the latter, proposal 

classification. The network overcomes the slow speed and 

high computing cost of earlier approaches, by replacing 

selective search with a powerful RPN for region extraction. 

The replacement ensures the detection accuracy with fewer 

proposals. Nonetheless, Faster R-CNN has one drawback: it 

takes a long time to reach convergence. 

Furthermore, He et al. [37] developed the simple, intuitive, 

fast, accurate, and easy-to-use Mask R-CNN based on pixel-

level image segmentation. As an extension of Faster R-CNN, 

Mask R-CNN is known for its excellent detection performance. 

But the reliability of the network comes at the cost of high 

memory demand, slow detection, and poor real-timeliness. 

To realize robust object detection, Dai et al. [36] presented 

the R-FCN, which relies on an FCN to speed up the detection. 

Besides, the shared convolution is adopted to directly act on 

the whole image. Compared with previous approaches, the R-

FCN can achieve a high accuracy at a moderate speed.  

Moreover, the state-of-the-art two-stage R-CNN object 

detection systems was extended into the Cascade R-CNN, with 

the goal of optimizing detection performance. In fact, the idea 

of cascading can be applied to any two-stage object detector, 

ranging from R-CNN, Fast RNN, Faster R-CNN, to Mask R-

CNN. 

Apart from two-stage techniques, single-stage methods also 

play an important role in object detection. Researchers have 

worked hard to develop single-stage proposal-free techniques, 

which are relatively advantageous and applicable to various 

real-time applications. Such techniques include you only look 

once (YOLO) [39], and single shot detector (SSD) [40]. The 

single-stage techniques are faster but less accurate than 

regional-based CNNs. 

The above analysis shows a lack of experimental evidences 

on object detection in images. Consequently, this paper 

presents a region-based efficient network (REN) for accurate 

object detection in natural images. Derived from the prior 

methods, the REN can effectively reduce the computing cost 

of object detection, and enhance the detection accuracy. 

The remaining part of the manuscript is organized as 

follows: Section 2 reviews the related works; Section 3 

elucidates the REN; Section 4 verifies the REN performance 

through experiments; Section 5 discusses the experimental 

results; Section 6 gives the conclusions, and talks about the 

future work. 

 

 

2. LITERATURE REVIEW 

 

Object detection in images is a fundamental problem of 

computer vision. The fast-evolving object detection 

techniques has brought enormous commercial values, and 

penetrated every industry. Numerous techniques are now 

available to achieve state-of-the-art detection performance. 

Recently, object detection has been extensively used in various 

fields, such as medicine [41], roads, building detection [42, 43], 

automatic detection of lane marking [44], face detection [45], 

and pedestrian detection [46]. 

Object detection mimics the visual sensing of our brains, 

which can detect, process, and interpret visual information 

efficiently. In fact, a large part of the human brain is dedicated 

to the processing of visual information. In contrast with human 

intelligence, systems could not sense or process information 

appropriately for several challenging factors: variations in 

viewpoints and perspectives, illumination, small object scale, 

deformation, occlusion, rotation, and high intra-class 

difference. Most objects in images are influenced by these 

factors, making them difficult to detect accurately and 

efficiently. Researchers are obliged to modify the object 

detection systems, and enhance their generalization ability. 

This section intends to comprehensively assess the 

traditional DL-based object detection methods, including both 

single-stage and two-stage algorithms. As mentioned in the 

preceding section, the most notable two-stage region-based 

CNNs include R-CNN, SPPnet, Fast R-CNN, Faster R-CNN, 

R-FCN, Mask R-CNN, and Cascade R-CNN. All of them have 

been adopted widely to achieve desired performance in object 

detection. Experimental results show that these networks are 

widely recognized for their excellence in various detection 

tasks. However, these methods require heavy computations, a 

long runtime, and a large disk space. 

To maintain a high detection accuracy, Kaya et al. [47] 

proposed a model based on proposals improved by 

convolutional contact features. Their model outperforms the 

earlier methods, but only applies to classes with distinctive 

contexts. Liu et al. [48] combined RPN with Fast R-CNN into 

a DL-based model, which yields high-quality performance in 

object detection. Yet, the model fails to achieve high detection 

accuracy and speed. Zhang et al. [49] put forward an object 

detection model named anchor free (AF) R-CNN based on 

feature fusion and attention mechanism. The model is more 

accurate than previous region-based approaches. However, it 

is computationally complex and not suitable for real-time 

object detection. The slow detection speed remains a big 

challenge for this model. Xiao et al. [50] introduced an 

efficient detection model that retains the legacy of region-

based CNNs. The model integrates skip pooling with 

contextual information instead of RPN, thereby realizing 

improved performance. But it still lags in processing speed. 

Similarly, inside-outside net (ION) [51], Hypernet [52], and 

online hard example mining (OHEM) [53] algorithms fail to 
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achieve good real-timeliness or high detection accuracy. None 

of these models does well in the detection of large datasets. 

To speed up the detection process, one-stage algorithms like 

YOLO and SSD were launched to predict and classify object 

positions. The YOLO meshes the target image into multiple 

grids, and then performs positioning and classification. 

However, it flops on small object detection, due to the lack of 

low-level high-resolution information. Zhao et al. [54] mixed 

YOLO alternatives into a novel YOLO model that efficiently 

and rapidly detects objects. But the model only works well on 

non-graphics processing unit (GPU) devices. 

To address the issues of YOLO, the SSD was introduced to 

detect objects, using both low- and high-level feature maps 

with high-resolution information. This model works 

excellently on small objects and achieves favorable accuracy. 

However, it is open to further improvements. Deng et al. [55] 

presented an SSD model based on feature fusion and spatial 

attention. Despite its fast detection speed, the model is 

incompetent for the detection of large images: the image size 

does not affect the detection precision, but slows down the 

detection speed. Thus, many scholars have developed variants 

of the SSD to improve overall precision [56-60]. 

In the past studies, both one- or two-stage detection methods 

broadly adopt anchors. The traditional approaches typically 

produce anchors with RPN. Later, the anchors are directly 

classified and regressed. The number and shape of anchors 

greatly affect the performance of object detection algorithms. 

Wang et al. [61] employed an anchor that derives the number 

of sparse, arbitrary shapes from image features, and used these 

shapes to cut the number of anchors and improve their shapes, 

while ensuring a reliable recall. Comparatively, two-stage 

algorithms are slower yet more accurate than one-stage 

algorithms. 

In addition, Wan et al. [62] proposed a min-entropy latent 

model (MELM) for object positioning and classification, and 

verified its superiority over the state-of-the-art approaches. 

Based on dissimilarity coefficient, Arun et al. [63] presented a 

probabilistic learning model capable of dealing with fuzzy 

object positions, and demonstrated that the model is more 

accurate than prior approaches. Fang et al. [64] developed an 

object detection model that solves the non-convexity problem 

with a series of smoothed loss functions, and proved the good 

overall performance of the model, as well as its advantage in 

positioning. Based on semantic segmentation, Shen et al. [65] 

proposed an object detection model with a multi-tasking 

learning mechanism, and observed that the model attained 

competitive outcomes against other alternatives. Yang et al. 

[66] developed an image object positioning model, which, 

unlike the earlier approaches, is immune to local minimum 

trap. The model combines multiple instances of learning and 

bounding-box regression in a single network, resolving the 

absence of instance-level class labels. Tang et al. [67] designed 

an object detection model based on proposal cluster learning. 

The model significantly improves the detection performance, 

but fails to work on deformed non-rigid objects. 

Most of the above approaches purely rely on image-level 

labels. Compared to other proposal generation methods, these 

approaches do not have bounding box labels. This 

significantly bottlenecks the positioning ability of these 

approaches. In contrast, our method yields more insights into 

the overall performance of object detection, and draws a 

distinction in empirical findings.  

 

 

3. OUR METHOD 

 

This paper proposes a useful model for object detection in 

images. Figure 1 illustrates the functional blocks of our model. 

Different stages of the model are discussed in the following 

subsections, including object proposal generation, and 

proposal refinement & classification. 

 

 
 

Figure 1. Framework of our model 
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3.1 Object proposal generation 

 

The first stage of our model is to generate a few high-quality, 

class-independent proposals. Previous research has shown that 

a small set of proposals can immensely improve the 

performance of object detection. But the existing strategies are 

inadequate to produce a limited number of high-quality 

proposals. 

To solve the problem, this paper first segments the target 

image into a set of initial regions, because segmentation could 

improve the effect of object detection. Compared to pixel 

regions with rich information, it is a good idea to draw object 

proposals from region-based features. Here, the set of initial 

regions is obtained by segmenting the image with the graph 

generation method proposed by Felzenszwalb and 

Huttenlocher [68]. This method is fast and accurate enough for 

our purpose. Each region thus acquired was considered as a 

cluster. Based on regional similarities, the adjacent regions 

were grouped from bottom to top by a cluster-based 

hierarchical strategy. 

Firstly, the similarities between adjacent regions were 

calculated, and used to merge the most similar regions into one 

region. Then, the similarities between the merged regions were 

calculated, and used to combine the most similar ones into a 

region. The process of merging similar regions was executed 

iteratively until all the similar regions had been fused into a 

single region to form an image. 

 

 
 

Figure 2. Obtained proposals 
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To obtain as many proposals as possible, the region search 

was diversified using a clustering technique based on different 

color spaces, changing initial regions, and region similarity 

creations. The obtained regions were grouped, and the 

identical ones were removed. At this point, the regions 

obtained after grouping are referred to as proposals (Figure 2). 

The next task is to score and rank the obtained proposals. 

To achieve this goal, the structure edge detector was adopted 

to extract the edges from the original image. This detector is 

hailed for its relatively fast and accurate performance in edge 

detection. After that, the edges were connected based on their 

orientation similarities with adjacent edges. The eight adjacent 

edges, whose sum of orientation differences was above pi/2, 

were combined into an edge group. Further, the affinities 

between adjacent groups were computed, according to their 

mean positions and orientations. To improve computing effect, 

only the affinities above the threshold of 0.05 were retrained. 

Based on the edge groups and their affinities, the score of each 

proposal was calculated as follows: 

For each group, a continuous value wb(Si) was computed 

depending on whether a group of edges Si is contained in the 

candidate bounding box b. If Si is not fully contained in b, then 

wb(Si)=0. Whether Si is fully contained in b can be judged by: 

 

( ) ( )
| | 1

11 max
T

b i t j j

j

w S a t t
−

+ = − −  (1) 

 

where, t is the ordered path of the edge group; |T| is the length 

of path t; a is the affinity between two edge groups in the 

absence of T. The path starts at 𝑡1 ∈ 𝑆𝑏  and ends at t|T|=Si. If T 

does not exist, wb(Si) equals 1. 

Based on the values obtained by formula (1), the score 

function can be established as: 

 

( )

( )

im

2

b i

i

k

w h

w S

b b+
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where, bw and bh are the width and height of the box, 

respectively; k is the bias of large boxes. 

Finally, the obtained proposals were ranked by the score 

computed by formula (2), and imported to the backbone 

network for proposal refinement & classification. 

 

3.2 Proposal refinement & classification 

 

Through the above procedure, the authors obtained a few 

high-quality, class-independent proposals and their scores. Yet 

these proposals need to be further refined to ensure the 

detection performance. Figure 3 provides an example of 

refined proposals.  

Object detection systems desire for the fewest number of 

top-quality proposes. Hence, a proposal refinement system 

was employed to refine the proposals obtained in the previous 

stage, laying the basis for classification. In our overall design, 

the proposal refinement part and proposal classification part of 

our detector share the convolutional features to achieve robust 

performance. 

Our system is an EfficientNet-B7 scaled up from the 

baseline network EfficientNet-B0, using a compound scaling 

mechanism. The network requires less computing cost and 

battery usage than other competitors. The EfficientNet [69] 

was adopted for its advantage over the previous networks in 

classification accuracy and efficiency (Table 1). Proposed by 

Google team in 2019, this network is a novel backbone DL 

architecture. The greater the scale, the better the classification 

accuracy. As shown in Table 1, EfficientNet-B7 achieved an 

accuracy of 84.3 % and 91.7% on ImageNet and CIFAR-100 

datasets, respectively, with much fewer parameters than other 

networks. 

 

 
 

Figure 3. Refined proposals 

 

Table 1. Top-1 accuracies of different networks 

 
Model  Proposed 

year  

Number of 

parameters 

Top-1 

accuracy (%) 

AlexNet 2012 60 M 63.3 

VGG-16 2014 138M 74.5 

VGG-19 2014 143M 71.3 

ResNet-50 2015 25M 77.15 

Inception V3 2015 24M 78.8 

Xception 2016 22.9M 79.0 

InceptionResNetV2 2016 55.9M 80.3 

EfficientNet-B0 2019 5.3M 76.3 

EfficientNet-B7 2019 66M 84.4 

 

The baseline network EfficientNet-B0 consists of 1 

convolutional layer, 7 mobile inverted bottleneck (MBConv) 

blocks [70], 1 average pooling layer, and 1 fully-connected 

layer. MBConv is the main building block of he EfficientNet, 

to which squeeze-and-excitation block is added along with the 

Swish activation function. Each MBConv block has a different 

setting: The first MBConv block has a single layer with the 

kernel size of 33 and 16 output channels; the second 

MBConv block has two layers, each with the kernel size of 

33 and 24 output channels; the third MBConv block has two 

layers, each with the kernel size of 55 and 40 output channels; 

the fourth MBConv block has three layers, each with the 

kernel size of 33 and 80 output channels; the fifth MBConv 

block has three layers, each with the kernel size of 33 and 

112 output channels; the sixth MBConv block has four layers, 

each with the kernel of size 55 and 192 output channels; the 

seventh and the last MBConv block has a single layer with the 

kernel size of 33 and 320 output channels.  

It should be noted that, to refine and classify proposals, the 

network after the last MBConv block was modified by adding 

two branches. The modified model receives the proposals 

generated in the first stage and the corresponding natural 

image. Then, the input image is passed through of the first to 

485



 

the fifteenth layer. To reduce computing cost and time, the 

proposal refinement network developed by Liu et al. [71] was 

adopted as a refinement branch, which is suitable for out 

settings. The refinement network was added behind the last 

MBConv block, including two refinement convolutional 

layers with kernel sizes of 33 and 55 , respectively. The 

addition reduces the number of channels from the previous 

layer from 320 to 128, marking the starting point of our 

proposal refinement.  

Next, a rectified linear unit (ReLU) layer was introduced. 

After that, a region of interest (ROI) pooling layer was added 

to perform down-sampling of each initial box region, 

producing a feature map of the size 55. The down-sampling 

meshes the input feature map into various grids of equal width 

and height. Then, maximum pooling was performed on each 

grid. Subsequently, another fully-connected layer followed by 

a ReLU layer was added to output 1,024 neurons only. Further, 

a ranking branch composed of a fully-connected layer was 

arranged to recalculate the score of each proposal. This 

ranking branch has two output neurons, which symbolize the 

likelihoods of the existence of an object. Meanwhile, another 

branch of box regression, which is also a fully-connected layer 

was deployed to capture the position offsets of initial proposals, 

and predict the box regression values. During network training, 

a binary class label was also assigned to each initial proposal 

to check whether it is an object. The loss function can be 

defined as: 

 

( )    1 01 1
, 1 log 1 logobj u u

L p u p p
= 

 = − +
 

 (3) 

 

where, p is the value computed by softmax function based on 

the two outputs of a fully-connected layer; u is the label of the 

current box. In addition, the coordinate offsets were learned by 

the box regression layer. The coordinates can be parameterized 

as: 
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where, x and y are the center coordinates of a candidate box; h 

and w are the height and width of candidate box; x, xin, and x* 

are the predicted, input, and ground-truth abscissas of the 

candidate box, respectively; the parameters related to y, h, and 

w are defined similarly; v is the regression target; t is the 

predicted tuple. Thus, the loss of box regression can be 

described as: 

 

( )
1
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smoothreg L i i

i x y w h
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1

20.5  if | | 1
$ ( )
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L

x x
smooth x

x

 
= 

−
 

(5) 

 

where, smooth L1(x) is the regression loss function. Hence, the 

joint loss function can be defined as: 

 

{ 1}( , , , ) ( , ) 1 ( , )obj u regL p u t v L p u L t v == +   (6) 

 

where, λ=1 is a balance parameter. 

3.3 Parameter settings 

 

In our experiments, the proposed model was trained and 

tested on the trainval and test sets of PASCAL Visual Object 

Classes Challenge 2007 (VOC2007), respectively. The 

network training was performed using the Adam optimizer. 

From a target image, each Adam mini batch yielded 128 boxes, 

which were taken as training samples. The 128 training 

samples from each batch were equally divided into positive 

and negative samples: the boxes with a >0.7 overlap value with 

ground-truth boxes were considered positive samples, and 

those with an overlap value in [0.1, 0.5] were considered 

negative samples. The experiments lasted a total of 32 

iterations. The model layers were finetuned by fixing the 

learning rate at 0.0001 for all 32 iterations. To train the 

detection module of our model, 256 object proposals were 

generated in each mini-batch for each image. In Fast-RCNN, 

the proposals with an overlap value of 0.5 with the ground-

truth boxes are treated as positive samples, that is, the positive 

samples take up 25% of the proposals. Meanwhile, those with 

an overlap value in [0.1, 0.5] are considered negative samples. 

Furthermore, the top 1,500 proposals were selected for model 

training, with a fixed learning rate (0.0001) in all iterations. 

The model testing was carried out on the top 100 proposals per 

image, which is much fewer than those required by previous 

approaches. 

 

 

4. EVALUATION AND RESULTS 

 

The effectiveness of our model was evaluated on PSCAL 

VOC2007 dataset [72], the most popular benchmark in the 

field of object detection. The dataset contains 9,963 images 

with objects in 20 classes. Here, the dataset is split into a 

training set of 2,501 images, a validation set of 2,510 images, 

and a test set of 4,952 images. The images were divided into 

these sets along with their bounding box labels. 

The overall detection performance was evaluated by metrics 

like mean average best overlap (MABO), detection recall (DR), 

and mean average precision (mAP). MABO and DR were 

selected to measure the positioning accuracy; mAP was 

chosen to assess the detection accuracy. 

To validate the superiority and robustness of our method, 

numerous state-of-the-art methods were taken as contrastive 

schemes. For the comparison of positioning accuracy, the 

following methods were selected: Rantalankila’s method [8], 

GOP [9], Rahtu’s method [10], Objectness [11], BING [12], 

RandomPrim [13], Selective Search [14], CSVM [15], LPO 

[16], EdgeBox [17], MCG [18], Endres [19], DeepBox [20], 

RPN [35], DeepMask [21], and SharpMask [22]. The 

proposals obtained by these methods were fed into the 

detection module to check the quality of the proposes in the 

overall detection task. 

For the comparison of detection accuracy (mAP) of our 

model on the proposed obtained by previous methods, multiple 

two-stage methods were chosen: R-CNN [32], SPPnet [33], 

Fast R-CNN [34], Faster R-CNN [35], MR-CNN [73], R-FCN 

[36], ION [51], HyperNet [52], OHEM [53], Craft [74], 

LocNet [75], R-FCN with deformable convolutional network 

(DCN) [76], CoupleNet [77], DeNet512 (wide) [78], FPN-

Reconfig [79], DeepRegionLet [80], and DCN + R-CNN [81]. 

The detection efficiency of our model was compared with one-

stage detectors like YOLO [39], YOLOv2 [82], SSD300 [40], 

deconvolutional single shot detector (DSSD) 321 [83], Deeply 
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Supervised Object Detector (DOSD) 300 [84], reverse 

connection with objectness prior network (RON) 384 [85], and 

CenterNet [86]. 

Tables 2 and 3 show the detection recalls of various 

methods on different number of proposals (100, 300, 500, and 

1,000) at intersection over union (IoU) thresholds of 0.5 and 

0.7, respectively. Figure 4 compares the detection recalls of 

different methods against the IoU threshold using 100 

proposals per image. Figures 5 and 6 illustrate the detection 

recalls of various methods on different number of proposals at 

the IoU thresholds of 0.5 and 0.7, respectively.  

 

 

Table 2. Detection recalls of various methods on different number of proposals at IoU=0.5 

 
Methods 

(IoU=0.5 Recall) 

Number of proposals 

100 300 500 1000 

Rantalankia’s method 15.1 17.1 20.6 25.3 

GOP  60.9 62.2 67.3 72.5 

Rahtu’s method 63.1 64.4 67.8 72.4 

Objectness 66.2 67.5 70.6 75.2 

BING  71.0 72.3 74.5 79.7 

RandomPrim 71.9 73.5 75.6 80.3 

Selective Search 72.4 74.9 76.2 81.6 

CSVM  75.1 77.8 79.4 84.9 

LPO  76.3 78.1 80.5 85.3 

EdgeBox 76.4 78.7 81.2 86.9 

MCG  82.9 84.5 86.5 87.5 

Endres 84.5 86.2 87.9 88.1 

DeepBox 85.2 87.8 88.7 92.0 

RPN  90.2 90.9 91.9 92.9 

DeepMaskZoom 91.4 91.8 92.3 93.4 

SharpMaskZoom 91.9 92.4 92.9 93.7 

Our model 92.8 93.6 93.9 94.5 

 

Table 3. Detection recalls of various methods on different number of proposals at IoU=0.7 

 
Methods 

(IoU=0.7 Recall) 

Number of proposals 

100 300 500 1000 

Rantalankia’s method 8.5 10.8 13.4 17.7 

BING 25.6 27.7 30.8 34.4 

CSVM 26.9 28.7 31.2 35.3 

Objectness 30.3 32.5 35.5 39.6 

GOP 36.7 38.3 41.1 45.2 

RandomPrim 45.6 47.1 50.2 54.7 

Rahtu’s method 46.3 48.4 51.4 55.2 

LPO 49.7 51.5 53.6 57.8 

Selective Search 50.2 52.7 55.7 59.4 

Endres 60.8 62.8 65.3 69.3 

MCG 61.4 63.3 66.2 70.1 

EdgeBox 61.7 63.9 66.8 70.9 

RPN 65.5 67.7 70.8 74.9 

DeepBox 71.3 73.2 76.3 80.5 

DeepMaskZoom 72.1 74.3 77.2 82.5 

SharpMaskZoom 75.2 77.4 80.5 84.9 

Our model 77.7 79.6 82.7 86.1 

 
 

Figure 4. Detection recalls of different methods against the 

IoU threshold using 100 proposals per image 

 
 

Figure 5. Detection recalls of various methods on different 

number of proposals at the IoU threshold of 0.5 
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Figure 6. Detection recalls of various methods on different 

number of proposals at the IoU threshold of 0.7 

 

Our model achieved higher detection recall than the 

previous approaches, and did well across the two IoU 

thresholds facing different number of proposals. The 

performance of our model remained robust, despite the 

changes in IoU threshold and the number of proposals. For 100, 

300, 500, and 1,000 proposals, our model achieved recall 

values of 92.8%, 93.6%, 93.9%, and 94.5% at IoU=0.5, and 

77.7%, 79.6%, 82.7%, and 86.1% at IoU=0.7, respectively. 

The good performance is the result of the sharing of 

convolutional features across the network. 

Despite producing high-quality proposals, many state-of-

the-art approaches failed to achieve a high recall, due to the 

limited number of candidate boxes. A few relatively 

competitive methods could not reach a high recall, as the 

proposals are loosely fitted. None of the contrastive methods 

achieved a robust performance at either IoU threshold.  

Moreover, our model achieved a recall of 92.8% on only 

100 proposals per image at IoU=0.5. The same recall was 

achieved by the RPN using 1,000 proposals per image. Our 

model could realize a high recall with a few proposals, because 

its proposals are highly diverse. Overall, our approach boasts 

robust performance on a few proposals, and acceptable 

performance on many proposals. On the contrary, the previous 

approaches were outshined by our method, whether there were 

many or a few proposals. Hence, this paper proposes a much 

more accurate method than the existing approaches, thanks to 

the high-quality and refinement of object proposals. 

 

Table 4. Detection effects of different methods 

 
Methods (MABO) Number of proposals mAP with 100 

proposals per image 100 300 500 1000 

Rantalankia’s method 24.1 26.8 30.9 34.5 20.2 

Objectness 57.2 59.7 62.1 66.2 55.2 

BING 58.4 60.3 63.6 67.6 54.5 

GOP 59.3 61.5 64.7 68.8 43.1 

Rahtu’s method 60.4 62.3 65.5 69.2 53.2 

CSVM 61.3 63.4 66.6 70.9 56.6 

RandomPrim 64.9 66.7 70.5 75.4 52.3 

Selective Search 66.6 68.9 72.8 77.1 54.2 

LPO 67.7 69.8 73.9 78.3 54.7 

EdgeBox 68.5 70.2 74.7 79.9 64.1 

RPN 72.3 74.2 78.9 83.9 76.7 

Endres 72.8 74.9 79.6 84.1 68.6 

MCG 73.2 75.8 80.2 85.5 67.2 

DeepBox 73.9 76.7 80.1 85.3 70.2 

DeepMaskZoom 78.4 80.8 84.3 89.4 74.4 

SharpMaskZoom 79.2 81.4 85.5 90.7 75.5 

Our model 81.1 82.9 87.4 92.8 78.3 

 

 
 

Figure 7. Positioning accuracies of different methods on 

different number of proposals 

Table 4 compares the detection effects of different methods, 

and Figure 7 compares the positioning accuracies of different 

methods on different number of proposals. Our model 

achieved the highest MABOs (81.1%, 82.9%, 87.4%, and 

92.8%) on 100, 300, 500, and 1,000 proposals per image, 

respectively. Our model had acceptable performance on a few 

high-quality proposals. Interestingly, the existing approaches 

yielded good recalls, but were inadequate to produce high 

MABOs. This is because of the low-quality of the numerous 

proposals. Only a very few approaches realized better MABO 

than our model. Overall, our model significantly improves the 

detection performance, due to the variation in object classes 

and low computing cost.  

It can also be seen from Table 4 that, in the presence of only 

the top 100 proposals of each image, our model ended up with 

a high mAP of 78.3% by refining these high-quality proposals. 

Combined with the performance comparison in Figure 4, our 

model achieved the highest detection recall of 92.8%, when 

only 100 proposals were available per image. The mAP of our 
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model was 14.2%, 23.4%, 24%, and 26% higher than that of 

EdgeBox, Selective Search, BING, and RandomPrim, 

respectively, and greater than that of any other contrastive 

approach. The extensive results show that our model can 

realize excellent recall with a few proposals, and achieve an 

exceptionally well defection effect. 

Table 5 compares the detection accuracies of our model 

with other existing detectors on the Pascal VOC 2007 test set. 

The mAP of our model stood at 85.2%, higher than that of any 

other prior method. The reason is that our model generates a 

few high-quality and accurate proposals, and achieves a high 

recall. However, this ability is considered as a weakness in 

constative methods. In contrast to other alternatives, our model 

maintains the feature information, and shares the 

convolutional features within the network, without affecting 

the proposal generation performance. The feature sharing 

significantly improves the overall detection performance. It 

can also be observed that the contrastive approaches had poor 

real-time performance, due to their low mAPs. Therefore, the 

experimental results demonstrate that our model is more 

efficient, accurate, and useful than the contrastive methods in 

image object detection. Figure 8 shows the qualitative results 

of our model on the test set.  

 

 
 

Figure 8. Qualitative results of our method 

 

Table 5. Detection accuracies of different methods on the test set 

 
Method Backbone architecture  Proposed Year Input size (Test) mAP (%) 

R-CNN [32] AlexNet 2014 600 × 1000 50.2 

R-CNN [32] OxfordNet (VGG-16) 2014 Arbitrary 66.0  

SPPnet [33] AlexNet 2014 224 × 224  63.1 

Fast R-CNN [34] OxfordNet (VGG-16) 2014 600 × 1000 70.0 

Faster R-CNN [35] OxfordNet (VGG-16) 2015 600 × 1000 73.2 
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MR-CNN [73] OxfordNet (VGG-16) 2015 Multi-Scale 78.2 

R-FCN [36] ResNet-101 2016 600 × 1000 80.5 

ION [51] OxfordNet (VGG-16) 2016 600 × 1000 76.4 

HyperNet [52] OxfordNet (VGG-16) 2016 600 × 1000 76.3 

OHEM [53] OxfordNet (VGG-16) 2016 600 × 1000 74.6 

Craft [74] OxfordNet (VGG-16) 2016 600 × 1000 75.7 

LocNet [75] OxfordNet (VGG-16) 2016 600 × 1000 78.4 

R-FCN with DCN [76]  ResNet-101 2017 600 × 1000 82.6 

CoupleNet [77] ResNet-101 2017 600 × 1000 82.7 

DeNet512(wide) [78] ResNet-101 2017 512 × 512  77.1 

FPN-Reconfig [79]  ResNet-101 2018  600 × 1000 82.4 

DeepRegionLet [80] ResNet-101  2018 600 × 1000 83.3 

DCN + R-CNN [81] ResNet-101 + 2018 Arbitrary 84.0 

One Stage Detector     

YOLO [39] OxfordNet (VGG-16) 2016 448 × 448 63.4 

YOLOv2 [83]  DarkNet 2017 544 × 544 78.6 

SSD300 [40] OxfordNet (VGG-16) 2016 300 × 300 77.2 

SSD512 [40] OxfordNet (VGG-16) 2016 512 × 512 79.8 

DSSD321 [82]  ResNet-101 2017 321 × 321 78.6 

DSSD513 [82]  ResNet-101 2017 513 × 513 81.5 

DOSD300 [84]  DenseNet 2017 300 _ 300 77.7 

RON384 [85]  OxfordNet (VGG-16) 2017 384 × 384 75.4 

CenterNet [86]  ResNet101 2019 512 × 512 78.7 

Our method EfficientNets 2021 600 × 1000 85.2 

 

 

5. DISCUSSION 

 

After reviewing on the relevant literature on object 

detection, this paper offers an improved method for image 

object detection, which realizes higher recall, MABO, and 

mAP than existing methods. Based on the results of 

comparative experiments in Section 4, this section tries to 

highlight the advantages of our model. 

Compared with Rantalankila’s method [8] and GOP [9], our 

model had a marked edge in recall (77.7% and 31.9%), MABO 

(57% and 21.8%), and mAP (58.1% and 35.2%) on 100 

proposals at the IoU threshold of 0.5. A high recall and 

detection efficiency were realized by our model on a few or 

many proposals. But this is considered as a drawback in 

Rantalankila’s method and GOP. The poor detection 

performance of these two methods is stemmed from the lack 

of direct control over proposal generation, the absence of a 

proposal scoring mechanism, and the generation of poor, 

duplicate proposals. Moreover, Rahtu’s method [10] uses the 

first top ranking proposals instead of the top best proposals, 

which limits the overall detection performance. Our model is 

much more efficient than that method in terms of detection rate, 

MABO, and mAP. Our model generates a few best quality 

proposals, and manifests that these proposals are enough to 

realize good detection effect. Furthermore, our model 

performed better than Objectness [11] at a high IoU threshold, 

realizing more robust detection performance. 

As for BING [12], the detection efficiency declined with the 

increase in IoU threshold, and some classes of objects were 

detected at a lower accuracy than that of our model. 

RandomPrim [13] neither has a scoring mechanism nor 

controls proposal generation. Its detection effect weakened 

with the growing number and random selection of proposals. 

This explains the huge performance gap of RandomPrim with 

our model. SelectiveSearch [14] involves no learning phase in 

proposal generation, yet still achieved fairly good performance. 

In contrast, our model drastically outshined SelectiveSearch 

by creating fewer high-quality proposals: the edges of our 

model in recall, MABO, and mAP were 20.4%, 14.5%, and 

24.1%, respectively. Unlike SelectiveSearch, our model 

speeds up the detection process by scoring, ranking, and 

refining the proposals. Likewise, our model achieved better 

performance than CSVM [15] in all metrics: recall (17.7%), 

MABO (19.8%), and mAP (21.7%). Although the LPO [16] 

was better than some approaches in recall, MABO, and mAP, 

it was not as good as our model, for its low-quality proposals 

are insufficient to enhance the overall detection performance. 

EdgeBox [17] could perform well on a high number of 

proposals, and controls proposal generation with a scoring 

mechanism. However, the network is not effective in proposal 

ranking for the purpose of robust detection. Our model 

surpassed EdgeBox in every evaluation metric. Similarly, our 

model is superior to MCG [18] in recall, MABO, and mAP for 

all settings. The latter’s performance decreased with the 

growing IoU threshold. Moreover, the high-cost model 

proposed by Enders [19] failed to detect all the objects in every 

image, and was nowhere near our model in terms of the three 

metrics. Further, the performance DeepBox [20] was 

surpassed by that of our model across the board, because the 

network generates poorer proposals than our model, and the 

generated proposals could not be reduced. Our model also 

generated fewer proposals and reduced false positives, i.e., 

achieved better performance, than RPN [35], DeepMask [21], 

and SharpMask [22]. The advantage of our model over these 

three networks is small yet striking. 

Once generated, the high-quality proposals can be directly 

applied to object detection in images. Therefore, the detection 

efficiency of our model was further compared with various 

state-of-the-art object detectors [32-36, 39-40, 51-53, 73-86]. 

As shown in Table 5, our model achieved the best detection 

accuracy, thanks to its potential to generate a few high-quality 

proposals. In addition to the edge in recall and proposal 

accuracy, our model output robust results on objects in 

different classes. The highest mAP of 85% shows the 

effectiveness of our model than prior detectors in object 

detection.  

The key objectives of this research revolve around the 

generation of fewer high-quality and class-independent 

proposals, speeding up the detection process, and the efficacy 

measured by quality evaluation metrics. The contrastive 

methods have certain advantages and disadvantages in these 

490



 

aspects. But the proposed model surpassed all of them in recall, 

MABO, and mAP. 

 

 

6. CONCLUSIONS 

 

This paper proposes an effective model for efficient 

detection of image objects, adding a simple yet compelling 

tool to the object detector family. Our model first generates a 

few high-quality, class-independent, and accurate object 

proposals. Then, the class of each object is determined 

efficiently based on these proposals. In addition, convolutional 

features are shared across the network to maintain good recall 

and accuracy with a few proposals. This is considered a 

drawback in previous approaches, as too many proposals 

would hinder detection efficiency.  

Through efficient proposal generation & refinement, our 

model can achieve a high recall on true objects, which 

facilitates the accurate recognition of proposals and detection 

of objects. Further, the efficiency of the proposed model was 

evaluated on the Pascal VOC 2007 test set. The experimental 

results show the superiority of our model over existing 

methods in recall, MABO, and mAP. The recall of our model 

at the IoU threshold of 0.5 was 92.8%, 93.6%, 93.9%, and 

94.5% on 100, 300, 500, and 1,000 proposals, respectively; the 

MABO was 81.1%, 82.9%, 87.4%, and 92.8% on 100, 300, 

500, and 1,000 proposals, respectively; the mAP was 78.3% 

on 100 proposals per image. Our model also outperformed the 

other detector on the Pascal VOC 2007 test set, with an mAP 

as high as 85.2%. The excellent experimental results indicate 

that our model is an effective and robut tool for object 

detection in images.  

The future research will extend our model to weakly 

supervised object detection by generating more proposals at a 

higher IoU threshold and choosing as many true proposals as 

possible. The training process can be made more effective by 

mining discriminative hard negatives. Furthermore, the 

authors intend to learn and apply our model in diverse domains. 
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