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Point cloud-based Deep Neural Networks (DNNs) have gained increasing attention as an 

insightful solution in the study field of geometric deep learning. Point set aware DNNs have 

proven capable of dealing with the unstructured data type and successful in 3D data 

applications such as 3D object classification, segmentation and recognition. On the other 

hand, two major challenges remain understudied when it comes to the use of point cloud-

based DNNs for 3D facial expression (FE) recognition. The first challenge is the lack of 

large labelled 3D facial data. The second is how to obtain a point-based discriminative 

representation of 3D faces. To address the first issue, we suggest to enlarge the used dataset 

by generating synthetic 3D FEs. For the second one, we propose to apply a level-curve based 

sampling strategy in order to exploit crucial geometric information. The conducted 

experiments show promising results reaching 97.23% on the enlarged BU-3DFE dataset.  
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1. INTRODUCTION

Facial Expressions (FEs) perform a crucial role in the 

nonverbal communication. They afford indeed, perceptual 

indicators of the intention, the impression and the emotional 

state of persons. Managing and identifying one’s emotions and 

others’ is considered as a sign of high emotional intelligence. 

The work of Ekman [1] is considered as one of the valuable 

studies on FE understanding and analysis. Ekman and Frisen 

[2] developed the facial action coding system to encode FEs

as a combination of 44 Action Units (AUs). They also defined

six universal categories of emotions, referred to as the basic

emotions: Angry, Disgust, Fear, Happy, Sad, and Surprise.

A considerable amount of work on FE Recognition (FER) 

has been conducted on both research and industrial areas. 

Large and complex projects, such as mental state and 

behavioural studies, emotion understanding and classification, 

facial animation and rigging, stress signal and fatigue 

identification, are few examples of the widespread 

applications related to different FER involving different fields, 

such as psychology, affective computing, human-computer 

interaction and automatic surveillance. 

FER has been extensively studied in the 2D domain (i.e. 2D 

images and image sequences) and various approaches have 

been developed [3]. Despite their valuable enhancement in 

terms of accuracy and expression recognition rates, 2D-based 

FER methods show some weaknesses when facing problems 

like illumination condition changes, head pose variation, and 

occlusion of facial appearances (e.g. hair, beard and glasses).  

Therefore, 3D data have been presented as an alternative [4] 

to alleviate the aforementioned inherent problems with 2D 

data. 

Due to their efficiency in analyzing the FER problem, 

conventional FER approaches have been prominent 

techniques in the last two decades. However, these 

handcrafted-based techniques suffer several limitations. One 

of the first challenging problems is how to decide which 

feature extraction algorithm is suitable for a given problem. 

There is no a priori way of knowing about the quality of the 

feature to be designed. The efficiency of a feature extraction 

method can only be established posteriori, through the 

statistical methods of the feature quality assessment. Moreover, 

most feature extraction methods induce very high feature 

space dimensions. Therefore, feature selection techniques 

such PCA and LDA are used to reduce the feature space 

dimension. Such techniques allow excluding highly correlated 

features and irrelevant ones so as to achieve higher 

classification accuracy and lower computational cost. 

Nevertheless, discarding features and reducing massive 

amounts of data samples can cause data loss and data 

restriction issues. Such operations hinder the exploitation and 

mining of data to the fullest extent, especially when dealing 

with large scale real-world data. These issues can become even 

more difficult to handle for challenging FER applications, 

such as real time 2D/3D FER or AU recognition, where the 

number of expressions goes beyond six basic universal 

emotions. 

Furthermore, feature engineering methods are, in general, 

labor-intensive, complex and error-prone. Hence, trying to 

develop and compare these handcrafted features is problematic 

and reveals critical issues like dataset dependency, 

replicability and reproducibility of FER approaches. 

Nowadays, Deep Learning (DL) has become the basis of 

most state-of-the-art techniques used in the machine learning 

field. Motivated by the high inference achievement 

demonstrated by Deep Neural Network (DNN) architectures, 

recent FER approaches have employed DNNs to classify FEs. 

Promising results in terms of FER accuracy have been 
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achieved [5-8]. Most of the previous work on 3D FER has 

focused on transforming 3D faces into 2D representations in 

order to allow for a straightforward use of CNN-based 

architectures. However, such representations induce 

resolution-degradation and information-loss problems. 

Therefore, previous 3D FER approaches remain suboptimal 

and unable to fully describe subtle and complex details of 

shape cues. 

The problem of 3D FER remains understudied when it 

comes to the use of unstructured aware DNN frameworks. 

Two main reasons account for this: The first is how to get the 

optimal 3D face representation that capture most of the facial 

expression cues, and the second is the lack of large facial 

databases.  

In this work, we propose two major contributions to tackle 

both issues. First, along with exploiting 3D point sets extracted 

from curve-based representation as an input to the used DNN 

architecture, we propose to study the impact of the number of 

3D points on the obtained accuracy in order to select the 

adequate one. Second, we suggest to increase the size of 

original data by generating realistic 3D FEs using a classic 

non-rigid registration technique. Thorough experiments are 

conducted and promising 3D FER results are obtained using 

the static BU-3DFE database. 

The remainder of the paper is organized as follows: Section 

2 reviews the related work on 3D FER. Section 3 introduces 

an overview of our proposed 3D FER approach. Section 4 

presents the conducted experiments and obtained results. In 

section 5, we delve into discussion. Finally, section 6 

concludes the paper and presents some future work. 

 

 

2. RELATED WORK 

 

In this paper, we are interested in recognizing six 

prototypical FEs from 3D static face scans using a DL 

paradigm. Most DL-based 3D FER methods, as presented in 

Table 1, have two principal characteristics in common. First, 

they are multi-modal data-oriented approaches, and second 

they apply off-the-shelf pre-trained CNN models. The way 

these approaches conduct multi-modal (2D+3D) studies is 

through the use of 2D RGB/gray images and 2D 

representations of 3D face scans. Range images (i.e. depth 

maps) and derivative maps (i.e. Gaussian, mean, shape index, 

etc.) are examples of 2D representations. Several benefits can 

be depicted from 2D + 3D multimodality. First, it allows Data 

Augmentation (DA) and alleviates, to some extent, the 

labelled data scarcity problem. Second, the multi-modality 

aspect is, in general, coupled with different fusion strategies 

(e.g. data fusion and classifier fusion) which can be applied on 

different levels. A multi-modal recognition system is indeed 

capable of exploiting the complementary property shared 

between different image data attributes (or modes), which 

contributes to the robustness enhancement of this type of 

approaches.  

Furthermore, using 2D representations of 3D models 

assures the consistency of the data format with the input layer 

of CNN architectures. Most FER approaches exploiting 3D 

samples typically transform the input samples into a regular 

2D format for a prompt use of CNN models. Moreover, this 

allows the use of well-established pre-trained CNN models. 

Within the context of transfer learning, where relevant features 

learned from natural images can benefit the FE recognition 

task, comes with significant gains in terms of execution time, 

with better initialization options and enhanced recognition 

accuracy with appropriate fine-tuning. Overall, the reuse of 

pre-trained CNN models is dictated by the very limited 

labelled FE datasets. 

The first work towards automatic 3D FER using DL was 

proposed by Li et al. [9]. They pre-processed the 3D face scans 

to extract several 2D images from the BU-3DFE database. Six 

types of 2D facial attributes were utilized, namely three 

normal maps (X, Y, Z), a geometry map (2D range image), a 

curvature map (principal curvatures) and a provided texture 

map. They applied pre-trained CNN models, such as Caffe-

Net and VGG-Net, to extract what they referred to as "deep 

representation". They investigated each convolutional layer 

and computed per-layer FER accuracy. Based on their study 

of efficiency versus accuracy, they suggested that the feature 

maps of the fifth convolutional layer were the best to represent 

deeply learned features. Rather than using a standard six-node 

softmax layer to classify the input into one of the six basic 

emotions, the authors applied linear SVM classifiers at the top 

of the pre-trained CNN models. This choice might find its 

support in an earlier study of Tang [10], where he revealed a 

small, but consistent, gain of substituting the softmax layer 

with an SVM classifier. Detailed comparisons with 

handcrafted feature-based 3D FER and their deep 

representation generated using pre trained CNN models were 

reported to highlight the performance of their approach. 

Another gap-filling study was put forward by Huynh et al. [7]. 

They combined two CNN architectures. The first CNN was 

used with textured data, which enabled handling both gray and 

colored images. The second CNN handled depth images. The 

approach was applied on the BU-3DFE database and an 

overall recognition rate of 92% was reported. Li et al. [11] 

suggested an extension of their work [9] with a Deep Fusion 

CNN (DF-CNN) architecture composed of two subnets; a 

feature subnet and a fusion one. The fusion subnet was 

proposed to enhance their original CNN model while fusing 

the learned deep features with the softmax activation function. 

Convolutional, ReLU and pooling layers were the main 

building blocks of the feature extraction subnet. As for the 

fusion subnet, it was built on reshaping and fusion layers. To 

show the effectiveness of the DF-CNN, exhaustive evaluations 

and comparisons against previous 3D FER approaches were 

reported. Indeed, 86.8% accuracy was achieved overcoming 

the state-of-the-art methods. 

In a simple, yet effective, study of Yang and Yin [6], 3D 

landmarks were used to generate a mask configuration around 

salient facial regions. Clipping window blocks were centered 

around these landmarks to enable the rendering of relevant 

face regions (mouth, eyes and eyebrows). In addition to the 

curvature and depth maps, a mask based on the regions of 

interest was used in the third input channel of the CNN model 

so that the focus of the DL model could be activated on 

specific areas that were more likely involved in the FE changes. 

Both BU-4DFE and BU-3DFE databases were used for 

training and validation/testing. Clearly, 75.9% and 69% 

accuracy were attained on BU-4DFE and BU-3DFE, 

respectively. Jan et al. [12] pursued further research on the 

individual contribution of distinct facial regions to perform an 

expression. They suggested to exploit the eyes, eyebrows, 

mouth and nose regions. These four relevant parts were 

extracted from both depth and texture images. Then, they were 

propagated individually through a pre-trained CNN model. 
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Table 1. State-of-the art DNN based 3D FER approaches 

 

Reference Database 
The used DNN based approach Recognition 

rate Input type DNN architecture /model 

Yang and 

Yin [6] 

BU-3DFE - Curvature map 

- Depth map 

- Generated masking configuration 

 

- Application of VGG-Face model  

69% 

BU-4DFE 75.9% 

Huynh et 

al. [7] 

BU-3DFE 

- Texture image 

- Depth image 

- Combination of two CNN architectures dealing with 

both input types (texture and depth images) 
92% 

Li et al. 

[9] 

- Texture map 

- Geometry map 

- Three normal maps 

- Normalized curvature map 

- Application of pre-trained CNN architectures (Caffe-

Net and VGG-Net) 
84.87% 

Li et al. 

[11] 
 

-Texture map 

- Geometry map 

-Three normal maps 

- Normalized curvature map 

- Extension of [9]. 

- Enhancement of DL network. 

- Exploitation of fusion subnet to fuse learned deep 

features  

86.8% 

Jan et al. 

[12] 
BU-3DFE 

- Facial key parts cropped out from 

texture and depth images (mouth, nose, 

eyes and eyebrows)  

- Exploitation of a fusion subnet 

- Fusion of different feature maps learned from each 

facial part 

88.54% 

The feature maps learned from each facial part were fused 

using a fusion subnet. After the assessment of the deep feature 

representation of each region, the mouth was considered as the 

facial region that brought the most value to FEs, compared 

with other facial parts. Although the 2D representation 

encoded important cues of the original 3D shape, such a 

representation showed some limitations as for capturing 

complex and detailed shape information.  

In general, significant loss of geometric information is 

entailed while using 2D planes of projected 3D data. Thus, the 

aforementioned 3D FER approaches remain suboptimal for 

encoding fine and subtle shape changes due to FEs. 

 

 

3. PROPOSED APPROACH 

 

We propose to address the 3D FER problem from a pure 

geometric view point. Among different representation types of 

3D objects (i.e. point cloud, polygonal/triangular mesh, voxel 

grid and implicit surface), particularly for the 3D face model, 

we are interested in the point cloud representation.  

A point cloud is a set of points {𝑃𝑖|𝑖=1,…,𝑛} where each one 

is defined by its (x, y, z) coordinate attributes. Fundamentally, 

these spatial attributes hold fundamental facial geometric 

details and allow for capturing local shape information. Point 

clouds, known as unified structures, have the advantage of 

being compact and accurately encoding highly complex 

objects. Our goal is to develop a DL-based 3D FER approach 

that obviates irregularities and connectivity complexities of 

meshes, surfaces or volumes, and to use only the 3D point 

cloud instead, as presented in Figure 1. In this work, we 

consider treating the deep 3D FER problem as a classification 

one. More explicitly, we propose to apply a DNN model which 

accepts a set of 3D points as an input and outputs K scores for 

all K candidate classes, where K is the number of FEs to be 

recognized. These FEs are the six basic emotions. On the other 

hand, the main faced challenge in the 3D-point learning 

process is related to the fact that point clouds are unordered. 

Therefore, the model needs to be invariant to N! permutations.  

Indeed, 3D points should create a meaningful subset 

allowing the model to detain combinatorial interactions among 

neighboring points. A symmetric function defined by 

‘Maxpooling’ is consequently used. 

To construct a set of symmetric functions f defining the 

DNN, the following observation is used: f is symmetric as long 

as g is symmetric. 

 

1 2 1( , ,..., ) ( ( ),..., ( ))n nf x x x g h x h x=  

 

First, each 3D input point is transformed independently and 

identically by a small network h defined by five convolutional 

layers, as presented in Figure 5. Then, 3D point features are 

aggregated using the Maxpooling layer, which is defined by 

the symmetric function g. Afterwards, the aggregated 

information goes through a subnetwork δ, mainly composed 

of a set of fully connected layers.  

 

 
 

Figure 1. Overview of proposed approach 
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In fact, to deal with the geometric information of 3D shapes, 

these shapes are typically modeled as Riemannian manifolds. 

The manifolds that are equipped with a Riemannian metric 

are usually discretized as point clouds or meshes. Hence, the 

neighbourhoods of local points are defined with the distance 

metric and a 3D shape locally resembles to a Euclidian space. 

Such a standard practice allows intrinsically working with 

geometric shapes, i.e. to locally apply metrics and compute 

measurements near each point. Thus, the generalization of 

convolution operations, as main building blocks of classic 

CNN models to 3D shapes which are considered locally as 

Euclidean objects, becomes intuitive. The convolution filters 

of the new geometric CNN are deformation-invariant by 

construction. Pointnet ++ uses indeed the distance metric to 

define local regions by partitioning the set of points. 

Afterwards, local features are extracted from the 
neighbourhoods of points and then aggregated to generate 

higher-level features. These steps are repeated until obtaining 

the whole 3D facial points features.  

 

3.1 3D FE synthesis 

 

One major requirement for the success of DL models is the 

availability and abundance of labelled data to learn from. This 

is mainly affordable in the 2D domain especially with natural 

images. When acquiring such data, we only need a simple 

camera sensor embedded on some mobile device. Such a 

facility is unavailable for 3D data, especially for real data 

where there is a need for special 3D sensors and techniques for 

data acquisition. For instance, existing 3D FE databases are 

small-scale ones among others. For the BU-3DFE dataset, it 

does only contain 2500 FE labeled samples. The available 

datasets are still far from being enough to train DL models. 

Thus, there is a need to generate more ground truth data for 

training. One common practice to alleviate the lack of large-

scale training datasets is to generate synthetic data. In order to 

generate 3D face expressive models, two strategies exist: 1) 

reconstruct 3D faces from 2D facial images, and 2) employ a 

statistical 3D face model and manipulate the model 

distribution parameters to generate synthetic 3D face samples. 

The first strategy, commonly referred to as Monocular 3D 

Facial Shape Reconstruction (MFSR), takes advantage of the 

abundance of 2D face image data. Different techniques have 

been proposed to reconstruct 3D faces from 2D images, 

starting from the pioneer work of Blanz and Vetter [13], who 

put forward an approach to model 3D human faces from single 

and/or multiple facial images. This was the first work to 

introduce 3D Morphable Model (3DMM) for facial shape 

reconstruction using a PCA-based linear subspace that 

captures shape variations in human faces. With the emergence 

of DL techniques, more advanced MFSR approaches have 

been developed, such as RSNIEF [14], UH-E2FAR [15], 

Ganfit [16], MMFace [17], and AvatarMe [18]. 

The challenge of synthesizing 3D faces not only requires 

inferring accurate, smooth and fine-grained geometry 

information from 2D face images, but also renders high-

resolution and detailed texture information (i.e. skin 

reflectance). Capturing this information within the constraints 

of arbitrary poses, lighting conditions and occlusion makes the 

task even more challenging. State-of-the-art MFSR 

approaches such as GANFIT and AvatarMe exploit the power 

of genarative-adversial-network models to produce high-

resolution photorealistic 3D faces from in-the-wild images. 

As for the second strategy, synthetic 3D FE models can be 

generated using 3D face morphable models, like 3DMM [13], 

BFM [19], and AFM [20]. Such generic 3D human-like faces 

are parameterized models that are controlled by a set of 

geometric and photo-metric parameters. Usually, they are 

explicitly formulated as a linear combination of; a set of 

shapes and blend-shape bases, which involves both identity 

and expression parameter vectors. Therefore, it is possible to 

create a large number of 3D faces. Gilani and Mian [21] 

proposed to synthesize new identities from 3D models by 

simultaneously interpolating between the facial identity and 

FE spaces.  

Another solution consists in using 3D-face databases to 

compute a statistical 3DMM that likely encodes both facial 

identities and expressions. Samples of synthetic 3D FEs can 

be generated from the random sampling of the 3DMM. Even 

though the above methods are effective in synthesizing 3D 

faces, most of them fail to reconstruct highly detailed cues of 

geometric and texture information. The 3D face geometry 

reconstruction approach from 2D facial images [13] is 

restricted due to the various faced challenges by the used 

algorithm, such as illumination conditions and diversified FEs. 

In addition, exploiting the 3DMM [21, 22] fails to accurately 

depict the complicated structure of facial details [18]. 

According to the emotion universality hypothesis, all 

humans convey six prototypical expressions (anger, disgust, 

sadness, fear, surprise and happiness) with closely similar 

facial region movements.  

 

 
 

Figure 2. Illustration of proposed DA for BU-3DFE while 

using eight randomly picked references to enhance DNN 

training of Fes 

 

Based on this hypothesis, we propose to generate additional 

realistic 3D FEs by utilizing the available BU-3DFE dataset. 

We apply a Coherent Point Drift (CPD) non-rigid registration 

to reproduce the facial expression of an expressive face (target) 

to a neutral one (source). Compared to the state-of-the-art 3D 

FE synthesis methods, this technique is simple, yet effective. 

The size of the used database is consequently increased by 

reusing the same samples of the BU-3DFE database.  

As presented in Figure 7, the synthetized FEs are realistic 

and different from the original ones. 

Let S define the initial dataset and T specify the increased 

one. DA can be represented as:  

 

𝜙: 𝑆 → 𝑇 

 

The augmented dataset is therefore represented as: 

 

�̂� =  𝑆 ∪ 𝑇 

 

where, �̂�  encloses the original training set S and the new 

generated data T using transformation functions 𝜙. Here, 𝜙 is 
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the non-rigid transformation resulting from the CPD technique 

between two different point sets, X and Y. 

The CPD algorithm defines the registration by a probability 

density estimation where the first point set 𝑋 =
 (𝑥1, 𝑥2, … , 𝑥𝑁)𝑇 is the reference, and the second point set 𝑌 =
 (𝑦1, 𝑦2 , … , 𝑦𝑀)𝑇  is the target. The latter is represented by 

Gaussian Mixture Model (GMM) centroids. 

The GMM probability density is given by the following 

equation: 

 

𝑃(𝑥) =  ∑ 𝑃(𝑚)𝑝(𝑥|𝑚)

𝑀+1

𝑚=1

 

 

with 

 

𝑃(𝑥 = 𝑚) =  {
(1 − 𝜔)

1

𝑀
        𝑖𝑓 𝑚 ≠ (𝑀 + 1)

𝜔
1

𝑁
           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

and 𝑝(𝑥|𝑚) =
1

(𝜋𝜎2)
𝐷
2

 𝑒
−

(𝑥−𝑦𝑚)2

2𝜎2 . 

 

where, 𝜎2  defines the GMM variance, (m=1, …, M)), D 

presents the dimension of point sets, and w defines the (M+1) 

uniform weight distribution comprised between 0 and 1. The 

extra (M+1) refers to the assignment outliers. 

 

3.2 3D face model representation 

 

Most 3D DL-based FER research studies have transformed 

3D meshes into regular representations such as multi-view 

images and 2D maps in order to allow for straightforward use 

of CNN-based architectures. FE data need to be sampled in 

order to focus on relevant face parts. Therefore, we suggest a 

preprocessing step.  

Our proposed representation consists in summarizing each 

3D face shape by a set of level curves, from which we get a set 

of key points using a sampling technique. Figure 3 and Figure 

4 illustrate the used point cloud representation resulting from 

a uniform curve sampling. We start first by selecting a set of 

68 landmarks characterizing the informative 3D facial regions 

defined by the mouth, nose, eyebrows and eyes regions. 

Afterwards, we extract two extra points around the cheeks, 

which are obtained through computing the midpoints of the 

geodesic paths connecting both the mouth and the outside eye 

corners. Thus, 70 landmarks are considered as reference points, 

and each 3D face model is then represented by a set of level 

curves centered on these points. 

Let S be a facial surface, and l a finite set of 𝑛 ∈  ℕ 

landmarks defining fixed anatomical points on S, denoted by 

𝑙 = {𝑙1, 𝑙2, , … , 𝑙𝑛}. We employ the 3D Cartesian coordinates 

of these anatomical landmarks, represented by n ordered 

triplets (𝑙𝑖𝑥,𝑙𝑖𝑦,𝑙𝑖𝑧,)
𝑖={1,2,…,𝑛}

, to extract patches 

{𝑃1 … 𝑃𝑛} centered on each landmark i. Each patch 𝑃𝑖  is an 

indexed collection of level curves ∁𝜆1<𝜆<𝜆0

𝑗
, where 𝜆 refers to 

a constant value of the distance function between the landmark 

point 𝑙𝑖,, taken as a reference point, and all points of the curve 

∁𝑗 . In addition, 𝜆0  defines to the maximum considered 

distance value. For the curve extraction, we select the 

Euclidean distance function ‖𝑙𝑖 − 𝑝‖ , which is sensitive to 

deformation. We exploit it as a function characterizing the 

length between a reference point 𝑟𝑖 and any point P on surface 

S, as shown in the following equation:  

 

‖𝑟𝑖 − 𝑃‖: ∁𝜆
𝑖 = {𝑃 ∈ 𝑆|‖𝑟𝑖 − 𝑃‖ = 𝜆} ⊂ 𝑆, 𝜆 ∈ [0, 𝜆0] 

 

where, 𝜆0 defines the maximum value of 𝜆, and ∁𝜆
𝑖  refers to a 

closed curve comprising a group of points 𝑃 placed with an 

identical distance 𝜆  from the reference point 𝑟𝑖 . Uniform 

sampling consists in finding a good approximation by 

choosing n equally spaced sample points 

{𝑡1, 𝑡2, … , 𝑡𝑁} defining vertices {𝑣1, 𝑣2, … , 𝑣𝑛}, where 𝑣𝑖 = ∁𝜆
𝑖 , 

while keeping n small. This data representation enables 

accurately capturing facial surface local deformation. 

 

 
 

Figure 3. Level curves extraction and 3D point set sampling 

 

3.3 3D FER 

 

3.3.1 DL on point clouds 

Recent years have witnessed an increasing interest in 

developing deep net architectures capable of reasoning about 

data types, whose underlying structure lies in a non-Euclidean 

space. Significant effort has been directed towards extending 

conventional DL models to the non-Euclidean domain. A 

number of techniques have been proposed to generalize DNNs 

and adapt convolutional operations to process non-Euclidean 

representations of 3D objects (i.e. point cloud, mesh surface, 

graph). Thanks to the availability of 3D CAD models for 

training and the efficiency of these techniques has been proven 

on common 3D object applications involving classification, 

segmentation and recognition. 

More in-depth information about the advances in 3D DL 

architectures and their applicability on various 3D data 

representations, while categorizing these representations into 

Euclidean and non-Euclidean ones, can be found in the 

interesting survey by Ahmed et al. [22]. We are particularly 

interested in the point cloud representation, considered as one 

important type of 3D geometric data offering a simple, 

compact and unified structure. Compared to other 

representation types (mesh, graph, etc.), the point 

representation allows avoiding complexities and 

combinatorial irregularities of the connectivity properties. 
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Figure 4. DNN architecture capturing local deformations for 3D FER 

 

 
 

Figure 5. 3D face point cloud representation generated from 

different sampling of curve-based representation 

 

Few prior approaches have studied DL on point clouds for 

3D object classification and segmentation. PointNet of Qi et 

al. [23] was a pioneer work in this direction. It was the first DL 

model designed to directly process 3D point sets. Using point 

sets sampled from CAD models of ModelNet40, ShapeNet, 

and simulated kinect scans for training, evaluation and testing, 

the model could output, per hole and per point, labels for the 

inputted point set. Thus, it allowed object classification, part 

segmentation, and scene semantic parsing. Though simple, 

PointNet achieved high performance on the latter tasks, with a 

set of fully connected layers, max pooling, average pooling 

and an attention-based weighted sum. Although invariant to 

member permutation and rigid transformation, PointNet, by 

design, did not capture local features induced by point 

neighboring. Therefore, a second version was proposed by the 

same authors, PointNet++, which applied PointNet recursively 

and captured local features by encoding fine grained structures 

from small point neighborhoods. SpiderCNN [24] extended 

convolutional operations from regular point structures (i.e. 

image pixels) to irregular point sets. By parameterizing a 

family of convolutional filters, they introduced SpiderConvs 

as the new convolutional layers for point clouds. 

In this work, we proceed to recursively partition the input 

facial 3D point sets into local overlapping regions to capture 

local features from neighboring points, and then group them to 

produce a higher-level representation. The local feature 

learner is defined by the original PointNet architecture. 

 

3.3.2 DNN architecture 

In this work, we exploit a 3D points aware DNN 

architecture where point sets are defined as vectors {𝑃𝑖|𝑖=1,…,𝑛} 

of (𝑥, 𝑦, 𝑧) coordinates. Such an architecture involves a shared 

MLP network with different output layer sizes (64, 128, 1024 

respectively). In addition, it employs a max pooling layer 

followed by two connected layers with different output layer 

sizes: 512 and 256. A batch normalization as well as ReLU are 

applied to all layers. Then, we consider the registered 3D point 

sets as an input for our classifier. The feature learning process 

in this work is based on three abstraction levels. The first one, 

denoted by sampling layer, allows the selection of the 

centroids in local areas. In fact, we select a set 

{𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑚
} from the input points {𝑥1, 𝑥2, … , 𝑥𝑚} using 

the iterative farthest point sampling [25]. 

The second one, called the grouping layer, retrieves the 

centroid neighboring points to generate several sub-point sets. 

The input point set size of this layer is 𝑀 × (𝑏 + 𝑆), where 𝑀 , 

𝑏  and 𝑆  respectively denote the number, coordinates and 

features of points. The output is a collection of point sets of 

size 𝑀′ × 𝐾 × (𝑏 + 𝑆′), where 𝑀′ represents the subsampled 

points, 𝐾 is the number of centroid neighbouring points, and 

𝑆′ is the new feature vector that encodes the local regions. The 

third one is a PointNet layer exploiting the same architecture 

presented by Qi et al. [23]. 

 

 

4. EXPERIMENTATION AND RESULTS 

 

In this section, we carry out a set of experiments on the BU-

3DFE database to substantiate the effectiveness of using 3D 

point sets as a DNN input for FE classification, and to evaluate 

the robustness of our proposed DA approach in FER using DL. 
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Figure 6. 3D FER improvement while varying the number of 

selected references 

 

 
Figure 7. DA: (a) DA based on rotation with different 

degrees for one happy face, (b) DA exploiting non-rigid CPD 

registration 

 

 
 

Figure 8. Comparison between different obtained 3D FER 

average rates 

 

4.1 Dataset description 

 

BU-3DFE [26] is considered as the first created dataset for 

static FER. It contains 100 face models (56 female and 44 male) 

with a diversification in ethnic and racial ancestries (white, 

black, Asian, Indian, Latino). It involves the six prototypical 

expressions, namely: Anger (AN), Happiness (HA), Disgust 

(DI), Sadness (SA), Fear (FE), and Surprise (SU) with four 

intensity levels (low (1), middle (2), high (3) and highest (4)). 

Thus, each subject possesses 25 FE samples (24 expressions + 

1 neutral). The BU-3DFE database is annotated with 83 

landmarks located in salient facial regions.  

 

4.2 Experimental results 

 

We propose to increase the BU-3DFE database size by 

using the non-rigid CPD registration. Given the neutral face of 

one person, we can generate additional resembling facial 

samples of its own six prototypical expressions. In fact, the 

non-rigid registration is between a set of arbitrarily chosen 

neutral 3D faces of different people, defining the references, 

and the 3D expressive faces of the whole dataset, named 

targets. 

Figure 2 illustrates an example of the augmented dataset 

using eight arbitrarily selected references. We end up with a 

total number of 21600 (8 x 2400 + 2400 (original data)) 

samples, which is seven times larger than the original size. The 

number of selected references is varied until reaching 40800 

samples relevant to created 16-reference-dependent 3D data. 

In order to optimize the calculation time for the choice of the 

number of references, we present the 3D faces by their 68 

landmarks, discarding 15 landmarks of the border, as 

presented by Trimech et al. [27]. Then, we progressively 

augment the number of selected references to increase the 

database size. FE accuracy stabilizes when the reference 

number is equal or higher to 16, as shown in Figure 6.  

Thus, we limit our augmented 3D data to 40800 samples 

relevant to the choice of 16 references for all our experiments. 

Compared to conventional DA (Figure 7) based on the 

rotation transformation, the non-rigid registration using the 

CPD has a greater impact on the FER rate, which improves by 

reaching 97.3% (Figure 8). 

 

4.3 Implementation details 

 

We implement the used DNN architecture by using the 

TensorFlow framework on a PC loading Intel Xeon(R) CPU 

E5-2650 0 @ 2.00GHz x 16, TITAN X (Pascal)/PCIe/SSE2. 

The learning process using the augmented dataset lasts about 

4h per one epoch. The input 3D facial models are sampled 

using a set of extracted points from level curves. The batch 

size is set to 32. We use a learning rate equal to 0.001, and 

Adam is the used optimizer to train the model. 

For the data split, we use 80% for training and 20% for 

testing. 

 

 

5. DISCUSSION 

 

5.1 Classic DA 

 

Unlike 2D massive face databases such as FaceNet [28] and 

VGGFace [29], 3D annotated FE databases are still limited. 

Consequently, the 3D data variability is insufficient, which 

may lead to the problem of overfitting. Most state-of-the-art 

3D FER work has essentially exploited rotation as a main 

transformation to augment the size of the used dataset [6, 30]. 

We adopt a similar transformation as [6] and apply rotation on 

each 3D face model with different rotation angles (−10°, −5°, 

+5° , +10° ) along three directions (𝑥, 𝑦, 𝑧)  named raw, roll 

and pitch directions. The database size is consequently 

increased to reach 31200 samples ((2400 x3) x 4 + 2400 

(original data)).  
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Table 2. Average confusion matrix (percentage values) 

before DA exploiting 204 points for each 3D face model 

 
 AN DI FE HA SA SU 

AN 61.84 14.47 7.89 1.31 14.47 0 

DI 29.76 38.09 17.85 7.14 7.14 0 

FE 14.77 5.68 44.31 17.04 15.90 2.27 

HA 6.84 2.73 32.87 47.94 6.84 2.73 

SA 36.14 6.02 15.66 3.61 36.14 2.40 

SU 1.33 0 29.33 8.0 2.66 58.66 

 

Table 3. Average confusion matrix (percentage values) with 

classic DA exploiting 204 points for each 3D face model 

 
 AN DI FE HA SA SU 

AN 78.85 2.36 1.84 0.30 16.32 0.30 

DI 19.49 60.48 7.86 3.24 8.49 0.41 

FE 10.03 2.42 56.81 5.80 22.17 2.47 

HA 2.68 1.59 14.01 68.98 11.33 1.39 

SA 8.45 0.82 2.16 0.72 87.21 0.61 

SU 0.66 0 8.18 1.32 6.19 83.62 

 

Table 4. Average confusion matrix (percentage values) 

before DA exploiting 3200 points for each face model 

 
 AN DI FE HA SA SU 

AN 70.73 13.41 2.43 2.43 0 10.97 

DI 6.41 88.46 0 0 0 5.12 

FE 6.25 1.25 80.0 2.5 1.25 8.75 

HA 1.23 1.23 1.23 95.06 0 1.23 

SA 5.79 0 1.44 0 53.62 39.13 

SU 1.12 0 6.74 3.37 1.12 87.64 

 

Table 5. Average confusion matrix (percentage values) with 

classic DA exploiting 3200 points for each face model 

 
 AN DI FE HA SA SU 

AN 98.34 0.41 0.10 0.31 0.72 0.10 

DI 2.10 96.52 0.84 0.10 0 0.42 

FE 1.19 0.97 94.20 2.79 0.29 0.69 

HA 0.10 0 0.42 99.47 0 0 

SA 4.72 0.31 0.73 0.20 94.01 0 

SU 0.10 0.10 0.74 0.21 0 98.2 

 

Table 2 and Table 4 present the resulting confusion matrices 

before DA using respectively 204 points and 3200 points. We 

notice an enhancement of accuracies values while applying 

classic DA (Table 3 and Table 5). 

We reach an average recognition rate equal to 96.89%, 

while presenting each 3D face by 3200 points (Table 5).  

Furthermore, we notice that by increasing the number of 

point sets, accuracy is significantly enhanced by 24.24% and 

stabilizes at 96.89%. Indeed, we notice a significant reduction 

of FE misclassification rates. The highest FE accuracy is 

mainly relative to Happy, Angry, Disgust and Sad expressions. 

 

5.2 CPD-based DA 

 

Applying CPD-based DA allows generating new realistic 

facial expressions while being different from the original ones 

of the BU dataset (Figure 7). 

In Table 6 and Table 7, we respectively present confusion 

matrices using 204 points and 3200 points after our CPD-

based DA.  

The accuracy of 97.23% is reached, which is higher than the 

one obtained with classic DA (Table 7). 

The misclassification rates decrease with a 6.51% in the 

case of Angry and Sad expressions and with 3.65% for the case 

of Fear and Disgust ones. The resulting misclassifications 

rates between the different expressions are mainly due to the 

FEs similarity pattern as presented in Figure 9. 

 

Table 6. Average confusion matrix (percentage values) for 

our CPD-based DA with 204 points selection 

 
 AN DI FE HA SA SU 

AN 86.04 3.15 1.83 0.14 8.29 0.51 

DI 4.43 88.56 2.85 0.90 1.27 1.95 

FE 2.18 4.43 79.50 7.48 2.90 3.48 

HA 0.21 0.93 7.07 90.54 0.64 0.57 

SA 9.51 0.81 1.93 0.37 87.21 0.14 

SU 0.36 0.58 2.42 0.80 0.88 94.92 

 

Table 7. Average confusion matrix (percentage values) for 

our CPD-based DA with 3200 points selection 

 
 AN DI FE HA SA SU 

AN 96.58 0.96 0.59 0 1.78 0.07 

DI 1.02 97.59 1.02 0.07 0.07 0.21 

FE 0.29 0.78 96.77 1.28 0.35 0.50 

HA 0.07 0.07 2.52 97.17 0 0.14 

SA 2.67 0.07 0.81 0 96.29 0.14 

SU 0.14 0.07 0.59 0.14 0 99.03 

 

Table 8. Comparison between DL-based 3D FER works on 

the same BU-3DFE dataset 

 
Works Features Accuracy 

(%) 

Yang and Yin [6] Depth + curvature + mask 75.9 

Huynh et al. [7] Texture + facial shape 92 

Li et al. [9] Geometry + curvature + 

texture + normal maps 

86.86 

Jan et al. [12] Texture + depth maps 88.54 

Wei et al. [31] Geometry + curvature + 

texture + normal maps 

88.08 

Oyedotun et al. [32] Fused RGB+ depth map 89.31 

Zhu et al. [33] Depth+ shape index + 

normal maps 

87.69 

Our Work 3D point sets 97.23 

 

Comparing the two confusion matrices after DA, using 

3200 points, presented in Table 5 and Table 7 for both classic 

and our CPD-based DA, we notice that for some cases the 

misclassification after CPD-based DA shows a small increase.  

For instance, the misclassification between Sad and 

Surprise expressions augments from 0 to 0.14. Besides, Sad 

and Fear expressions are misclassified with 0.81%. Overall, 

these small variations do not influence the rise in most 

obtained accuracy after CPD-based DA. 

Table 8 presents a comparison between different 3D FER 

studies using the same database (BU-3DFE). In fact, BU-

3DFE is considered as the most used database in DL-based 3D 

FER work. This is mainly due to the database diversification 

in age, gender and cultural backgrounds, as well as the large 

FE variations related to emotional states or external 

environments. 

Most DL-based 3D FER work has exploited 2D 

representations as texture, depth, curvature and normal maps, 

which have been generated from 3D face models. 

These 2D representations facilitate the use of 2D input 

based DL architectures and increase the size of the used 

database by considering wide techniques of 2D image 
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generation from 3D models. Despite their performance, using 

2D representations for FER can degrade the useful 3D 

information that may be relevant for 3D FER. In fact, 2D 

representations are not optimal to detect complicated shape 

deformation. This is mainly caused by the projection of 3D 

data into 2D planes, which leads to the natural and significant 

loss of geometric information. 

 

 
 

Figure 9. Similarity patterns between different expressions 

(1): Level 1 of respectively the (a) Anger and (b) Sad 

expressions, (2): Level 1 of respectively the (c) Happiness 

and (d) Anger expressions, (3): Level 1 of (e) Fear expression 

and level 2 of (f) disgust expression 

 

As presented in Table 8, using 3D point sets improves the 

recognition accuracy up to 97.23%. In fact, focusing on the 

direct use of 3D point sets and exploiting the inherently 

homogeneous and compact representation of 3D shapes ease 

the learning process of shape features [34]. Being depicted by 

its coordinate attributes (x, y, z) facilitates indeed capturing 

the fine-grained local patterns in the region-based local 

context. 

Furthermore, most literature work, as in Ref. [7, 9, 12, 31-

34], has exploited only the two highest levels of the BU-3DFE 

database due to the fact that weak expressions (lower levels) 

are hardly recognized. On the other hand, in our approach we 

exploit the four different levels of BU-3DFE, which improves 

the recognition of weak expressions. This is due to the use of 

representations based on 3D point sets. Moreover, exploiting 

the DL architecture allows capturing critical and subtle FE 

details. 

 

 

6. CONCLUSION 

 

In this study, we present a novel approach for 3D FER based 

on the use of a DNN architecture exploiting 3D point sets as 

an input. In addition, we suggest a novel DA strategy based on 

the non rigid CPD registration, hence generating new 

additional realistic 3D facial expressions that allow us to 

augment the initial size of the BU-3DFE database. We have 

reported an encouraging average recognition rate of 97.23% 

overcoming most of state-of-art works [30, 32-34]. 

As future work, we aim to test the robustness of our 

proposed approach with Bosphorus dataset. We are currently 

studying the generalization of our CPD-based DA for different 

detected 3D points. 
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