
Recognition and Positioning of Container Lock Holes for Intelligent Handling Terminal 

Based on Convolutional Neural Network 

Xue Wang 

Logistics Management Department, Shenzhen Polytechnic, Shenzhen 518055, China 

Corresponding Author Email: wangxue@szpt.edu.cn

https://doi.org/10.18280/ts.380226 ABSTRACT 

Received: 29 November 2020 

Accepted: 17 January 2021 

Container handling is a key link in container transport. In an automated handling terminal, 

the work efficiency directly depends on the time cost of the alignment between the spreader 

and the lock holes of the container. This paper attempts to improve the recognition and 

location of container lock holes with the aid of machine vision. Firstly, a lock hole 

recognition algorithm was designed based on local binary pattern (LBP) feature and 

classifier. After feature extraction and classifier training, multi-scale sliding window was 

used to recognize each lock hole. To realize real-time, accurate recognition of lock holes, 

the convolutional neural network (CNN) with improved threshold was incorporated to our 

algorithm. The tests on actual datasets show that our algorithm can effectively locate 

container lock holes. 
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1. INTRODUCTION

With the boom of international trade, container transport 

has become a cornerstone of import and export. To cope with 

the surging container traffic, the port cranes must be made 

more automated and intelligent to handle containers more 

efficiently. For example, the container handling could be 

guided by machine vision technology.  

During the loading/unloading of containers, a critical issue 

is to quickly align the spreader with the four lock holes of the 

container. Traditionally, container handling is controlled 

manually. The manual control is time-consuming, and easy to 

cause accidents, making container handling slow and 

inefficient. 

Under the above background, it is important to develop an 

intelligent handling terminal based on machine vision. The 

intelligent handling terminal should be able to accurately 

determine the container position, and guide the rapid 

alignment between the spreader and the container lock holes. 

Most containers are cuboids. Their structures and 

specifications generally conform to international standards. 

Every corner of a container has three lock holes. To handle the 

container, the bridge crane driver needs to manually insert the 

sliding locks into the lock holes. Due to the small size of lock 

holes, the insertion is extremely difficult in actual handling 

process. To make matters worse, the camera that captures the 

image of the container is often far away from the container 

during loading/unloading. Besides, the lock holes may have 

strains and light shadows, adding to the difficulty to the 

operation by bridge crane driver. 

Therefore, more and more high and new technologies have 

been introduced to the construction of container terminals. In 

an intelligent handling terminal, the operators could rely on 

machine vision to locate each lock hole, and then guide the 

spreader to the position of the lock hole, which greatly 

facilitating the handling of container goods. 

Based on machine vision, this paper proposes a recognition 

and location method for container lock holes. By identifying 

and positioning the holes, our algorithm helps to spreader to 

grasp the container automatically. The automation of container 

handling will significantly lower the working intensity of the 

bridge crane driver, and reduce the cost of human resources. 

2. LITERATURE REVIEW

The automatic transport at ports is in vogue among 

developers. Hence, more and more researchers have tried to 

automate the loading/unloading of containers through machine 

vision. 

Xiao et al. [1] designed a simulation system for container 

loading/unloading, which includes hardware like motion 

controller and motor driver, and software for image acquisition 

and target recognition. Wu et al. [2] used the support vector 

machine (SVM) classifier to identify containers: the geometric, 

color, and texture features of the container were synthetized 

and inputted to the SVM classifier; a suitable SVM model was 

designed; the affine transform was implemented to locate the 

container and measure the exact distance between the 

container and the spreader. Hui et al. [3] identified and located 

the container with binocular stereo vision: the container image 

acquired by a calibrated binocular camera was preprocessed, 

and the lock holes were identified and located in the image 

through template matching. Shen et al. [4] designed a machine 

vision-based method to position the container and the spreader: 

the container image was segmented by the texture features of 

the container and the geometric features of lock holes; the lock 

holes were fitted through Hough transform; the image was 

defogged with dark channel extraction, such that the method 

can extract the image features in foggy weather. For real-time 

detection and accurate positioning of container lock holes, 

Kunimitsu et al. [5] combined classifier training with sliding 

window detection to recognize lock holes, and carried out 

linear iterative fitting based on the recognized lock hole areas, 
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thereby pinpointing the position of each lock hole. With the 

help of machine vision system, Sacks et al. [6] assisted the 

operation of container crane, and protected the safety of 

workers. Dan et al. [7] developed machine vision systems to 

track and guide crane operations. To improve container 

loading/unloading, Xiong et al. [8] proposed a container 

recognition system based on stereo vision:  the original image 

was segmented; the container was recognized and located by 

binocular stereo vision system; the container-spreader distance 

was computed based on the container position. Bin and Sun [9] 

derived a new programming model to analyze the position of 

container and improve the operation efficiency of crane. 

The existing recognition technologies for container lock 

holes have not formed a mature system. The recognition and 

positioning performance still faces several problems. First, the 

lock holes can be detected accurately in the container image 

with a uniform background and salient features. In actual 

terminal environment, however, the container image usually 

has a complex background, with shape elements similar to the 

contour of the container. It is very difficult to recognize the 

container in such an image by the current technologies. Second, 

the container image quality is worsened by the diverse angles 

and light intensities of lock holes. The poor quality will lead 

to false detection. Third, the spreader position shakes at a high 

elevation when it is aligned with the lock holes. The shooting 

angle of the camera will change accordingly, affecting the 

detection result. 

 

 

3. RECOGNITION ALGORITHM BASED ON 

FEATURE EXTRACTION AND STRONG CLASSIFIER 

 

Traditionally, container lock holes are recognized in the 

following process: Preprocessing the container image, 

segmenting the image, and identifying the lock holes by color. 

However, the traditional approach is not stable enough to 

locate and track the lock holes, if the illumination and 

background are very complex. 

Feature extraction lies at the core of automatic recognition 

and location of container lock holes. The algorithm of feature 

extraction bears on the speed and accuracy of target 

recognition. In target detection, the common geometric 

features include histogram of oriented gradients (HOG) [10], 

local binary pattern (LBP) [11], and Harr feature [12]. 

Because no public dataset is available for container lock 

holes, this paper collects samples of these holes first, then 

divides them into positive and negative samples, and extracts 

features for classifier training. Figure 1 shows our framework 

for lock hole recognition. 

 

 
 

Figure 1. Framework of lock hole recognition 

 

For machine learning-based lock hole recognition, the 

quality of extracted features is the key to classifier training. In 

this paper, the LBP feature, an operator about image texture, 

is selected to eliminate the interference of light and shadow. 

The idea of the LBP is to describe the variation in image 

texture by reporting the pixel value at a specific position and 

the pixel values of the region near that position. In a 3×3 

window, the pixel value at the positive center pixel (x, y) is 

taken as the threshold, and the pixel value of (x, y) is compared 

with that of every other pixel (starting from (x-1, y)) in 

counterclockwise direction. If the other pixel is greater than 

the center pixel, the comparison result is recorded as 1; 

otherwise, it is recorded as 0. This operation generates an 8-

bit binary code, which will be converted into decimal number. 

This number is the value of the LBP feature at (x, y), which 

reflects the texture variation of the image: 

 

LBP(x, y) = ∑ R(fi(x, y) − f(x, y))

7

i=0

× 27−i (1) 

 

R(fi(x, y) − f(x, y)) = {
1,   fi(x, y) − f(x, y) ≥ 0

0,   fi(x, y) − f(x, y) < 0
 (2) 

where, f(x, y) is the value of the center pixel; fi(x, y) is the 

value of a pixel within 8 points from the center pixel. Figure 2 

illustrates the calculation process of the LBP feature. 

 

 
 

Figure 2. Calculation process of LBP feature 

 

As can be seen from Figure 2, the extracted LBP operator 

can be converted into a code for each pixel, such that an image 

can be described by several codes. In reality, however, the 

position difference will bring a huge error, if only the features 

from pixel pairs are subject to discriminant analysis. To 

mitigate the error, the original image should be split into 

multiple sub-regions, and the pixels should be extracted from 

each sub-region to establish a histogram of LBP features. In 

this way, an image can be expressed as the combination of 

several statistical histograms. 

In this paper, the AdaBoost [13] algorithm is chosen as the 
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classifier. The algorithm first trains several weak classifiers 

with the sample set, and then combines these weak classifiers 

into a strong classifier. The classification accuracy of the 

strong classifier depends on that of every weak classifier. 

Figure 3 presents the basic framework of AdaBoost algorithm. 

Figure 3. Basic framework of AdaBoost algorithm 

Every strong classifier is a polynomial algorithm with 

strong learning ability and high classification accuracy. Let 

S = {(x1, B1), (x2, B2), … , (xn, Bn)} be the training set, where

xi is randomly selected as an independent data in an unknown

distribution D(x), and Bi = f(xi) is a known set of Boolean

functions. For any D(x) and f(), ε≥0, α≤1/2, and the algorithm 

can find a probability satisfying Pr[h(x)]≤ε is greater than or 

equal to 1-α. 

Each weak classifier is an algorithm slightly more accurate 

than random guess. In practice, it is easier to obtain a weak 

classifier than a strong classifier. Through repeated training, a 

series of weak classifiers can be synthesized into a strong 

classifier. Let h1, h2, … hn be the hypotheses that constrain the

synthesis. The general hypothesis can be defined as: 

f(x) = ∑ aihi(x)

n

i=1

(3) 

where, ai  is the coefficient of hi() . The AdaBoost mainly

solves the probability of the next iteration data, and assigns the 

weight to each weak classifier that constitute the strong 

classifier. 

Each lock hole was recognized according to the shape 

features of outer and inner circles. Combined with image 

pyramid, a sliding window was adopted to choose the target 

image. The window size was kept constant, while the size of 

target image could be increased or reduced during the real-

time sliding process. Hence, depending on the lock hole size, 

the target image was expanded or reduced during the 

recognition. Despite its high accuracy, the sliding window 

consumed too much time, as it needs to transverse the entire 

large image.  

To solve the problem, the first frame of the video was 

scanned globally to determine the coordinates of the potential 

area of the lock hole. In Figure 4, (x1, y1) are the coordinates 

of the upper left corner; w1 and h1 are the width and height of 

the potential area of the lock hole in the upper left corner, 

respectively. 

Then, a sliding area was defined in the next frame for the 

sliding window (Figure 5). In this way, the irrelevant areas will 

not be scanned, speeding up the recognition process. 

According to the offset of lock hole positions in the previous 

frame during actual loading/unloading, the sliding area of that 

frame was expanded by a certain scale to obtain the sliding 

area of the next frame. In Figure 5, (x1 − w1 × a, y1 −
h1 × a) are the coordinates of the upper left corner; w1 +
2w1 × a and h1 + 2h1 × a are the width and height of the 

sliding area of the lock hole in the upper left corner, 

respectively; a is a user-defined scale factor. 

Figure 4. Global recognition of the first frame 

Figure 5. Sliding area of the next frame 

To verify the proposed recognition algorithm for container 

lock holes, the images collected in a port were organized into 

a training set, and a test set (Table 1). The test set contains 

1,000 samples. The number of positive and negative samples 

the training set were set to different levels. Then, the classifier 

designed based on feature extraction and strong classifier was 

trained by three different training sets. The recognition 

accuracy of the trained classifier was judged against the 

benchmark of no missing/false recognition. The test results 

(Table 1) show that the recognition accuracy increased with 

the number of positive and negative samples. The highest 

accuracy was realized by the classifier trained on test set 3. But 

that classifier consumed 449ms to recognize each image, 

which fails to meet the real-time requirement. 

Table 1. Recognition accuracies under different positive and negative samples 

Training set 

number 

Number of 

positive samples 

Number of  

negative samples 

Accuracy Error 

 rate 

Mean 

time 

1 1,000 4,000 65.5% 22.5% 241ms 

2 2,000 8,000 76.9% 11.4% 319ms 

3 3,000 12,000 87.5% 6.15% 449ms 
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4. CNN-BASED RECOGNITION ALGORITHM 

 

In traditional target detection strategies, the targets are 

recognized after the image features are extracted and classified. 

There are many problems with this traditional approach, 

namely, the features are expressed inaccurately, the classifier 

has a high error rate, the classification faces time delays. By 

contrast, deep learning-based target detection chooses a region 

of interest (ROI) based on the features automatically extracted 

by the convolution layers. Compared with sliding window, the 

ROI can greatly improve the recognition effect. 

At present, the CNN-based detection algorithms are 

implemented either in two stages or in one stage. The two-

stage algorithms are represented by region-based CNN (R-

CNN) [14], fast R-CNN [15], and faster R-CNN [16]. These 

algorithms first generate several ROIs, and then classify and 

adjust the positions of these regions. The typical one-stage 

algorithm is you only look once [17], which directly obtains 

the class probability and position of the target without needing 

to create ROIs. YOLO boasts fast detection speed and good 

real-time performance. Therefore, this paper selects YOLO as 

the target detection model of container lock holes. The 

framework of the YOLO model is shown in Figure 6. 

 

 
 

Figure 6. Framework of YOLO model 

 

Known for its excellent speed and accuracy, YOLO is an 

end-to-end detector that condensates the multiple steps of 

target recognition into one process, and detects targets with 

only one network. Target detection by YOLO can be roughly 

divided into three steps: adjusting image size, importing the 

image to the CNN, and acquiring the detection frame of the 

target boundary through non-maximum suppression. 

Once the original image has been adjusted to the size of the 

input required by the CNN, the image is meshed into S × S 

grids. The network will detect the target in each grid, and 

calculate the confidence. For each grid, B bounding boxes of 

different scales and their confidences will be obtained. The 

confidence of a box reflects the probability for the target to 

appear in the box, and the accuracy of target positioning. Let 

Pr(O) be the probability for a box to contain a target; IOUp
t  be 

the intersection-over-union ratio of predicted box and real 

target, that is, the overlap rate of candidate box and marker box. 

The optimal value of IOUp
t  is one. During the target 

recognition, when each grid detects the probability of a class 

and the confidence of B boxes, we have: 

 

Pr(classi|O) × Pr(O) × IOUp
t = Pr(classi) × IOUp

t  (4) 

 

where, Pr(classi|O) is the probability for a target to belong to 

class W. 

Apart from identifying the class of each target, the YOLO 

algorithm can measure the accuracy of the target box. The 

detection result can be represented as an S × S × (B × 5 + W) 

vector. 

In addition, the YOLO algorithm clusters the wide and high 

dimensions of reference frame by K-means algorithm [18]. 

The distance function of the clustering standard can be 

established as: 

 

distance(box, center) = 1 − IOU(box, center) (5) 

 

A total of five anchors is adopted by YOLO to predict the 

border. Each anchor detects targets within its region. The 

predicted value for each border can be denoted as bx, by, bw, 

bh and bo, the coordinates of the upper left corner of the grid 

as (cx, cy) , and the height of anchor as (pw, ph). Thus,  the 

center coordinates (ox, oy)  of the predicted border can be 

described as: 

 

ox = ρ(tx) + cx (6) 

 

oy = ρ(ty) + cy (7) 

 

where, ρ(tx) and ρ(ty) are the relative positions between the 

center of the border and the abscissa and ordinate of the upper 

left corner of the grid, respectively. The width and height of 

the predicted border can be respectively calculated by: 

 

ow = pwexp (bw) (8) 

 

oh = phexp (bh) (9) 

 

 

5. EXPERIMENTS AND RESULTS ANALYSIS 

 

The performance of target detection can be measured by 

multiple indices, including but not limited to precision, recall, 

and mean average precision (mAP). Precision is the fraction 

of relevant instances among the retrieved instances, while is 

the fraction of relevant instances that were retrieved. True 

positive (TP), false positive (FP), true negative (TN), and false 

negative (FN) are defined as the number of correctly detected 

targets and the number of boxes meeting the IOU, the number 

of detected targets, the number of incorrectly detected targets 

and the number of boxes exceeding the IOU, and the number 

of undetected targets, respectively. The confusion matrix is 

shown in Table 2. 

 

Table 2. Confusion matrix 

 
 Relevant Non-Relevant 

Retrieved TPs FPs 

Not Retrieved FNs TNs 

 

Three kinds of anchors are available for the YOLO model. 

The mesh sizes of them are 13, 26, and 52, in turn. The 

minimum box size is 8 × 8. In this paper, the minimum box 
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size is too small, because the lock hole images captured by the 

camera are generally larger than 8 × 8. As for the mesh size of 

52 × 52, the prediction tensor will be so large as to increase 

the detection time. Therefore, this paper chooses the anchors 

of 13 × 13 and 26 × 26 to ensure the detection ability and save 

time cost. In our experiments, the kernel sizes of convolutional 

layer and pooling layer were set to 3 × 3 and 2 × 2, respectively. 

The former layer aims to extract image features, and the latter 

seeks to reduce data dimension. 

 

 
 

Figure 7. 10-layer network model 

 

 
 

Figure 8. 15-layer network model 

 

 
 

Figure 9. 50-layer network model 

 

During network training, the VGG network was employed 

to build a 10-layer network and a 15-layer network, and the 

residual network (ResNet) was selected to build a 50-layer 

network. The three networks were tested in search for the 

model with the highest mAP in each network. The threshold 

was adjusted repeatedly during the test. The model 

performance was evaluated by precision, recall, and IOU. 

Each network was trained iteratively for 10,000 cycles, and a 

model was generated every 200 cycles. The experimental 

results are presented in Figures 7-9, respectively. 

The above three figures show that the 50-layer network 

model achieved the best performance: the more the network 

layers, the greater the mAP of the detection model, and the 

more stable the model.  

Therefore, the 50-layer network was selected for the 

recognition model of container lock holes. The actual 

recognition result is shown in Figure 10, which testifies the 

good real-time performance and accuracy of our model. 

 

 
 

Figure 10. Actual recognition result of the YOLO-based 

model 

 

 

6. CONCLUSIONS 

 

This paper applies machine vision to identify and position 

the lock holes of the container, as the container is being 

handled at the port. Firstly, a lock hole recognition algorithm 

was designed by coupling LBP and AdaBoost. But the 

algorithm was found to consume too much time. To solve the 

problem, the neural network was improved according to the 

lock hole size during the recognition process, and the threshold 

was adjusted in the light of the actual demand. In this way, a 

YOLO-based recognition algorithm was derived for container 

lock holes. The feasibility and effectiveness of the algorithm 

were proved through experiments. 
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