

1. INTRODUCTION

The commonly used term “network security” actually
consists of three aspects: 1. Confidentiality: Attackers often
resort to Trojan viruses to infringe confidentiality, aiming at
stealing private data and accounts from users; 2. Integrity:
Attackers often undermine integrity, especially data integrity,
by cross-site scripting (XSS) and cross-site request forgery
(CSRF). The importance of data integrity is demonstrated in a
Chinese legend. In Qing dynasty, the Kangxi Emperor chose
the 14th prince as his heir, but his will was altered to let the
4th prince succeed to the throne. 3. Availability: denial-of-
service (dos) and distributed denial-of-service (ddos) attacks
are often launched to destroy the availability, e.g. network
service availability. XSS, so abbreviated to differentiate it
from cascading style sheet (CSS), is a type of security
vulnerability typically found in web applications that enables
malicious users to inject code into webpages viewed by other
users. XSS attacks are a case of code injection that often
contains HTML and client-side scripts. CSRF is a type of
malicious exploit of a site. It is even more dangerous than
XSS. For better understanding of CSRF attacks, it is
necessary to learn the operating mechanism of site session
first. The HTTP request is a stateless protocol, i.e. each
HTTP request is independent of the previous operations. In
each HTTP request, however, all the cookies in the local
domain are sent to the server as part of the HTTP request
header. Based on the sessionid stored in the cookie, the server
is enabled to find the member information from the
corresponding session object. Of course, the session can be
saved in a variety of ways, ranging from file to memory.
Taking into account the distributed horizontal expansion, we

recommend that the session be stored in third-party media,
such as redis or mongodb.

The hazard of CSRF attacks is self-evident. It equals to the
replication of senior membership cards by malicious user A.
The attacker can forge a user’s identity to send spam
messages to the friends of the user. The spam messages may
contain hyperlinks leading to trojans or fraudulent
information (e.g. money borrowing). If the spam message in a
CSRF attack carries a worm link, any friend who accidentally
opens the link will also become a forwarder of the harmful
information. In this way, tens of thousands of users fall victim
to data theft and Trojan infection. The consequences of such
an attack are very serious. The applications of the entire site
may collapse in an instant, resulting in a flood of complains,
and drastic loss of users. In this case, the company will face
plummeting reputation or even closure. For instance, Samy
Kamkar, a 19-year-old American, succeeded in spreading a
worm to over a million of users by taking advantage of the
background vulnerability of CSS. The worm itself was
relatively harmless, it carried a payload that would display the
string “but most of all, samy is my hero” on the victim’s
MySpace profile page. Although the worm did not destroy the
entire application, the consequences will be disastrous if the
same vulnerability is manipulated by malicious users. Sina
Weibo, China’s domestic Twitter rival, also suffered from
similar attacks.

CSRF data theft hinges on the success of XSS injection.
The next section will introduce the injection of a simple code:
alert (‘XSS’). A malicious user might change alert(‘XSS’)
into any code at will, and use it to send post or get requests,
aiming at modifying the users’ information, acquiring the data
on the users’ friends, and sending forged private messages.

REVIEW OF COMPUTER ENGINEERING
 STUDIES

ISSN: 2369-0755 (Print), 2369-0763 (Online)
Vol. 4, No. 1, March 2017, pp. 9-16
DOI: 10.18280/rces.040103
Licensed under CC BY-NC 4.0

A publication of IIETA

http://www.iieta.org/Journals/RCES

Research and implementation of Node.js-based defense against XSS and

CSRF

Dengfeng Wei, Fengyi Li

Computer Science College, Yangtze University, Jingzhou 434023, China

Email: weidengfeng@126.com

ABSTRACT

Node.js is a extensively applied powerful, lightweight technology. Like other technologies, Node.js also faces
a string of security problems resulted from improper coding by developers at the time of programming. The
Web applications developed and deployed on Node.js are not provided with the defense against XSS and
CSRF, two of the most popular attacks on Web applications. The existing defense against CSRF might fail
due to the lack of integration between XSS and CSRF prevention. Against this backdrop, this paper studies
Node.js related technology, network security technology and XSS and CSRF security vulnerabilities, and
develops a system to defend against XSS and CSRF simultaneously on the Node.js platform. The defense
system offers XSS and CSRF prevention services to Web applications developed on Node.js.

Keywords: Storage-type XSS, Motion Detection, Attack Vectors, Vulnerability Scanning.

9

lenovo
打字机文本

lenovo
打字机文本

lenovo
打字机文本

The code may even be made into a worm that can infect the
entire Internet. The consequences of XSS injection should not
be underestimated. It is never as simple as an alert dialog box.

2. ATTACK PRINCIPLE

XSS is a type of computer security vulnerability typically
found in web applications. It enables malicious web users to
inject client-side scripts into webpages viewed by other users.
Common attacks include cookie stealing, basic certification
phishing, and form hijacking. After discovering XSS
vulnerabilities, the attacker will launch an attack with the
payload in the cross-site platform. To fully understand the
harm of XSS, we had better write and analyze an XSS attack
code. There are three types of XSS vulnerabilities: reflected,
stored and DOM based. Sharing the same basic principles,
these vulnerabilities are identified and manipulated in very
different ways. The following is a detailed introduction to the
three types of vulnerabilities.

2.1 Reflected XSS

The type of web vulnerability appears when a user is
browsing a webpage. The webpage will send an error, e.g.
www.xxx.com/error.php?message=sorry, an error occurred,
to request the server for the URL; the server will copy the
received message to the error page template directly without
any filtering: <p>sorry, an error occurred</p>, and return the
message to the user. This vulnerability has a prominent
feature: the application is prone to attacks due to the lack of
filtering or sanitation measures. When the user opens the
error page,
www.xxx.com/error.php?message=<script>alert(1)</script>,a
message box will pop up, reading
<p><script>alert(1)</script></p>. Of course, the attacker
will not stop at sending an alert message because the message
may not pop up if the cross-site scripting detection feature is
enabled in the browser. Normally, XSS is accompanied by
session hijacking. The attacker will intercept the session
token of an authenticated user. After hijacking the user’s
session, the attackers can access the data and functionality
that the user is authorized to access. For example, the attacker
can create a URL and an error message as follows:

1 var i = new Image;

2 i.src="http://xxx.net/"+document.cookie;

Figure 1. Steal cookies by dom

Cookies will be sent to the hacker when the user clicks on
the malicious URL. Upon intercepting the cookies, the hacker
can perform any manipulations the user is entitled to. The
same-origin policy of the browser prevents the acquisition of
the cookie of www.xxx.com by sending document. cookie to
the attacker.net because the browser will isolate the contents
from different sources (domains). That is why the
vulnerability is called cross-site scripting.

2.2 DOM based XSS

DOM based XSS is an XSS attack based on HTTP DOM.
It inserts the attack script directly into the DOM’s attributes
or methods so that the malicious code snippet does not

appear in the original HTML text and does not need to be
stored the server’s database as what is done in the stored XSS.
The user request is submitted by the attacker via a special
URL. The URL is designed with multiple tools, including the
Embedded Javascript. The server’s response will not contain
any script from the attacker. Neither will the server detect the
URL. The script is processed when the user browses the
response. Similar to the reflected vulnerability, this type of
vulnerability also relies on the special construction of the
URL, except that the URL is handled by the server in the case
of reflected vulnerability and by JS script in the DOM based
XSS. Based on the example of reflected XSS, we assume that
the error page returned by the application contains the
following JS scrpit:

1 <script>

2 var url = document.location;

3 var message = /message=(.+)$/.exec(url)[1];

4 document.wirte(message);

5 document.getElementById("show").innerHTML = message;

6 </script>

Figure 2. Javascript illegal execution

The XSS attack is launched by sending the same link
www.xxx.com/error.php?message=<script> alert (1)
</script> to the victim. In addition to the URL, DOM based
XSS can also be initiated by altering the DOM environment
on the page, which has a lot to do with the stored XSS.

2.3 Stored XSS

Stored XSS vulnerabilities often appear on web
applications designed for social networking, including forums,

blogs, and online diaries. For example, if there stored XSS
vulnerability exists in the profile of a user on a blog site, the
attacker can insert the attack code <script>alert(‘XSS!’)
</script> into his/her profile. Then, the web server will store
the content into its database. The malicious code will be
executed when other users view the profile. As another
example, suppose a social forum has the stored XSS
vulnerability, and a hacker revises his/her profile into a
malicious JS code. The code has two functions: force the
victim to befriend the hacker, and modify the victim’s profile

10

http://www.xxx.com/error.php?message=%3cscript

into the malicious code. After saving and submitting the
profile to the server, all the hacker has to do is wait.
Whenever a victim visits the hacker’s profile, the browser
will execute the malicious script, triggering a terrible plague
of the “worm”.

2.4 CSRF security vulnerabilities

CSRF is the principle tool for cross-site forgery. The
attacker only needs to create a seemingly harmless site,
causing the victim’s browser to submit a request directly to
the vulnerable server and execute the malicious code.
Suppose a user intends to log on the site of the Agricultural

Bank of China http://www.abchina.com/ but erroneously
clicks on a link http://www.bank.com/xxxx on the phishing
site.abc developed in advance by the attacker. The link points
to the site of the bank. Then, the bank sever will start transfer
operation based on the parameters carried by the link. Prior to
the transfer, the bank server will perform session
authentication to see if the user has logged on. However, the
attack link will bring the session id to the bank server because
the user has logged into the bank site and the attack link is
also www.bank.com. Because the session id is correct, the
bank will assume that the operation is initiated by the user,
and execute the transfer operation. The code of
www.hacker.com is as follows:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>Title</title>

</head>

<body>

<form method="post" action="http://www.bank.com/transfer.php">

 <input type="hidden" name="from" value="abc">

 <input type="hidden" name="money" value="10000">

 <input type="hidden" name="to" value="hacker">

 <input type="button" onclick="submit()" value="submit">

</form>

</body>

Figure 3. Cross-site request forgery

It can be seen that the webpage www.hacker.com contains

a post request to www.bank.com, and the forms are all hidden,
leaving only one button that lures the user to click.

The above examples show that the hacker can neither get
the cookie nor parse the contents returned by the server via
the CSRF attack. The only thing he/she can do is to send a

request to the server to change the server data. As illustrated
in the second example, the attacker induces the user to click
on the link to initiate the transfer operation, thereby changing
the amount of money in the user’s account recorded in the
bank database.

Figure 4. Vulnerability of Sina twitter

Figure 5. Content: the actual content being sent (converted
into URL)

In the above figure, the attacker launches a worm-like
CSRF attack through manipulation of the XXS vulnerability
of Sina Hall of Fame, a webpage on famous verified Weibo
accounts, weibo.com/pub/star. The hacker sends the victim a
URL which carries an executable script. When the victim
clicks the link, a HTTP get request is issued. Since the
request is made by a user who has logged onto the platform
through authentication, the site trusts the link and executes it.
It is called worm-type virus because of fast propagation.

With the aid of the Firefox plug-in Live HTTP headers, we
can capture the data packet and get the actual data format.
See the figure below.

From the attack script, we know that the hacker first
registered a Sina Weibo account hellosammy, found and
followed some verified users (or ordinary users) in the Hall of
Fame, and sent them private messages with a malicious link.
Some of the users were attracted by the faciful titles in the
messages and opened the link. An exponential propagation of
the malicious link ensued. The link was not only posted

11

automatically on the frontpages of these users, but also sent in
private messages to those followed by the users.

According to the above script, the sucess of this attack lies
on three points:

1) The most important step is to find the XSS vulnerability
on the target site.

2) Hide the link
HTTP://weibo.com/pub/star/g/xyyyd"><script
src=//www.2kt.cn/images/t.js></script>?type=update with the
short domain service provided a third party, Youdao.com. We
resort to third party service because Sina will check if the link
provdied by the user contains executable script before
converting it into a short link.
link = ' http://163.fm/PxZHoxn?id=' + new Date().getTime();

3) Guess the rnd generation method.

url = 'http://weibo.com/mblog/publish.php? rnd =' + new
Date().getTime();url =
'http://weibo.com/attention/aj_addfollow.php?refer_sort=prof
ile&atnId=profile& rnd= ' + new Date().getTime();

msgurl = 'http://weibo.com/message/addmsg.php? rnd= ' +
new Date().getTime();

4) Obtain the uid of the currently logged in user.

data = 'uid=' + 2201270010 + '&fromuid=' + $CONFIG.$uid
+ '&refer_sort=profile&atnId=profile';

url = 'http://weibo.com/' + $CONFIG.$uid + '/follow';

The uid is obtained from the explainations on API and SDK
of the Open Platform of Sina Weibo http://open.weibo.com/.

2.5 JSON injection to Ajax

In the pursuit of faster loading and better user experience,
Ajax is widely adopted for modern websites. The
communication protocol is mostly in the format of JSON
strings, and the pages are UTF-8 coded to support multiple
languages. Consider this scenario: there is a page to display
the details of a blog, which is so popular that users throng to
the page to leave comments. To speed up the loading, the
programmer may decide to display the contents of the blog
first, and get the comments via Ajax. The comments are
divided into different pages. The user has to click on the next
page button in the first comment page to view the second
comment page. The design has several benefits: A. It speed
up the loading of the details page by postponing the display
of the comment section, which contain the avatars, nicknames
and ids of nuermous users. Full display of the section requires
multi-table query. Besides, most users prefer to read the blog
first. By the time a user pulls down to see the comments, the
comment pages have already been loaded. B. The message
paging function of AJAX ensures faster response. The user
does not need to refresh the details page but goes directly to
the comment section. The design seems perfect: while a user
is slowly savoring the blog, AJAX is working in full swing to
get the comments and display them at the bottom of the page.
Nevertheless, things will turn ugly if the front-end developer
of the page uses the following code.

Figure 6. Comment loading failed

3. DESIGN AND IMPLEMENTATION OF DEFENSE

MODULE

Figure 7. Design structure diagram

3.1 Design and implementation of XSS defense module

Intercept the content string of the message received by the
node.js server. Query the preset XSS attack signature
database, which contains the descriptions of XSS attack
features, and the whitelist based on the content string. The
said message is deemed as carrying the features of XSS attack
if at least one character of the content string is consistent with
the XSS attack signature in the said database. In this case, the
said message should be defended against. The defense
architecture is shown in Figure 7.

Data interception routing module: 1. Build a routing
module. The module provides the requested URL and other
necessary GET and POST parameters, and executes the
corresponding codes based on these data. Hence, we need to
view the HTTP request and extract from it the requested URL
and GET/POST parameters. 2. Construct a programming
module to handle requests. The module stores different
processing programs that correspond to the requested URLs.
3. Combine the two modules with the HTTP server.

Security detection module:
1. Remove the invisible characters in the string;
function escapeHtml (html) {

12

http://open.weibo.com/

return html.replace(REGEXP_LT,
'<').replace(REGEXP_GT, '>');

}
2. Convert all HTML character entities into standard

characters;
function escapeHtml (html) {
return html.replace(REGEXP_LT,

'<').replace(REGEXP_GT, '>');
}
3. Escape the new dangerous HTML5 entities;
function escapeDangerHtml5Entities (str) {
return str.replace(REGEXP_ATTR_VALUE_COLON, ':')
.replace(REGEXP_ATTR_VALUE_NEWLINE, ' ');
}
4. If there is no need to output a comment tag, replace it

with a null character.

function getDefaultWhiteList () {

 return {

 a: ['target', 'href', 'title'],

 font: ['color', 'size', 'face'],

 h1: [],

......

 img: ['src', 'alt', 'title', 'width', 'height'],

 table: ['width', 'border', 'align', 'valign'],

 td: ['width', 'rowspan', 'colspan', 'align', 'valign'],

 th: ['width', 'rowspan', 'colspan', 'align', 'valign'],

 tr: ['rowspan', 'align', 'valign'],

 u: [],

 ul: [],

 video: ['autoplay', 'controls', 'loop', 'preload', 'src', 'height', 'width']

 };

}

Figure 8. White list function

5. Default whitelist
Filter the HTML tags through the tag whitelist and the

attribute whitelist, and process the attribute values that
contain special characters. The default configuration filters
most XSS attack codes and can customize whitelist and
filtering methods based on the actual application scenario.
Add or update the tags in the whitelist: tag name (in lower
case) = ['Allowed attribute list (in lower case)'], and
customize the tag that is not in the whitelist.

XSS.whiteList['p'] = ['class', 'style'];
delete XSS.whiteList['div'];
XSS.onTagAttr = function (tag, attr, vaule) {
if (attr === 'href' || attr === 'src') {
if (/\/*|*\//mg.test(value)) {
return '#';
}
if

(/^[\s"'`]*((j\s*a\s*v\s*a|v\s*b|l\s*i\s*v\s*e)\s*s\s*c\s*r\s*i\s*
p\s*t\s*|m\s*o\s*c\s*h\s*a):/ig.test(value)) {

return '#';
}
} else if (attr === 'style') {

if (/\/*|*\//mg.test(value)) {
return '#';
}
if

(/((j\s*a\s*v\s*a|v\s*b|l\s*i\s*v\s*e)\s*s\s*c\s*r\s*i\s*p\s*t\s*|
m\s*o\s*c\s*h\s*a):/ig.test(value)) {

return '';
}
}
};

Customize the tag that is not in the whitelist.
XSS.onIgnoreTag = function (tag, html) {
return html.replace(/</g, '<').replace(/>/g, '>');

}

3.2 Design and implementation of session management

module

The defense against XSS is designed as follows: when a
user visits a webpage, the web server will return the data of
the webpage to the browser. Before returning the data, the
server should check the set-cookie in HTTP header and judge
whether the session or the rule requires to protect the cookie.
If “yes”, add the “HttpOnly” identifier to the set-cookie and
return the webpage data to the browser; if “not”, return the
webpage data to the browser. The addition of “HttpOnly”
identifier to the session is not the default setting in the
existing technologies. The omission is easily exploited by
hackers. Adding the “HttpOnly” identifier to the set-cookie
makes it hard for hackers to obtain important cookies from
the browser script, and thereby brings safety to the originally
insecure sites. The innovative action plays an important role
in the safe use of cookies. This is particularly true to dynamic
web applications. Based on stateless protocol such as HTTP,
they rely cookies to maintain state. The following is a list of
the configurable attributes of each cookie: secure – the
attribute tells the browser that the cookie should only be
passed when the request is transmitted over HTTPS.
HttpOnly – the attribute bans JS scripts from getting the
cookie, thus preventing XSS; cookie domain – the attribute is
used to compare with the domain name of the server in the
request URL; if the domain name is consistent with the
cookie domain or is a subdomain of the cookie domain,
continue to check the path attribute. path – In addition to the
domain name, the cookie’s available URL path can also be
specified. The cookie will not be sent unless both the domain
name and path are consistent. expires – the attribute is used to
configure the persistence of the cookie; the configured cookie
will not expire until the specified time has elapsed.

In Node.js, we can create cookies with the cookies package.
But the method is too simple to take full advantage of useful
information. The creation of an application is more likely the
copycat of the encapsulation, such as cookie-session.

13

var cookieSession = require('cookie-session');

var express = require('express');

var app = express();

app.use(cookieSession({

 name: 'session',

 keys: [

 process.env.COOKIE_KEY1,

 process.env.COOKIE_KEY2

]

}));

app.use(function (req, res, next) {

 var n = req.session.views || 0;

 req.session.views = n++;

 res.end(n + ' views');

});

app.listen(3000);

Figure 9. Session and cookie

3.3 The design and implementation of CSRF defense

module

Based on the principles and objectives of CSRF attack, we
propose two defensive measures which modify the request
currently being processed, and add a hidden form field to all
POST forms. The name of the hidden form field is
csrfmiddlewaretoken, and the value of the hidden form field
equals the current session ID plus the hashed value of a key.
If there is no session ID, the middleware will not modify the
response result. Thus, the performance loss is negligible for
requests that are not using the session. For all incoming
POST requests that contain a session cookie collection, it
checks if there is a csrfmiddlewaretoken and whether it is
correct. If not, the user will receive a 403 HTTP error. The
error page reads: disguised cross-domain request detected.
Terminate the request. These steps ensure that only the forms
from our own site are able to return the data. It should also be
noted that the POST requests which do not use session
cookies are not protected. Of course, they do not need any
protection because such requests are created in various ways
by malicious sites. To avoid converting non-HTML requests,
the middleware examines its Content-Type header before
editing the response results. Only pages marked with
text/html or application/xml + xhtml will be modified.

According to the HTTP protocol, a referrer field is added
to the HTTP request header to record the original address of
the HTTP request. Normally, the POST request for the
transfer operation www.bank.com/transfer.php is triggered by
a click on the button on the site www.bank.com. In this case,
the transfer request referrer should be www.bank.com. If the
hacker wants to launch a CSRF attack, he/she could only
forge a request on his/her own site www.hacker.com. The
referrer of the fake request is www.hacker.com. Thus, we can
verify the legality of the request by checking if the referrer of
the request is www.bank.com.

The verification method is rather simple. Site developers
only have to check the referrer of the POST request. The
problem is the referrer is provided by the browser. Although
the HTTP protocol forbids modification of referrer, the
security of a site should not hinge on the professional
integrity of other people.

Token verification: as illustrated above, the attacker forges
the transfer form to fulfill his/her plot. A viable way for the
site to counter the forgery is to add a random token to the
form. The token is submitted to the server, together with
other request data. The server will verify the legality of the
request by checking the token value. This method is highly
reliable. Unable to get the page information, there is no way

for the attacker to obtain the token value. Therefore, it is
impossible for a fake form to carry the token value.

4. SYSTEM TESTING

Installation:

$ npm install fxss

 Figure 10. Installation

Simple method of application:

var xss = require('fxss');

var html = xss('<script>alert("xss");</script>');

console.log(html);

Figure 11. Simple method of application

Customization of filtering rules: the customized rules can
be set with the second parameter when the XSS () function is
called for filtering.

options = {}; // html = xss('<script>alert("xss");</script>', options);

Figure 12. Customization of filtering rules

Customization of the processing method for tag attributes

found in the whitelist: use onTagAttr to specify the the
processing function. The method is explained as follows: tag
stands for the name of the current tag (e.g. <a> tag means the
tag value is 'a'; name stands for the name of the current
attribute (e.g. href="#" means the name value is 'href'; value
stands for the value of the current attribute (e.g. href="#"
means the value of the value is '#'). isWhiteAttr stands for
"whether the attribute is on the whitelist"; if a string is
retuned, the current attribute value should be replaced with
the string. If it is on the whitelist: call safeAttrValue to filter
the attribute value and export the attribute; if it is not on the
whitelist: specify the tag attribute by onIgnoreTagAttri.

function onTagAttr (tag, name, value, isWhiteAttr) {
}
Customization of the processing method for tags not found

in the whitelist: use onIngoreTag to specify the processing
function. The method is explained as follows: if a string is
returned, the current attribute value should be replaced with
the string; if no value is returned, the default processing
method should be used (delete the attribute).

function onIgnoreTagAttr (tag, name, value, isWhiteAttr) {
}
Customization of HTML escape function: use

escapeHTML to specify the processing fucntion.
function escapeHtml (html) {
return html.replace(/</g, '<').replace(/>/g, '>');
}
Customization of the escape function for tag attributes: use

safeAttrValue to specify the processing function. The
returned string represents the tag attribute. Remove the tags
not found in the whitelist, and configure with stripIgnoreTag:

14

For the purpose of verifying the function and performance
of the defense system, this paper creates a test environment
by deploying a school website application on Node.js
platform. Typical attacks are launched to the web application
to test the defensive ability of the system. Besides, the author
measures how the deployment of the defense system affects
the performance of the web application. The tests consists of
a functional test and a performance test. The former mainly
measures the effectiveness of the defense system and the
latter weighs the system’s impact to the request response
speed of the web application under a big pressure.

var xss = require('../');

var fs = require('fs');

var html = fs.readFileSync(__dirname + '/file.html', 'utf8');

var COUNT = 200;

var ret = '';

var timeStart = Date.now();

for (var i = 0; i < COUNT; i++) {

 ret = xss(html);

}

var timeEnd = Date.now();

var spent = timeEnd - timeStart;

var speed = (((html.length * i) / spent * 1000) / 1024 / 1024).toFixed(2);

console.log('xss(): spent ' + spent + 'ms, ' + speed + 'MB/s');

var x = new xss.FilterXSS();

var timeStart = Date.now();

for (var i = 0; i < COUNT; i++) {

 ret = x.process(html);

}

var timeEnd = Date.now();

var spent = timeEnd - timeStart;

var speed = (((html.length * i) / spent * 1000) / 1024 / 1024).toFixed(2);

console.log('xss.process(): spent ' + spent + 'ms, ' + speed + 'MB/s');

var x = new xss.FilterXSS();

var process = x.process.bind(x);

var timeStart = Date.now();

for (var i = 0; i < COUNT; i++) {

 ret = process(html);

}

var timeEnd = Date.now();

var spent = timeEnd - timeStart;

var speed = (((html.length * i) / spent * 1000) / 1024 / 1024).toFixed(2);

console.log('xss.process() #2: spent ' + spent + 'ms, ' + speed + 'MB/s');

fs.writeFileSync(__dirname + '/result.html', ret);

Figure 13. Test based on node.js

5. CONCLUSIONS

This paper designs a defense system based on Node.js for
XSS and CSRF attacks. It proves that it can provide XSS
attacks and CSRF defense for Web applications that open
defense systems. The defense system is based on Node.js
Web application. The process of running a child process does
not have much impact on the performance of the Web
application, but it limits the scope of the defense system,
which can only serve a single-process Web application, and
as Node.js starts Support set Group deployment of Web
applications, the use of the defense system has been limited.
This can be done by deploying the defense system, In other
forms of server, in the form of agents for Web applications to
provide services, which is also a defense system Great
improvement direction.

REFERENCES

[1] Cantelon M., Harter M., Holowaychuk T.J., Rajlich N.
(2014). Node. js in Action. Manning.

[2] Klein A. (2005). DOM based cross site scripting or
XSS of the third kind, Web Application Security
Consortium, Articles 4, pp. 365-372.

[3] Weinberger J., Saxena P., Akhawe D., Finifter M.,
Shin R., Song D. (2011). A systematic analysis of XSS
sanitization in web application frameworks, European
Symposium on Research in Computer Security,
Springer, Berlin, Heidelberg, pp. 150-171.

[4] Bogdanov S., Patruno A., Archibald A.M., Bassa C.,
Hessels J.W., Janssen G.H., Stappers B.W. (2014). X-
ray observations of XSS J12270-4859 in a new low
state: A transformation to a disk-free rotation-powered
pulsar binary, The Astrophysical Journal, Vol. 789,
No. 1, pp. 40.

[5] Papitto A., Torres D.F., Li J. (2014). A propeller
scenario for the gamma-ray emission of low-mass X-
ray binaries: the case of XSS J12270− 4859, Monthly
Notices of the Royal Astronomical Society, Vol. 438,
No. 3, pp. 2105-2116.

[6] Roy J., Bhattacharyya B., Ray P.S. (2014). GMRT
discovery of a 1.69 ms radio pulsar associated with
XSS J12270-4859, The Astronomer's Telegram, pp.
5890.

[7] De Martino D., Belloni T., Falanga M., Papitto A.,
Motta S., Pellizzoni A., Mouchet M. (2013). X-ray
follow-ups of XSS: a low-mass X-ray binary with
gamma-ray Fermi-LAT association, Astronomy &
Astrophysics, Vol. 550, A89.

[8] Stock B., Johns M. (2016). Client-side XSS in theorie
und praxis, Datenschutz und Datensicherheit-DuD,
Vol. 40, No. 11, pp. 707-712.

[9] Wu J.D., Tseng Y.M., Huang S.S. (2016). Leakage‐

resilient ID‐based signature scheme in the generic

bilinear group model, Security and Communication
Networks, Vol. 9, No. 17, pp. 3987-4001.

[10] Li S. (2016). Detection of web application
vulnerabilities accelerated by GPU.

[11] Lin A.W., Barceló P. (2016). String solving with word
equations and transducers: towards a logic for
analysing mutation XSS, ACM SIGPLAN Notices, Vol.
51, No. 1, pp. 123-136.

[12] Cui B., Wei Y., Shan S., Ma J. (2016). The generation
of XSS attacks developing in the detect detection,
International Conference on Broadband and Wireless
Computing, Communication and Applications,
Springer International Publishing, pp. 353-361.

[13] Yi L.I.U., Junbin H.O.N.G. (2016). A dynamic
detection method based on Web crawler and page code
behavior for XSS vulnerability, Telecommunications
Science, Vol. 32, No. 3.

[14] Rao K.S., Jain N., Limaje N., Gupta A., Jain M.,
Menezes B. (2016). Two for the price of one: A
combined browser defense against XSS and
clickjacking, Computing, Networking and
Communications (ICNC), International Conference
IEEE, pp. 1-6.

[15] Bazzoli E., Criscione C., Maggi F., Zanero S. (2016).
XSS PEEKER: Dissecting the XSS exploitation
techniques and fuzzing mechanisms of Blackbox Web
application scanners, IFIP International Information
Security and Privacy Conference, Springer
International Publishing, pp. 243-258.

[16] Wei D. (2016). Network traffic prediction based on
RBF neural network optimized by improved

15

gravitation search algorithm, Neural Computing and
Applications, pp. 1-10.

[17] Ra H.K., Yoon H.J., Salekin A., Lee J.H., Stankovic
J.A., Son S.H. (2016). Poster: software architecture for
efficiently designing cloud applications using node. js,
Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and
Services Companion, ACM, pp. 72-72.

[18] Sen K., Kalasapur S., Brutch T., Gibbs S. (2013).
Jalangi: a selective record-replay and dynamic analysis
framework for JavaScript, Proceedings of the 2013 9th
Joint Meeting on Foundations of Software
Engineering, ACM, pp. 488-498.

[19] Chaniotis I.K., Kyriakou K.I.D., Tselikas N.D. (2015).
Is Node. js a viable option for building modern web
applications: a performance evaluation study,
Computing, Vol. 97, No. 10, pp. 1023-1044.

[20] Bates D., Barth A., Jackson C. (2010). Regular
expressions considered harmful in client-side XSS

filters, International Conference on World Wide Web,
ACM, pp. 91-100.

[21] Gupta S., Gupta B.B. (2015). Cross-site scripting
(XSS) attacks and defense mechanisms: classification
and state-of-the-art, International Journal of System
Assurance Engineering & Management, pp. 1-19.

[22] Hydara I., Sultan A.B.M., Zulzalil H., Admodisastro N.
(2015). Current state of research on cross-site scripting
(XSS) – a systematic literature review, Information &
Software Technology, Vol. 58, pp. 170-186.

NOMENCLATURE

XSS XSS
JS Javascript
CSRF
HTML

Cross-site request forgery
Hyper Text Mark-up Language

16

