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ABSTRACT. This paper aims to design the best and versatile solution to job-shop scheduling 

problem (JSP). For this purpose, the ant colonly algorithm (ACA) was integrated to the shortest 

route optimization of the JSP, and a strategy was developed to solve the shortest scheduling 

route with the improved ACA (IACA). The proposed strategy was verified through case analysis 

and simulation experiment. The results show that the ACA is suitable to optimize the scheduling 

route of real-world JSP. With the increase of the pheromone residual coefficient, the route 

length of the ACA first increased and then decreased. The IACA worked out a better solution 

than the genetic algorithm with fewer iterations. The IACA is more adaptable and versatile 

than the genetic algorithm in shortest route optimization, as well as the IACA’s relative 

advantage in the global optimization ability for JSP. The research findings shed new light on 

the optimization of dynamic JSP with multiple objectives. 

RÉSUMÉ. Cet article vise à concevoir la solution la meilleure et la plus polyvalente au problème 

de séquençage de tâches (JSP, le sigle de « job-shop scheduling problem » en anglais). A cet 

égard, l' algorithme de colonies de fourmis (ACA, le sigle de « ant colonly algorithm » en 

anglais) a été intégré à l'optimisation de plus court chemin du JSP et une stratégie a été 

élaborée pour résoudre le chemin de planification la plus court avec l’ACA amélioré. La 

stratégie proposée a été vérifiée par une analyse de cas et un test de simulation. Les résultats 

montrent que l’ACA convient à l’optimisation de la planification des JSP dans le monde réel. 

Avec l'augmentation du coefficient résiduel de phéromone, la longueur de chemin de l'ACA a 

d'abord augmenté et puis diminué. L'ACA amélioré a élaboré une meilleure solution que 

l'algorithme génétique avec moins d'itérations. L'ACA amélioré est plus adaptable et polyvalent 

que l’algorithme génétique pour l’optimisation de plus court chemin, ainsi que l’avantage 

relatif de l’ACA amélioré dans la capacité d’optimisation globale de JSP. Les résultats de la 

recherche ont apporté un nouvel éclairage sur l’optimisation de la JSP dynamique avec des 

objectifs multiples. 
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1. Introduction 

Recent years has seen a growing interest among production enterprises in efficient 

resource allocation and schedule planning, which gives birth to numerous innovative 

solutions and algorithms of the job-shop scheduling problem (JSP) (González et al., 

2015). For example, many enterprises are competing to minimize the makespan and 

achieve an efficient output mode (Zhao et al., 2016, Zhai et al., 2014). The JSP is 

nonlinear, uncertain and largescale, often involving multiple objectives and 

constraints. The scheduling of a job-shop needs to determine the process line, 

machining time and thermodynamic operation, before minimizing the makespan, 

optimizing the resource utilization and maximizing the product qualification rate 

(Ling et al., 2013).  

In actual production, lots of time is consumed by non-cutting processes. A 

reasonable route for the JSP may save the cost and promote the production efficiency 

(Hu, 2015). The shortest route optimization is an important solution to the JSP. It is 

constantly updated and improved. The relevant algorithms include the simulated 

annealing algorithm, the genetic algorithm, the ant colony algorithm (ACA), the 

neural network algorithms, and the chaos optimization algorithms. Among them, the 

ACA, an intelligent optimization algorithm, has lately been introduced to the shortest 

route optimization of the JSP (Saravanan and Haq, 2010). 

Despite its proneness to the local optimal trap and slow convergence, the ACA, 

closely bound with the pheromone mechanism, has been found feasible to optimize 

the JSP solutions (Fnaiech et al., 2015). The relevant studies have proved that the 

ACA outperforms the other algorithms in positive feedback, self-organization and 

global search ability. Of course, these studies are still in their infancy, leaving an 

ample space for further application of the ACA in the JSP (Seidgar et al., 2016). 

In light of the above, this paper applies the ACA to optimize the shortest route in 

job-shop scheduling, aiming to design the best and versatile solution to the JSP. 

2. Basic theories of the ACA and the improved ACA (IACA) 

2.1. The ACA 

The traditional ACA involves the state transition strategy, global update rule and 

local pheromone update mechanism (Zhang et al., 2013), and supports self-

organization and parallel operations. Thanks to the uncertainty of distributed 

computation, the ACA can approximate the optimal solution from many solutions 

without a central control (Azzi et al., 2012). 

As a swarm intelligence algorithm, the ACA relies on the adaptation and 

cooperation processes. By the pheromone quantity released by ants, the models 

developed based on this algorithm fall into three categories: ant-density system, anti-

quantity system and ant-cycle system. The first two categories use the local 
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information while the last uses the global information to achieve good computing 

effect (Vinod and Sridharan, 2011). The three system models can be expressed as: 

Ant-density system: 

∇τij
k(t,t+1)= {

Q,          (i,j)∈lk
0,   otherwise 

                                               (1) 

Ant-quantity system:  

∇τij
k(t,t+1)= {

Q

dij
,          (i,j)∈lk

0,   otherwise 
                                             (2) 

Ant-cycle system:  

∇τij
k(t,t+1)= {

Q

Lk
,          (i,j)∈lk

0,   otherwise 
                                          (3) 

The three basic ant system models were respectively subjected to ten tests and the 

results were compared in Table 1 below. 

Table 1. Test results of the three basic ant system models 

Test no. Ant-density system Ant-quantity system Ant-cycle system 

1 27.282350 27.947872 25.734450 

2 33.916369 28.198004 27.425817 

3 31.813578 31.218422 26.764424 

4 28.198004 28.198804 26.438203 

5 29.950884 27.903925 28.198004 

6 28.672368 32.925244 26.525410 

7 27.900799 33.479480 26.935765 

8 30.119585 27.947872 27.855764 

9 28.198004 30.359064 26.327773 

10 31.611845 28.241552 26.734450 

Mean length route 29.78073 29.64202 26.87966 

 

Here, the pheromone quantity of the ant is denoted as Q and the route length as 

Lk. It is obvious that the ant-cycle system has better computing effect than the other 

two systems. 
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2.2. The IACA 

During the foraging process, each ant is guided by the relative importance of 

pheromone to the heuristic information, and tends to choose a route with relatively 

high pheromone concentration (Zhao and Tan, 2012). 

Table 2. Effect of pheromone on ACA performance 

Pheromones 
Heuristic 

factor 

Average 

value 

Optimal path 

length 

Worst path 

length 

Iterations 

number 

0 2 695.17 671.11 725.80 45 

0.5 2 549.49 513.71 572.62 39 

1 2 441.94 436.15 447.29 35 

2 2 460.65 445.78 480.11 36 

 

As shown in Table 2, the pheromone level directly bears on the ACA performance. 

The mean route length, the optimal route length and the number of iterations were all 

minimized at the pheromone level of 1. 

With the elapse of the time, the pheromone level will gradually decline. Here, the 

pheromone volatilization coefficient ρ is introduced to disclose the relationship 

between ant movement and the decline amplitude, and the corresponding 1-ρ 

represents the pheromone residual coefficient. 

 

Figure 1. Relationship between 1-ρ and the convergence time 

As shown in Figure 1, there is an obvious correlation between the pheromone 

residual coefficient and the convergence time Nc, indicating that the ACA 

convergence is greatly affected by the pheromone volatilization coefficient ρ. It can 

be seen the convergence time Nc clearly increased with the pheromone residual 
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coefficient; the convergence time at 1-ρ=1 was twice that at 1-ρ=0.9. The relationship 

between 1-ρ and route length L is shown in Figure 2. 

 

Figure 2. Relationship between 1-ρ and route length L 

From Figure 2, it can be inferred that the route of the ACA first increased and then 

decreased with the growth of the pheromone residual coefficient, and reached the 

shortest length at 1-ρ=0.6 or 0.7. 

3. ACA-Based shortest route optimization of static JSP 

3.1. Shortest route optimization of single-objective static JSP 

Our target is a static JSP, which leaves out such dynamic factors as sudden 

machine failure, order cancellation and emergency job insertion. The optimization 

aims to minimize the workspan, machine load, total machine load, lead time and total 

cost. The formulas of these objectives are as follows: 

Minimum completion time: f1=min Cmax=min(max(Ci))                   (4) 

Minimum machine load: f2=min(max(Wk))                                (5) 

Minimum gross machine loads: f3=min(∑ Wk
m
k=1 )                          (6) 

Minimum lead time: f4=min(max(max(di-Ci)))                            (7) 

Minimum machining cost: 

f5=min(Cost)=min(∑ ∑ ∑ Costijkxijk
MachineNum
k=1

OperationNum

j=1
n
i=1                (8) 

Where: 1≤i≤n; 1≤k≤m. 
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Based on the traditional ACA, the state transition, global pheromone update and 

local pheromone update were implemented on the ant colony system. Taking the job-

shop of an engine enterprise for instance, there are six jobs to be produced, each of 

which needs to go through six processes, and ten machines for job production. With 

the aim to minimize the make span, the weight coefficient of selected pheromone was 

set to 2, the pheromone intensity was set to 120, and the number of iterations was set 

to 50. The traditional ACA, the genetic algorithm, the hybrid algorithm and the IACA 

were adopted for the simulation. 

Figures 3 and 4 display the convergence time of the ACA to the optimal 

solution and the mean convergence time of the ACA to the optimal solution 

of each number of iteration. Figure 5 presents the solutions obtained by the 

four contrastive algorithms. It is obvious that the IACA consumed less time 

and achieved better solution than the other three algorithms, and realized the 

shortest JSP route. 

 

Figure 3. The convergence time of the ACA to the optimal solution 

 

Figure 4. The mean convergence time of the ACA to the optimal solution in each 

iteration 
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Figure 5. Solution results of four algorithms 

3.2. Shortest route optimization of multi-objective static JSP 

In real-world job-shops, there are more than one objective of scheduling 

optimization. The multi-objective JSP needs to strike a balance between the various 

objectives, such as the total makespan, the total cost and the lead time (Moradi et al., 

2011, Calleja and Pastor, 2014). In light of these, the weighted sum method was 

employed to determine the objective weight λi based on the makespan f1, the 

maximum machine load f2, the total machine load f3, the maximum lead time f4 and 

the total cost f5. Multiple scheduling plans were solved by the ACA to determine the 

optimal one. An overall optimization objective was derived from the single objectives 

and their corresponding objective weights: 

min(Y)=F=λ1*f1+λ2*f2+λ3*f3+λ4*f4+λ5*f5                           (9) 

where λ1+λ2+λ3+λ4+λ5=1. After determining the overall optimization objective, 

the pheromone volatilization coefficient was set to 0.1, the pheromone intensity was 

set to 120, and the number of iterations was set to 100. Figure 6 provides the 

convergence time to the overall optimization objective of the IACA, and Figure 7 

gives the mean convergence time to that objective in each iteration. It can be seen that 

the optimal solution of the multi-objective static JSP is not always consistent with that 

of all single objectives. 
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Figure 6. The convergence time of the IACA to the overall optimization objective 

 

Figure 7. The mean convergence time of the IACA to the optimal solution in each 

iteration 

4. IACA-Based shortest route optimization of dynamic JSP 

4.1. Shortest route selection strategy 

The static JSP described in the previous section adopts a constant scheduling plan, 

which is the optimal one for the production process. However, the JSP faces dynamic 

changes and various emergencies. The dynamic JSP requires constant rescheduling 

according to the latest conditions. In general, a dynamic JSP solution should optimize 

such core issues as the scheduling route and dynamic event processing. The popular 

rescheduling strategies are driven by cycle or event 

The engine job-shop was still cited as the example. Taking the shortest scheduling 

route as the objective, the IACA was compared with the genetic algorithm through a 

performance test. The test results on the IACA and the genetic algorithm are listed in 

Tables 3 and 4, respectively. It is clear that the IACA worked out a better solution 

than the genetic algorithm with fewer iterations. The convergence curves of the IACA 

and the genetic algorithm are displayed in Figures 8 and 9, respectively. The figures 
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demonstrate that the IACA is more adaptable and versatile than the genetic algorithm 

in shortest route optimization, as well as the IACA’s relative advantage in the global 

optimization ability for JSP. 

Table 3. Mixed ant colony algorithm test results 

α β ρ Shortest path value Iterations number 

1 5 0.8 765.5405 71 

1 3 0.6 766.3511 58 

2 5 0.8 729.5203 48 

2 4 0.6 805.748 62 

3 3 0.8 803.6245 32 

3 5 0.6 729.7353 44 

Note: α represents the pheromone heuristic factor; β represents the expected 

heuristic factor; ρ represents the pheromone volatilization coefficient. 

Table 4. Test results of the genetic algorithm 

Popnum Pc Pm Shortest path value Iterations number 

60 0.5 0.06 755.1173 70 

60 0.7 0.06 768.1229 48 

60 0.8 0.12 744.8622 99 

30 0.5 0.06 743.5381 33 

30 0.7 0.06 818.8602 34 

30 0.8 0.12 803.2614 96 

 

 

Figure 8. The convergence curves of the IACA 
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Figure 9. Genetic algorithm test results 

4.2. Case study and results analysis 

Our case has eight jobs, numbered as J1~J8, and ten machines, numbered as 

M1~M10. Each job requires different number of processes: 4 for J1, 3 for J2, 4 for J3, 

5 for J4, 4 for J5, 5 for J6, 4 for J7 and 5 for J8. The rescheduling strategy is both 

cycle- and event-driven. The optimization objective was set as the minimal makespan. 

During the rescheduling, the job with higher priority should be processed first. If a 

machine fails, its processes should be terminated, and the unfinished jobs should also 

be scrapped. Under these conditions, the author conducted a simulation experiment 

on the IACA. 

During the experiment, an emergency job J9 was added to the production queue 

at 20h. Then, the job was preferentially arranged into the production at 20h. In 

addition, machine M6 was assumed to fail at 7h, and all the jobs processed on it were 

suspended until the failure was eliminated. Moreover, job J5 was assumed to have a 

poor quality at 10h and should be scrapped. In this case, this job was removed from 

the production queue. The simulation of these three dynamic scheduling routes prove 

that the IACA can respond well to the changes induced by external uncertainties. 

5. Conclusion 

This paper integrates the ant colony algorithm into the shortest route optimization 

in job shop scheduling process. Here also gives the strategy for solving the shortest 

route of the job shop scheduling with improved ant colony algorithm. An example 

cited helps make the simulation experiment. The specific conclusions are drawn as 

follows: 

With the increase of the pheromone residual coefficient, the route length of the 

ACA first increased and then decreased, and reached the shortest length when the 

pheromone residual coefficient was 0.6 or 0.7. 
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The multi-objective JSP needs to strike a balance between the various objectives, 

such as the total make span, the total cost and the lead time. Through simulation, it is 

learned that the optimal solution of the multi-objective static JSP is not always 

consistent with that of all single objectives. 

The IACA is more adaptable and versatile than the genetic algorithm in shortest 

route optimization, as well as the IACA’s relative advantage in the global optimization 

ability for JSP. The simulation analysis of three dynamic scheduling routes reveals 

that the IACA can respond well to the changes induced by external uncertainties. 
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