
An Efficient Optimization Algorithm for Modular Product Design

Hayam G. Wahdan1*, Hisham M. Abdelslam1, Sally S. Kassem1,2

1 Faculty of Computers and Artificial Intelligence, Cairo University, Giza 12613, Egypt
2 Smart Engineering Systems Research Centre, Industrial Engineering, Nile University, Giza 12588, Egypt

Corresponding Author Email: Hayam@fci-cu.edu.eg

https://doi.org/10.18280/jesa.540201 ABSTRACT

Received: 6 July 2020

Accepted: 30 December 2020

Modularity concepts play an important role in the process of developing new complex

products. Modularization involves dividing a product into a set of modules - each of which

consisting of a set of components - that are interdependent in the same cluster and

independent between clusters. During this process, a product can be represented using a

Design Structure Matrix (DSM). A DSM acts as a tool for system analysis to provide clear

visualization of product elements. In addition, DSM, shows the interactions between these

product elements. This paper aims to propose an efficient optimization algorithm that

dynamically divides a DSM into an optimal number and size of clusters in a way that

minimizes total coordination cost; the interactions inside clusters (modules) and

interactions between clusters. Given problem complexity, five metaheuristic optimization

algorithms are proposed and tested to solve it; these algorithms are used to determine: (1)

the optimal clusters’ number within a DSM, and (2) the optimal components assignment

clusters to minimize the total coordination cost. The five used metaheuristics are: Cuckoo

Search, Modified Cuckoo Search, Particle Swarm Optimization, Simulated Annealing, and

Gravitational Search Algorithm. Eighty problems with different properties are generated

and used to examine the proposed algorithms for effectiveness and efficiency. Extensive

comparisons are conducted and analyzed. Cuckoo Search is outperforming the other four

algorithms.

Keywords:

modular design, Design Structure Matrix,

Cuckoo Search, Particle Swarm

Optimization, Simulated Annealing,

Gravitational Search Algorithm

1. INTRODUCTION

Modular design has a significant impact on product

development processes that respond to market trends requiring

large varieties within small production processes [1].

Modularity is an important method to break down large

systems into smaller modules for easier management of such

large systems. The modules are interdependent in the same

module and independent between different modules. Modular

design involves clustering different components forming a

product to create modules which are effective and useful for

production. Effective product modularity acquires more

importance when similar modules are used in different

products [2]. A desirable product architecture is an

architecture that partitions a product into modules such that,

some modules can be updated on regular cycles of time, others

can be changed to generate various type of products, others

can be deleted without affecting the product function, and

some other modules might be swapped to offer additional

functionality [3].

Modularity has an impact on profit and sustainability.

Concerning manufacturers, a modular product has modules

that can be replaced with newly developed modules, without

the need to develop or manufacture entirely new products.

Concerning customers, they can upgrade their products by

replacing existing modules with new upgraded ones without

the need to dispose of the product. This leads to reducing total

waste since the entire product will not be disposed [4].

Design Structure Matrix (DSM) is a well-recognized tool

that assists in the analysis, as well as, management of large and

complex systems [5]. Also, it is a product representation tool

used to model, visualize, and analyze dependencies between

the elements of a system, and recommends actions for the

improvement or formation of a DSM to represent a system. A

product can be represented by a DSM containing a list of the

product’s components. Product’s DSM also provides

information exchange and dependency relationships among

these components [6]. Transformation an initial DSM to

functional blocks of components is a process known as DSM

clustering; the clustering process creates modules which are

effective and useful for the company [7].

Within such context, this paper aims to propose an efficient

algorithm that divides a DSM into clusters based on

minimizing the total coordination cost as the objective

function. The total coordination cost is a term introduced by

Gutierrez (1998) to quantify the summation of interactions

inside clusters (IntraClusterCost) and interactions between

clusters (ExtraClustercost) [8]. To propose such efficient

algorithm, a number of metaheuristic algorithms, available in

the literature, are considered. The algorithms are tailored to

solve the problem of dividing a DSM into clusters with the

objective of minimizing the total coordination cost. In this

paper, five metaheuristic algorisms are used to determine: (1)

the optimal number of clusters of DSM, and (2) the optimal

components assignment to clusters such that the total

coordination cost is minimized. The five metaheuristic

algorithms utilized in this work are:

1-Cuckoo Search (CS)

2- Modified Cuckoo Search (MCS)

3- Particle Swarm Optimization (PSO)

Journal Européen des Systèmes Automatisés
Vol. 54, No. 2, April, 2021, pp. 195-207

Journal homepage: http://iieta.org/journals/jesa

195

https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.540201&domain=pdf

4- Simulated Annealing (SA)

5- Gravitational Search Algorithm (GSA)

Comprehensive comparisons are conducted between the

results obtained using the five metaheuristic algorithms. The

output of the comparisons is a recommendation on the efficient

algorithm to solve the problem presented in this research.

To the best of our knowledge, this is the first time to use

these metaheuristic algorithms with cost minimization as the

objective function in solving product design problem under

modularity while having dynamic number of clusters.

Following the introduction, the rest of the paper is

structured as follows: Section 2 provides a brief introduction

about DSM, followed by a review of related literature in

Section 3. Problem definition and proposed solution

algorithms are provided in Sections 4 and 5, respectively.

Section 6 includes numerical experimentation and analysis of

the algorithms and, finally, the paper conclusion and points for

future research are provided in Section 7.

2. DESIGN STRUCTURE MATRIX

The Design Structure Matrix (DSM) is a system analysis

tool which provides a compact and clear representation of a

complex large system. It determines the

interaction/interdependencies/interfaces between elements

forming a system. DSM allows feedback, in addition to cyclic

dependencies. This is one of the most important features of

DSMs since many engineering applications possess that cyclic

property [9].

DSM is a square matrix of size n, is the number of elements

of the system. Figure 1 shows an example of a DSM of size 7.

Elements names are written on the first raw and the first

column of the matrix in the same order. An entry of 1 or x in

the matrix means that the correspond elements i j (rowi,

columnj) are dependent on each other [10]. A DSM is

established for each product, and can be analyzed to identify

modules, such process is known as clustering. DSM clustering

aims at finding clustering arrangements where modules

interact minimally with each other, and at the same time,

components belonging to the same module maximally interact

with each other [6]. For example, Figure 1(a) shows the

original DSM without clustering, Figure 1(b) shows the DSM

after clustering where most interactions are contained in two

modules, namely, {A, F, E} and {D, B, C, G}. Figure 1(b) also

shows that three interactions do not belong to any specific

module.

Figure 1. Example of Design Structure Matrix [11]

3. RELATED WORK

Cuckoo Search clustering algorithm is used to find the

optimal number of clusters and the optimal assignment of

components to clusters with total coordination cost as an

objective [6, 9]. Genetic clustering is proposed with Minimum

Description Length measure. a new assumption is added to

minimize the total execution time. The proposed algorithm is

tested on four case studies [7]. mathematical model was

developed by Gutierrez [8], this model minimizes the

coordination cost [8] with fixed number of clusters. A Genetic

Algorithm is used to find optimal arrangement of elements

within DSM which optimize the minimum description length

(MDL) [11].

Eppingeret et al. introduced the idea of minimizing

interactions between modules, while maximizing interactions

within modules in a DSM [12]. Idicula proposed a stochastic

clustering algorithm for DSM clustering [13]. Thebeau

developed a stochastic hill climbing algorithm to cluster DSM

with the objective function of cost minimization [14].

A new method is developed to define the difference

between designing modular systems and integrative systems

[15]. The study is focused on the specification of modules,

modules architecture, and their interfaces.

To obtain better output from a clustering algorithm, a

method known as conceptual module generation phase can be

employed [16]. Liang [17] developed a model known as group

decomposition model. The proposed model decomposes a

complex set of activities into simpler ones. The DSM is used

as a system simplification tool. The clustering algorithm

employed is K-means algorithm [17]. Li [18] proposed an

integrated tool that addresses problems in matrix-based

decomposition [18]. Four DSM types are provided with their

corresponding application in engineering design, as well as, in

concurrent engineering. Various techniques dealing with DSM

partitioning, taring, banding, and clustering are proposed [19].

A modularization scheme based on functional modeling is

proposed and K-means is used for clustering [20]. Neural

networks algorithms and DSMs have been utilized to cluster

DSM components with the objective function of clustering

efficiency; however, the algorithm requires a predetermined

number of clusters [21]. Borjesson and Hölttä [22] develop an

algorithm named Idicula-Gutierrez-Thebeau Algorithm

(IGTA) for clustering DSM. An improved algorithm, named

IGTA-plus, is proposed. IGTA-plus provide significant

improvement when compared with IGTA. Recorded

improvements are in terms of computational time and solution

quality [22].

Yang et al. [23] developed a systematic clustering algorithm

for organizational DSM. The algorithm evaluates clustering

structures based on the strength of interaction.

Another novel approach for product design is introduced by

integrating the sequence structure planning of assembly and

disassembly of a product [24].

A hybrid approach is developed, based on multidimensional

scaling (MDS) and clustering methods. This approach is

applied on DSM to provide product architecting [25]. A new

practical method is proposed by Sakao et al. to support

designers in creating service modules by extending the DSM

[26]. research focused on the answering the questions, how

modularity used in product design, how it is helped in product

Varity and how modularity increased the organization

performance [27], Finally Non-dominated Cuckoo Search is

proposed to maximize Sustainability through DSM, This multi

objective optimization technique wants to find s set of Pareto

optimal solutions; each solution represents the structure of

modules and the number of modules in the product which

196

optimize functionality and sustainability objectives. The

problem has set of conflicting objectives, product functionality

objective, labor time, environmental impact and labor cost.

[28].

The reviewed literature on product design using DSM as a

system analysis tool revealed the existence of several points of

view to cluster the DSM for modularity. One major difference

between those points of view is the objective of clustering.

Another difference is in the solution technique. Considering

the objective of clustering, Minimal Description Length (MDL)

is one of the objectives [11]. Another objective is Minimizing

the total coordination cost, which is recognized as one of the

most widely targeted objectives [14]. Clustering Efficiency

(CE) index with static number of clusters is also among the

considered objectives in the literature [21]. As for the solution

technique for solving the problem, several techniques exist in

the literature, for example: Genetic Algorithm [11], stochastic

hill-climbing algorithm [14], and neural networks [21].

To the best of our knowledge, this research is the first one

to use the five previously mentioned metaheuristic algorithms

with cost minimization as the objective function in solving

product design problem under modularity with dynamic

number of clusters.

4. PROBLEM DEFINITION

Consider the DSM shown in Figure 1, if component i is

dependent on component j, then the matrix element i j (rowi,

columnj) contains “1” or “x” otherwise it contains “0” or

remains empty. The objective is to cluster these components

in such a way that minimizes the total coordination cost.

Accordingly, two sets of decisions are to be considered; (1) the

number of clusters will be formed, and (2) the optimal

assignment of components in each cluster.

For a given DSM, the total coordination cost consists of two

parts; IntraClusterCost and ExtraClusterCost as provided by

equations 1 and 2, respectively. If interaction DSMik belongs

to cluster j then IntraClusterCost is to be calculated, otherwise

ExtraClusterCost is to be calculated. The total cost is the

summation of IntraClusterCost and ExtraClusterCost as

shown in Eq. (3) and mentioned by Borjesson & ltta-Otto [29].

𝑖𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 = ∑ (𝐷𝑆𝑀𝑖𝑘 + 𝐷𝑆𝑀𝑘𝑖)
𝑖,𝑘∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗

∗ ∑ (𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒
𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑗=1
𝑗)𝑝𝑜𝑤𝑐𝑐

(1)

𝐸𝑥𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 = ∑ (𝐷𝑆𝑀𝑖𝑘

𝑖,𝑘 ∉ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗

+ 𝐷𝑆𝑀𝑘𝑖)𝐷𝑆𝑀𝑆𝑖𝑧𝑒𝑝𝑜𝑤𝑐𝑐 ,
𝑗 = 1 … 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟

(2)

where, DSMik is the relation between elements i and k,

DSMSize is the number of elements (rows) in the matrix,

powcc is a value utilized to penalize clusters’ sizes, and

ncluster is the total number of clusters. Clustersize(j) is the

number of elements within cluster j.

Total coordination Cost = IntraClusterCost +

ExtraClusterCost
(3)

The problem under consideration involves one key

constraint, which is: each element must be assigned to a single

cluster; i.e., overlapping between clusters is prohibited.

Prohibiting overlapping, or multi-cluster elements is necessary

since elements existing in several clusters force these common

clusters to have interactions between each other on multi-

levels. These interacting clusters reduce or even diminish the

usefulness and efficiency of the clustering process.

5. PROPOSED ALGORITHMS

Metaheuristic optimization algorithms are general iterative

algorithms capable of solving combinatorial optimization

problems. These algorithms are stochastic in manner. They

simulate the behavior of particles. Metaheuristic algorithms

try to find optimal or near optimal solutions for complex

problems [30] To solve the problem in this research, five

metaheuristic algorithms are utilized. Four of the selected

algorithms represent a population-based optimization method,

and one algorithm represents a trajectory optimization method.

The selected algorithms are Cuckoo Search (CS), Modified

Cuckoo Search (MCS), Particle Swarm Optimization (PSO),

Gravitational Search Algorithm (GSA), and Simulated

Annealing (SA). In the following subsections, a brief

description of the algorithms is given, along with a pseudo

code to provide easy implementation to the problem under

consideration.

5.1 Cuckoo Search (CS)

The Cuckoo Search (CS) algorithm was proposed by Yang

and Deb [31]. The algorithm simulates the behavior of cuckoo

birds to explore the solution space for an optimum or near

optimum solution. CS is inspired from the behavior of some

brood parasite cuckoo species that lay their eggs in the nests

of host birds of other species. Brood parasite cuckoos

distribute their eggs among several different nests. Their aim

is to escape the parental investment in raising their offspring,

and to minimize the risk of their egg loss [31].

One of the significant advantages of CS is its efficiency that

has been proven using a considerable number of benchmark

studies. When comparing results with other metaheuristic

algorithms, CS performed better. Another advantage of CS

compared to other metaheuristic algorithms is its simplicity,

since it requires setting only two parameters. This feature

simplifies the time and effort needed to adjust and fine tune

the algorithm’s parameter settings [32].

In CS algorithm, an egg represents a solution. Initial

solutions are randomly generated. Xi
t is solution i in generation

t. Xi
t+1 is obtained using a levy flight using equation 4. A levy

flight is a random walk with step lengths that follow a heavy

tailed probability distribution given in Eq. (5). Random walks

through Lévy flights experience longer step lengths on the

long run, and hence are efficient in exploring search spaces.

Xi
t+1 = Xi

t + α ⨁ Levy(λ) (4)

where, α is a number greater than zero that denotes the step

size, ⨁ product denotes entry-wise multiplications.

Levy ∼ u = t −λ, (1 < λ ≤ 3) (5)

The main steps of the CS algorithm are given in the pseudo

code in Figure 2.

197

Figure 2. Pseudo code of CS [33]

5.2 Modified Cuckoo Search (MCS)

A Modified Cuckoo Search algorithm was provided by

Walton et al. [33] with the same structure of original Cuckoo

Search maintained but with two modifications. The first

modification is changing the size of the Levy flight step size

α. In CS, α is set to the value of 1, and hence has a constant

value at all generations. In MCS, the value of α decrease as the

number of generations increases. This modification leads to a

more localized search as the individuals, or the eggs, get closer

to the solution. The second modification is the information

exchange among the eggs, aiming to speed convergence of the

solution. In CS, there is no information exchange among

individuals, and hence, searches are performed independently.

In MCS, a fraction of the eggs with the best fitness are

categorized as a group of top eggs. Two eggs are randomly

chosen from the group of top eggs. A new egg is then

generated on the line connecting the two chosen top eggs. The

new egg is located closer to the egg with the best fitness. The

distance of the new egg along the line is calculated using the

inverse of the golden ratio ᶲ =(1+√5)/2. If the two chosen top

eggs have the same fitness value, then the new egg is placed at

the midpoint. If the same egg is chosen twice, a local Levy

flight search is performed from the randomly picked nest with

step size α = A/G2 [34].

5.3 Particle Swarm Optimization (PSO)

Figure 3. Pseudo code of PSO [35]

The PSO algorithm was first introduced by Kennedy and

Eberhart [36]. The algorithm was inspired by mimicking the

social behavior of flocks of birds or schools of fishes. A flock

of birds or a school of fishes has a leader. The leader guides

the movement of all individuals of the swarm. The movement

of every individual depends of the leader’s knowledge [36].

The main steps of the PSO algorithm are summarized in the

pseudo code in Figure 3.

5.4 Gravitational Search Algorithm (GSA)

The GSA was first proposed by Rashedi et al. [37] as a

nature-inspired algorithm. The algorithm is population-based,

where Newton’s laws of gravity and motion are considered to

solve complex optimization problems. GSA is based on the

law of gravity and mass interactions. The algorithm requires a

set of search agents that interact with each other through

gravity force [37].

Steps of the GSA algorithm are summarized in the pseudo

code in Figure 4.

Figure 4. Pseudo code of GSA [38]

5.5 Simulated Annealing (SA)

The SA algorithm was proposed in 1982 by Kirkpatric et al.

[39]. SA is a probabilistic local search technique used to find

an optimum or near optimum solutions for large combinatorial

optimization problems. SA is best used when the search space

is discrete. Simulated Annealing imitates the annealing

process of metals. The algorithm explores the solution space

using neighborhood search methods. Worse solutions are

accepted with low probabilities to avoid being trapped in local

optima [39]. Basic steps of the SA algorithm are summarized

in the pseudo code in Figure 5.

Figure 5. Pseudo code of SA [40]

5.6 Implementation

5.6.1 Solution representation

Solution representation of the problem is a vector of length

198

that is equal to the number of elements of the DSM. Each value

in the vector is an integer between 1 and the number of clusters,

as shown in Figure 6. Figure 6 illustrates a vector of size 7.

The vector represents a solution for an original DSM

consisting of 7 elements. The solution presented in Figure 6

means that cluster 1 contains elements 1 and 7, cluster 2

contains elements 2, 3, and 4, and cluster 3 contains elements

5 and 6. The presented solution representation ensures

avoiding multi-clustering; in other words, each element will

be assigned to exactly one cluster. The solution procedure

starts with a number of clusters that is equal to the number of

elements available within the DSM. Hence, the solution

procedure starts with the maximum possible number of

clusters. The next step is to reform sets of clusters to obtain the

optimum number of clusters with the corresponding elements

in each cluster.

Figure 6. Solution representation vector

In this work, five algorithms are proposed to solve the

problem in hand. Four of the proposed algorithms (CS, MCS,

PSO and GSA) are present in the literature to solve continuous

optimization problems. The problem presented in this work is

discrete in nature, and hence, the proposed algorithm requires

a process of discretization. Several methods are available in

the literature to perform discretization. Among the known

discretization methods is the random key technique, where

continuous values are transformed into discrete integer values

[41]. Another method is the smallest position value (SPV) [42].

A different technique available in the literature is the nearest

integer (NI) method. In this method, a continuous valueis

trasnformed to thenearestinteger value by simply rounding,

trancatingup, or trancatingdown [43].

SPV and random key methods do not permit the repetition

of integer values in the solution. Solving the problem

presented in this research necessarily requires repeating some

integer values. Hence, SPV and random key methods cannot

be used to solve the problem in hand. The nearest integer

method, on the other hand, allows the repetition of integer

values in a solution, and therefore, the nearest integer

discretization technique is chosen to solve the problem in this

research.

When using CS and MCS to cluster a DSM, the algorithm

begins with generating several nests. A nest consists of a

vector having a length that is equal to the number of elements

of the DSM to be clustered. Entries of vectors are randomly

generated uniformly between the upper limit and lower limit.

Then, these entries are transformed into integer values using

the nearest integer method. Vectors represent solutions that

require evaluation. Therefore, each vector is sent to the

evaluation function. The evaluation function calculates the

corresponding total coordination cost, conducts comparisons

and performs updates using Levy flight and the probability of

discovery (pa), details are available in Section 5.1 and Section

5.2.

In PSO, the algorithm begins with generating several

particles. A particle consists of a vector having a length that is

equal to the number of elements of the DSM to be clustered.

Entries of vectors are randomly generated uniformly between

the upper limit and lower limit. Then, these entries are

transformed into integer values using the nearest integer

method. Vectors represent solutions that require evaluation.

Therefore, each vector is sent to the evaluation function. The

evaluation function calculates the corresponding total

coordination cost, and generates a new solution using a new

position and a new velocity. Details are given in Section 5.3.

Finally, in GSA, the process starts with a set of objects. The

fitness function is evaluated, mass and acceleration are

calculated, and the velocity and position are updated to

generate a new solution Details are given in Section 5.4.

Regarding SA, the solution is a vector of length that equals

to the number of elements in the DSM. This vector contains

integer numbers whose values are between lower and upper

limits. The vector represents the current solution. A new

solution is updated by generating a neighbor solution, then old

and new solutions are compared. Details are given in Section

5.5.

5.6.2 Solution evaluation

Clustering a DSM requires minimizing the total

coordination cost which is based on IntraClusterCost and

ExtraClusterCost. IntraClusterCost is calculated if interaction

DSMik belongs to cluster j, otherwise, ExtraClusterCost is

calculated. At the beginning of the solution procedure, feasible

solutions are randomly generated, and the total coordination

cost is calculated. Details of calculating the total coordination

cost, IntraClusterCost, and ExtraClusterCost, are given in

Section 4. Evaluation of the solution(s) is performed, then the

algorithm selects the best obtained solution and a new iteration

begins. In this research, five algorithms are used, hence, each

algorithm moves to the next solution according to its specific

procedure as follows: (1) CS and MCS utilize Levy flight to

move the best nests with high quality eggs (solutions) to the

following generation, (2) PSO moves to a new position with a

different velocity, (3) SA obtain a neighbor solution (4) GSA

utilizes a set of agents, each agent has a corresponding position,

inertial mass, active gravitational mass, and passive

gravitational mass. Gravitational masses and inertia masses

are adjusted in each iteration to obtain the new solution, where

the heaviest mass represents the best obtained solution. Each

of the five algorithms moves from generation to the next till

the stopping criteria is reached.

5.6.3 Handling constraints

The five proposed algorithms rely on unconstraint objective

function evaluation. The problem considered in this research

is a constrained problem. Hence, a constraint handling method

is required to solve the problem considered in this research.

There are several methods that can be used to handle

constraints, one of the simplest and most common methods is

using a penalty function. The main idea is to transform a

constrained optimization problem to an unconstrained

optimization problem by adding a certain value (penalty) to

the objective function. This value depends on the amount of

violation presented in a certain solution [44].

In the proposed algorithms, a penalty is added to the fitness

function according to Eqns. (6) and (7) which guarantee

reaching a feasible solution as iterations proceed.

penalty(x) = {
0, if no violation occurs

(C ∗ iter)α ∑ fj
β(x)m

j=1 , otherwise
 (6)

eval(x)

= {
f(x), if x ∈ feasible solutions
f(x) + penalty(x), otherwise

(7)

199

where, f(x) is the fitness function (total coordination Cost),
(𝐶 ∗ iter)α is to make the constraint violation of the same

order of magnitude as the objective function based on iter

(iteration number) violation which expands when iterations

grow; β is defined as the multiplication of violation which

highly leads to feasibility by maximizing violation value

which, in turn, encourages the solution to be feasible through

differentiating between feasible and non-feasible solutions

with a high impact.

6. RESULTS AND DISCUSSIONS

This section compares results obtained by the five

algorithms in solving the 80 test problems with different

dimensions and complexities.

6.1 Test problems

In order to examine the performance of the proposed

algorithms, and hence recommend the efficient algorithm, they

are applied to a number of test instances. Due to the limited

benchmark instances available in this field, 80 DSMs are

randomly generated. These matrices contain 1's and 0's.

Numbers of Ones which represent the existence of interaction

are generated according to specific complexity. These

matrices range from size 10 (number of elements in DSM) up

to 100, and from complexity 0.2 up to 0.9. Complexity is

defined as the ratio between the numbers of actual interactions

to the total number of possible interactions in a given DSM.

For example, a DSM of size 10 and with 36 interactions among

its components will have a complexity of 36/ ((10x10)-10) =

0.4; where the (10*10)-10) is the total number of possible

interactions in a given DSM and 36 is actual interactions.

Based on size, these problems are classified to small (10 to

50 elements), and large (60 to 100 elements). Based on

complexity, these problems are classified as low complexity

(0.2 to 0.5), and high complexity (0.6 and 0.9).

For the sake of comparison in various experiments, each

algorithm is set for 30 runs and 1000 iteration in population-

based algorithms, and for SA the initial temperature and final

temperature are selected to provide the same number of

solution evaluations and exploration of the search space as the

other algorithms.

6.2 Algorithms’ performance

Algorithms performance are assessed using the following

performance measures: mean value of the objective function,

standard deviation, best obtained objective function value,

which represents the minimum objective function value

among the five algorithms, and the percentage of change from

mean. The percentage of change from mean is calculated by

dividing the difference between mean and best over best

obtained multiplied by 100.

The mean value of the objective function represents the

solution quality through 30 runs of each algorithm. Standard

deviation is used to assess how far the values are spread above

and below the mean. Algorithms with low values of standard

deviation tend to be more reliable than those with higher

standard deviation values. The best objective function value

shows the best solution among the five algorithms. The

difference between the mean and best solutions of each

algorithm shows the deviation of the mean solution of a

specific algorithm from the best value among all algorithms.

The low value of the difference indicates that the mean is near

to the best. The percentage of change from mean shows the

deviation percentage of mean solution of a specific algorithm

from the best.

Tables (1-a) to (1-j) (included in appendix) show the results

obtained after solving the 80 generated problems using the 5

proposed algorithms. The tables show the mean and standard

deviation values for 30 runs of each algorithm at different

problems' sizes and complexities. For each table, the best

obtained objective function value among the 5 algorithms is

identified. Comparisons between the 5 algorithms' objective

function values are shown as the difference between the best

values obtained and each algorithm's mean objective function

value. Tables (2-a) to (2-j) (included in appendix A) show the

CPU time, in seconds, for each algorithm to obtain the mean

objective function value.

Considering the objective function value as a performance

measure, the following can be concluded. For small size and

low complexity, CS outperforms 3 algorithms (MCS, PSO and

SA) in 40% of the cases regarding the mean objective function

value, GSA outperforms the 3 algorithms (MCS, PSO and SA)

in 40% of the cases regarding the mean objective function

value and the remaining 20% of the cases, the best objective

function values are obtained from the others algorithms. For

small size and high complexity, CS outperforms the 3

algorithms (MCS, PSO and SA) in 50% of the cases regarding

the mean objective function value, GSA outperforms the 3

(MCS, PSO and SA) algorithms in 50% of the cases regarding

the mean objective function value and the remaining 3

algorithms do not appear in this case. Considering the large

size and low and high complexity, CS outperforms the other 4

algorithms in 100% of the cases regarding the mean objective

function value.

Another performance measure considered is the mean

computational time. The best algorithm is the one that

provides the minimum mean computational time. Results

show that for small size and low complexity problems, MCS

outperforms the other 4 algorithms in 55% of the cases

regarding the mean computational time value. In the remaining

45% of the cases, the best mean computational time values are

obtained from the 4 algorithms with different percentages. For

small size and high complexity, MCS outperforms the other 4

algorithms in 70% of the cases regarding the mean

computational time value. In the remaining 30% of the cases,

the best mean computational time values are obtained from the

4 algorithms with different percentages. Considering the large

size and low complexity, MCS outperforms the other 4

algorithms in 95% of the cases regarding the mean

computational time value. Regarding, large size and high

complexity MCS outperforms the other 4 algorithms in 100%

of the cases regarding the mean computational time value

The MCS records the worst objective function values due to

using probability to discover alien (Pa) with a value of 0.5. In

the test problems, this leads to ignoring some better solutions

due to this limited local search ability. Therefore, the value of

(pa) in the range [0.1, 0.4] for many test instances, achieves

the required balance between exploration and exploitation.

Similarly, PSO got trapped in local minimum. Considering SA,

it is noticed that it obtains inferior solutions compared to the

other algorithms. This could be due to the nature of the SA

procedure providing a single solution every iteration, and

hence the ability to explore the entire solution space is less

than the other population-based algorithms. Finally, GSA

200

provides solutions near CS in the small scale problems, but in

large scale problems, CS is the best. Regarding CPU time

MCS provides the minimum mean CPU time in most cases and

in most dimensions. This is due to the second modification

done on CS.

The Friedman test is a non-parametric method for

identifying treatment discrepancies through several attempts.

To rank the performance of the used algorithms using

Friedman test [45], Table 3 shows the ranking of algorithms

based on the results obtained eighty solved problems using the

Friedman test. As expected, the CS algorithm is first in the

ranking, GSA is coming next, PSO, MCS and SA respectively.

Table 3. Ranking of algorithms based on performance using

Friedman's test

Algorithms CS MCS PSO SA GSA

Ranking 1.28 3.79 2.54 5 2.39

To find significant differences between the results obtained

by the proposed algorithms in solving the 80 test problems,

statistical analysis is used. To detect significant differences in

the results, Friedman test is employed. When applying

Friedman test using the online Friedman calculator, the result

is significance at p < 0.05. This means that the results are

important.

Table 4 shows the results of the Friedman test. In this table,

there is the Chi-Square value with 4 degrees of freedom, and

also there is asymptotic significance of the test (p-value) with

very close to zero value. Given the close to zero value of the

asymptotic significance, the hypothesis is rejected. Therefore,

it can be concluded that there is a significant difference in the

performance of algorithms.

Table 4. Results of Friedman’s tests based on performance

Test

method

Chi-

Square

Degrees of

freedom

(DF)

P-value Hypothesis

Friedman 260.98 4 0.00001 rejected

6.3 Limiting cluster size

While solving the previous problems, it was noticed that the

cluster size can go very large and the first and last clusters were

of larger size compared to the others clusters. This is because

of the upper and lower bound constraint; this constraint forces

elements to be assigned in clusters from 1 to the number of

elements, which means that if the element is assigned in a

cluster outside the upper bound, it is forced to be assigned to

the upper limit cluster, the same applies for the lower bound.

To deal with this issue, two strategies are proposed: (1)

elements that are assigned in cluster outside the upper and

lower bounds are re-assigned to other clusters within the range

and not necessary to either the lower or the upper clusters, and

(2) a new constraint is introduced to restrict the maximum

number of elements in each cluster. This maximum number of

elements in the cluster must be less than or equal the square

root of the number of elements in DSM, as mentioned by Yan

& Feng [4]. This constraint is incorporated within the model

through a penalty function (Eq. (6)) and added to the original

objective function of the problem. The penalty function forces

solutions that violate the constraint to be ignored in subsequent

iterations.

To illustrate the effect of the proposed strategies, consider

the original DSM of size 10 and complexity 0.2 shown in

Figure 7. Figure 8 Provides DSM after clustering without

controlling the size of the clusters. As shown, three clusters are

formed and the cluster size is very large, with 5 interactions

outside clusters, representing 29% of total interactions, and

71% are included in clusters. This means that the clustering

efficiency is 71%. Clustering efficiency is a modularity

measure which calculates the percentage of interactions inside

clusters with respect to total number of interactions.

Figure 9 shows a clustered DSM after controlling the size

of the clusters. Four clusters are formed, which represents the

best number of clusters. Elements 1, 2, and 6 are in cluster

number 1, element 3 is in cluster number 2 and so on. Nine

interactions remain outside clusters, which represents 53% of

the total interactions, 47% are included in clusters. This means

that the clustering efficiency is 47%.

Figure 7. Original DSM

Figure 8. Clustered DSM without limiting cluster size

Figure 9. Clustered DSM with limited cluster size

Figures 10 to 14 show the effect of limiting cluster size on

results obtained by CS algorithm on some test problems. The

figures show that the objective function value is increased after

limiting the size of a cluster. This increase happened for all

problems’ dimensions and complexities. On the other hand,

limiting the size of a cluster is important in modular product

design. The smaller the modules, the more practical they are

when they need to be replaced or upgraded. Therefore, the

increase in the objective function value resulting from limiting

clusters’ sizes is acceptable given the advantage of obtaining

smaller modules.

201

Figure 10. A comparison between CS with limiting cluster

size and CS without limiting cluster size in DSM of Size 10

Figure 11. A comparison between CS with limiting cluster

size and CS without limiting cluster size in DSM of Size 20

Figure 12. A comparison between CS with limiting cluster

size and CS without limiting cluster size in DSM of Size 30

Figure 13. A comparison between CS with limiting cluster

size and CS without limiting cluster size in DSM of Size 40

Figure 14. A comparison between CS with limiting cluster

size and CS without limiting cluster size in DSM of Size 50

7. CONCLUSION AND FUTURE WORK

This paper aimed to provide an efficient clustering

algorithm capable of obtaining a high-quality solution in

reasonable computation time for the product design problem

under modularity. Five Meta-heuristics techniques are

examined, namely, CS, MCS, PSO, SA, and GSA. The

algorithms aim to find: (1) the optimal number of clusters

within a DSM; and (2) the optimal components’ assignment

forming clusters. The objective function was to minimize the

total coordination cost.

In this context, DSM was employed as a system analysis

tool. It provided a compact and clear representation of

complex systems. Also, it helped in visualizing the

interactions between system elements. The utilized algorithms

were tested and compared on eighty test instances. These

instances were generated randomly with different dimensions

and complexity to provide different product complexity.

Results showed that Cuckoo Search provided better solutions

compared to the other algorithms in most cases regarding

mean objective function value. Modified Cuckoo Search

provided better solutions compared to other algorithms in most

cases regarding mean computational time.

A Penalty method was used as constraint handling to

prevent forming large clusters. Another comparison was

conducted between solutions with limiting clusters’ sizes and

without limiting clusters’ sizes, limiting cluster size is needed

and important in product design problem, since product design

main objective is to create small modules to be useful and

important for the company, that can be replaced and updated

at any time to provide new product or new functions. Future

work includes providing multi-objective Cuckoo Search

algorithm to find the optimal assignment of each element in

the cluster and the optimal number of clusters which minimize

total coordination cost of the product and maximize product

sustainability with a fuzzy logic approach in designing

sustainability matrix.

REFERENCES

[1] Chang, T.R., Wang, C.S., Wang , C.C. (2013). A

systematic approach for green design in modular product

development. The International Journal of Advanced

Manufacturing Technology, 68(9): 2729-2741.

https://doi.org/10.1007/s00170-013-4865-5

[2] Shaik, A.M., Rao, V.K., Rao, C.S. (2014). Development

of modular manufacturing systems—a review. The

International Journal of Advanced Manufacturing

Technology, 74: 789-802.

http://doi.org/10.1007/s00170-014-6289-2

[3] Aguwa, C., Monplaisir, L., Sylajakumari, P.A. (2012).

Effect of rating modification on a fuzzy-based modular

architecture for medical device design and development.

Advances in Fuzzy Systems, 2012: 106354.

http://dx.doi.org/10.1155/2012/106354

[4] Yan, J., Feng, C. (2014). Sustainable design-oriented

product modularity combined with 6R concept: A case

study of rotor laboratory bench. Clean Techn Environ

Policy, 16: 95-109. http://dx.doi.org/10.1007/s10098-

013-0602-x

[5] Abdelsalam, H., Rasmy, M., Mohamed, H.G. (2014). A

simulation-based time reduction approach for resource

constrained design structure matrix. International Journal

of Modeling and Optimization, 4(1): 51-55.

202

https://doi.org/10.1007/s00170-014-6289-2

http://doi.org/10.7763/IJMO.2014.V4.346

[6] Wahdan, H., Kassem, S.S., Abdelsalam, H. (2016). A

cuckoo search clustering algorithm for design structure

matrix. 5th the International Conference on Operations

Research and Enterprise Systems (ICORES 2016), Italy

Rome, pp. 36-43.

http//doi.org/10.5220/0005693000360043

[7] Borjesson, F., Sellgren, U. (2013). Fast hybrid genetic

clustering algorithm for design structure matrix. 25th

International Conference on Design Theory and

Methodology, Portland, Oregon, USA: ASME 2013.

https://doi.org/10.1115/DETC2013-12041

[8] Gutierrez, C.I. (1998). Integration analysis of product

architecture to support effective team co-location.

Cambridge: Masters Thesis, Massachusetts Institute of

Technology.

[9] Wahdan, H.G., Abdelsalam, H.M., Kassem, S.S. (2017).

Product modularization using cuckoo search algorithm.

In: Vitoriano B., Parlier G. (eds) Operations Research

and Enterprise Systems. ICORES 2016.

Communications in Computer and Information Science,

vol 695. Springer, Cham. http//doi.org/10.1007/978-3-

319-53982-9_2

[10] Steward, D.V. (1998). The design structure system: A

method for managing the design of complex systems.

IEEE Transactions on Engineering Management, 28(3):

71-74. http://dx.doi.org/10.1109/TEM.1981.6448589

[11] Yassine, A.A., Yu, T.L., Goldberg, D.E. (2007). An

information theoretic method for developing modular

architectures using genetic algorithms. Research in

Product Design, 18(2): 91-109.

http//doi.org/10.1007/s00163-007-0030-1

[12] Eppinger, S., Whitney, D., Smith, R., Gebala, D. (1994).

A model based method for organizing tasks in product

development. Research in Engineering Design, 6(1): 1-

13. https://doi.org/10.1007/BF01588087

[13] Idicula, J. (1995). Planning for Concurrent Engineering.

Singapore: Gintic Institute Research report.

[14] Thebeau, R. (2001). Knowledge management of system

interfaces and interactions for product development

process. Massachusetts Institute of Technology.

[15] Sosa, M.E., Rowles, C.M., Eppinger, S.D. (2003).

Identifying modular and integrative systems and their

impact on design team interactions. ASME J. Mech. Des.,

125(2): 240-252. https://doi.org/10.1115/1.1564074

[16] Borjesson, F. (2009). Improved output in modular

function deployment using heuristics. International

Conferance on Engineering Design, Stanford, USA, pp.

24-27.

[17] Liang, L.Y. (2009). Grouping decomposition under

constraints for design/build life cycle in project delivery

system. International Journal of Technology

Management, 48(2): 168-187.

https://doi.org/10.1504/IJTM.2009.024914

[18] Li, S. (2009). Matrix-based decomposition algorithms

for engineering applications: the survey and generic

framework. International Journal of Product

Development, 9(1/2/3): 78-110.

https://doi.org/10.1504/IJPD.2009.026175

[19] Xiao, R., Chen, T. (2010). Research on design structure

matrix and its applications in product development and

innovation: An overview. International Journal of

Computer Applications in Technology, 37(3/4): 218-229.

https://doi.org/10.1504/IJCAT.2010.031938

[20] van Beek, T.J., Erden, M.S., Tomiyama, T. (2010).

Modular design of mechatronic systems with function

modeling. Mechatronics, 20(8): 850-863.

https://doi.org/10.1016/j.mechatronics.2010.02.002

[21] Pandremenos, J., Chryssolouris, G. (2012). A neural

network approach for the development of modular

product architectures. International Journal of Computer

Integrated Manufacturing, 14(3): 1-8.

https://doi.org/10.1080/0951192X.2011.602361

[22] Borjesson, F., Hölttä-Otto, K. (2012). Improved

clustering algorithm for design structure matrix. ASME

2012 International Design Engineering Technical

Conferences & Computers and Information in

Engineering Conference, Chicago, IL, USA: IDETC/CIE

2012, pp. 1-10. https://doi.org/10.1115/DETC2012-

70076

[23] Yang, Q., Yao, T., Lu, T., Zhang, B. (2014). An

overlapping-based design structure matrix for measuring

interaction strength and clustering analysis in product

development project. IEEE Transactions On Engineering

Management, 61(1): 159-170.

http//doi.org/10.1109/TEM.2013.2267779

[24] Kim, S., Baek, J.W., Moon, S.K., Jeon, S. (2015). A new

approach for product design by integrating assembly and

disassembly sequence structure planning. Proceedings of

the 18th Asia Pacific Symposium on Intelligent and

Evolutionary Systems, pp. 247-257.

https://doi.org/10.1007/978-3-319-13359-1_20

[25] Qiao, L., Efatmaneshnik, M., Ryan, M., Shoval, S.

(2017). Product modular analysis with design structure

matrix using a hybrid approach based on MDS and

clustering. Journal of Engineering Design, 28(6): 433-

456. http://dx.doi.org/10.1080/09544828.2017.1325858

[26] Sakao, T., Song, W., Matschewsky, J. (2017). Creating

service modules for customising product/service systems

by extending DSM. CIRP Annals, 66(1): 21-24.

https://doi.org/10.1016/j.cirp.2017.04.107

[27] Ezzat, O., Medini, K., Boucher, X., Delorme, X. (2019).

Product and service modularization for variety

management. Procedia Manufactoring, 28: 148-153.

https://doi.org/10.1016/j.promfg.2018.12.024

[28] Wahdan, H., Abdelslam, H., Abou-El-Enien, T., Kassem,

S. (2019). Sustainable product design through non-

dominated sorting cuckoo search. Journal Européen des

Systèmes Automatisés, 52(5): 439-448.

https://doi.org/10.18280/jesa.520502

[29] Borjesson, F., Otto, K.H. (2014). A module generation

algorithm for product architecture based on component

interactions and strategic drivers. Research in

Engineering Design, 25(1): 31-51.

https://doi.org/10.1007/s00163-013-0164-2

[30] Elbeltagia, E., Hegazyb, T., Grierso, D. (2005).

Comparison among five evolutionary-based

optimization algorithms. Advanced Engineering

Informatics, 19: 43-53.

https://doi.org/10.1016/j.aei.2005.01.004

[31] Yang, X., Deb, S. (2009). Cuckoo search via Levy flights.

The World Congress on Nature and Biologically Inspired

Computing (NABIC ’09), Coimbatore, India: IEEE, pp.

210-214. https://doi.org/10.1109/NABIC.2009.5393690

[32] Yang, X.S., Deb, S. (2010). Engineering optimisation by

cuckoo search. Int. J. Math. Model. Numer. Optim., 1(4):

330-343. arXiv:1005.2908

[33] Walton, S., Hassan, O., Morgan, K., Brown, M.R. (2011).

203

https://doi.org/10.1007/BF01588087
https://doi.org/10.1115/1.1564074
https://doi.org/10.1504/IJTM.2009.024914
http://dx.doi.org/10.1504/IJPD.2009.026175
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1504%2FIJCAT.2010.031938

Modified cuckoo search: A new gradient free

optimisation algorithm. Chaos, Solitons & Fractals, 44:

710-718. https://doi.org/10.1016/j.chaos.2011.06.004

[34] Yildiz, A.R. (2013). Cuckoo search algorithm for the

selection of optimal machining parameters in milling

operations. international Journal of Advanced

Manufacturing Technology, 64(1): 55-61.

https://doi.org/10.1007/s00170-012-4013-7

[35] Tasgetiren, M.F., Liang, Y.C., Sevkli, M. (2007). A

particle swarm optimization algorithm for makespan and

total flowtime minimization in the permutation flow shop

sequencing problem. European Journal of Operational

Research, 177: 1930-1947.

https://doi.org/10.1016/j.ejor.2005.12.024

[36] Kennedy, J., Eberhart, R.C. (1995). Particle swarm

optimization. Proceedings of ICNN'95 - International

Conference on Neural Networks, Perth, WA, Australia,

1995, pp. 1942-1948

https://doi.org/10.1109/ICNN.1995.488968

[37] Rashedi, E., Nezamabadi-pour, H., Saryazdi, S. (2009).

GSA: A gravitational search algorithm. Information

Sciences, 179(13): 2232-2248.

https://doi.org/10.1016/j.ins.2009.03.004

[38] Sabri, N.M., Puteh, M., Rusop, M. (2013). A review of

gravitational search algorithm. International Journal and

Advance, 5(3): 1-39.

[39] Kirkpatrick, S., Gerlatt, C., Vecchi, M. (1983).

Optimization by simulated annealing. Science,

220(4598): 671-680.

https://doi.org/10.1126/science.220.4598.671

[40] Melouka, S.D.Y. (2004). Minimizing makespan for

single machine batch processing with non-identical job

sizes using simulated annealing. International Journal of

Production Economics, 87(2): 141-147.

https://doi.org/10.1016/S0925-5273(03)00092-6

[41] Chen, H., Li, S., Tang, Z. (2011). Hybrid gravitational

search algorithm with random-key encoding scheme

combined with simulated annealing. International

Journal of Computer Science and Network Security,

11(6): 208-217.

[42] Verma, R., Kumar, S. (2012). DNA sequence assembly

using continuous particle swarm optimization with

smallest position value rule. First International

Conference on Recent Advances in Information

Technology, pp. 410-415.

https://doi.org/10.1109/RAIT.2012.6194455

[43] Burnwal, S., Deb, S. (2012). Scheduling optimization of

flexible manufacturing system using cuckoo search-

based approach. International Journal of Advanced

Manufacturing Technology, 64: 951-959.

https://doi.org/10.1007/s00170-012-4061-z

[44] Homaifar, A., Qi, C.X., Lai, S.H. (1994). Constrained

optimization via genetic algorithms. Simulation, 62(4):

242-253. https://doi.org/10.1177/003754979406200405

[45] Derrac, J., García, S., Molina, D., Herrera, F. (2011). A

practical tutorial on the use of nonparametric statistical

tests as a methodology for comparing evolutionary and

swarm intelligence algorithms. Swarm and Evolutionary

Computation, 1(1): 1-13.

https://doi.org/10.1016/j.swevo.2011.02.002

APPENDIX

Table 1. Comparison between CS, MCS, PSO, SA and GSA in DSM

(a) Size 10

CF

Objective function

Best obtained
percentage of change from mean

CS MCS PSO SA GSA

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA

0.2 56.96 0 56.96 0 57.36 0.53 61.01 0.87 56.96 0.00 56.96 0.00 0.00 0.70 7.10 0.00

0.3 86.97 0 87.22 0.49 88.14 1.57 94.88 1.72 87.98 0.00 86.97 0.00 0.28 1.35 9.09 1.16

0.4 119.36 0 119.36 0 120.36 0.72 129.69 1.22 119.90 0.88 119.36 0.00 0.00 0.84 8.65 0.45

0.5 137.70 0.16 137.66 0.02 137.75 0.22 148.21 2.48 137.77 0.33 137.66 0.03 0.00 0.07 7.66 0.08

0.6 176.47 0.37 177.19 0.91 176.84 0.78 189.94 1.87 176.94 0.99 176.47 0.00 0.40 0.21 7.63 0.27

0.7 217.78 0 217.95 0.51 217.95 0.51 229.79 1.65 217.95 0.51 217.78 0.00 0.07 0.07 5.51 0.07

0.8 257.59 0 257.59 0 257.59 0 272.39 1.17 257.59 0.00 257.59 0.00 0.00 0.00 5.75 0.00

0.9 294.16 0 294.48 0.68 294.64 0.78 311.03 2.30 294.32 0.51 294.16 0.00 0.11 0.17 5.74 0.06
CF – complexity factor Mean – Average value St.dev standard Best obtain – minimum mean value

(b) Size 20

CF

Objective function

Best obtained
percentage of change from mean

CS MCS PSO SA GSA

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA

0.2 376.84 5.19 374.71 7.22 376.96 6.84 459.67 4.45 377.57 8.23 374.71 0.57 0.00 0.60 22.67 0.76

0.3 606.94 7.18 610.82 8.74 605.38 5.00 705.94 4.54 610.22 4.35 605.38 0.26 0.90 0.00 16.61 0.80

0.4 822.24 4.18 827.01 8.38 825.88 5.32 940.61 5.63 826.58 5.43 822.24 0.00 0.58 0.44 14.40 0.53

0.5 985.18 9.37 990.55 9.64 989.76 6.64 1148.19 6.91 989.59 11.91 985.18 0.00 0.55 0.46 16.55 0.45

0.6 1237.06 3.98 1246.68 11.84 1241.88 7.24 1408.27 15.13 1238.62 5.55 1237.06 0.00 0.78 0.39 13.84 0.13

0.7 1477.14 5.20 1483.77 9.45 1479.48 5.51 1674.56 11.73 1478.64 7.99 1477.14 0.00 0.45 0.16 13.37 0.10

0.8 1709.81 4.50 1712.77 14.89 1716.43 11.42 1932.20 11.72 1709.84 9.89 1709.81 0.00 0.17 0.39 13.01 0.00

0.9 1954.91 3.88 1965.97 15.96 1957.88 5.20 2203.71 9.31 1956.52 2.63 1954.91 0.00 0.57 0.15 12.73 0.08

204

https://doi.org/10.1016/j.chaos.2011.06.004
https://doi.org/10.1007/s00170-012-4013-7
https://doi.org/10.1016/j.ejor.2005.12.024
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1016/S0925-5273(03)00092-6
https://doi.org/10.1109/RAIT.2012.6194455
https://doi.org/10.1007/s00170-012-4061-z
https://doi.org/10.1177%2F003754979406200405
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.swevo.2011.02.002

(c) Size 30

CF

Objective function

Best obtained
percentage of change from mean

CS MCS PSO SA GSA

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA

0.2 1187.23 18.66 1216.97 19.61 1188.10 19.31 1427.90 9.29 1184.31 21.01 1184.31 0.25 2.76 0.32 20.57 0.00

0.3 1837.34 10.75 1879.60 34.29 1849.27 28.21 2176.70 14.31 1827.80 14.63 1827.80 0.52 2.83 1.17 19.09 0.00

0.4 2385.50 15.78 2425.88 38.62 2405.38 33.17 2826.50 9.54 2379.87 25.11 2379.87 0.24 1.93 1.07 18.77 0.00

0.5 3080.77 10.53 3140.55 45.78 3101.18 12.28 3606.63 14.16 3075.56 16.56 3075.56 0.17 2.11 0.83 17.27 0.00

0.6 3756.34 12.45 3823.89 48.68 3756.34 29.35 4392.29 18.16 3746.91 10.73 3746.91 0.25 2.05 0.25 17.22 0.00

0.7 4449.47 10.33 4517.90 55.91 4463.53 21.54 5172.59 18.49 4439.50 18.13 4439.50 0.22 1.77 0.54 16.51 0.00

0.8 5148.96 14.50 5201.88 27.34 5149.38 12.51 5947.35 11.27 5121.03 11.78 5121.03 0.55 1.58 0.55 16.14 0.00

0.9 5829.26 10.17 5936.62 62.55 5839.12 10.51 6748.37 22.17 5819.87 10.18 5819.87 0.16 2.01 0.33 15.95 0.00

(d) Size 40

CF

Objective function

Best obtained
percentage of change from mean

CS MCS PSO SA GSA

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA

0.2 2584.08 27.54 2669.34 19.72 2587.97 40.89 3122.94 20.86 2551.75 2551.75 2551.75 1.27 4.61 1.42 22.38 0.00

0.3 4021.57 27.16 4190.15 76.59 4083.01 21.35 4823.71 16.04 4002.09 32.19 4002.09 0.49 4.70 2.02 20.53 0.00

0.4 5308.55 22.53 5525.98 116.69 5327.37 38.64 6302.92 19.37 5288.57 25.18 5288.57 0.38 4.49 0.73 19.18 0.00

0.5 6766.37 20.71 7034.72 81.38 6794.85 19.22 8008.43 18.34 6746.54 31.61 6746.54 0.29 4.27 0.72 18.70 0.00

0.6 8230.18 26.03 8502.36 115.25 8244.13 27.18 9695.26 31.23 8195.21 52.57 8195.21 0.43 3.75 0.60 18.30 0.00

0.7 9699.21 19.02 10017.69 141.71 9713.76 20.98 11396.92 28.52 9678.39 57.73 9678.39 0.22 3.51 0.37 17.76 0.00

0.8 12630.63 16.62 13065.43 92.70 12636.32 11.64 14778.01 44.12 12605.75 25.05 12605.75 0.20 3.65 0.24 17.23 0.00

0.9 12630.84 17.35 13150.07 197.05 12634.94 18.62 14781.45 43.43 12606.58 11.73 12606.58 0.19 4.31 0.22 17.25 0.00

(e) Size 50

CF

Objective function

Best obtained
percentage of change from mean

CS MCS PSO SA GSA

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA

0.2 4727.39 30.96 5052.79 74.44 4784.35 42.68 5729.46 12.91 4754.19 91.26 4727.39 0.00 6.88 1.21 21.20 0.57

0.3 7366.43 37.30 7837.83 92.32 7423.84 34.61 8857.70 16.74 7369.36 28.83 7366.43 0.00 6.40 0.78 20.24 0.04

0.4 9939.04 52.63 10529.03 135.66 9963.59 66.34 11875.58 32.90 9945.34 55.37 9939.04 0.00 5.94 0.25 19.48 0.06

0.5 12372.73 44.42 13117.08 120.78 12437.14 26.88 14744.88 34.11 12390.61 64.97 12372.73 0.00 6.02 0.52 19.17 0.14

0.6 15009.42 24.02 15872.36 181.64 15052.75 46.29 17831.63 50.28 15028.66 74.11 15009.42 0.00 5.75 0.29 18.80 0.13

0.7 17630.47 21.19 18605.65 252.33 17679.19 16.66 20937.51 27.73 17639.99 66.12 17630.47 0.00 5.53 0.28 18.76 0.05

0.8 20284.52 24.91 21350.53 171.05 20314.42 29.76 24039.00 26.04 20285.88 100.15 20284.52 0.00 5.26 0.15 18.51 0.01

0.9 22930.18 18.88 24303.88 324.03 22933.26 21.68 27087.32 54.14 22975.48 133.96 22930.18 0.00 5.99 0.01 18.13 0.20

(f) Size 60

CF

Objective function

Best obtained
percentage of change from mean

CS MCS PSO SA GSA

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA

0.2 7916.71 64.78 8630.80 76.98 7992.83 62.66 9594.72 23.24 7974.90 108.58 7916.71 0.00 9.02 0.96 21.20 0.73

0.3 12099.45 66.64 12935.93 202.06 12179.07 42.87 14548.20 22.25 12117.12 85.02 12099.45 0.00 6.91 0.66 20.24 0.15

0.4 16010.38 42.89 17278.01 220.49 16087.26 24.72 19174.35 38.45 16048.43 143.82 16010.38 0.00 7.92 0.48 19.76 0.24

0.5 20287.35 36.85 21736.29 224.96 20310.03 44.18 24241.49 29.42 20320.58 142.24 20287.35 0.00 7.14 0.11 19.49 0.16

0.6 24499.39 46.65 26339.99 396.89 24561.98 43.80 29246.43 31.04 24590.65 103.58 24499.39 0.00 7.51 0.26 19.38 0.37

0.7 28772.98 39.61 30906.14 413.02 28801.57 32.43 34289.59 49.93 28823.07 137.59 28772.98 0.00 7.41 0.10 19.17 0.17

0.8 33017.61 40.84 35322.75 471.66 33067.17 27.52 39299.92 86.85 33288.77 188.53 33017.61 0.00 6.98 0.15 19.03 0.82

0.9 37306.83 41.81 39992.14 522.97 37319.56 24.52 44408.76 34.05 37430.44 196.22 37306.83 0.00 7.20 0.03 19.04 0.33

(g) Size 70

CF

Objective function

Best obtained
percentage of change from mean

CS MCS PSO SA GSA

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA

0.2 12150.43 65.69 13467.47 194.74 12204.52 105.12 14699.92 39.32 12163.85 93.97 12150.43 0.00 10.84 0.45 20.98 0.11

0.3 17962.14 59.25 19878.52 344.78 17999.50 48.61 21611.66 19.92 18080.25 186.19 17962.14 0.00 10.67 0.21 20.32 0.66

0.4 24332.18 66.18 26442.27 430.22 24386.12 54.59 29199.98 46.65 24477.19 237.05 24332.18 0.00 8.67 0.22 20.01 0.60

0.5 30681.96 76.69 33311.21 304.68 30731.70 62.70 36818.77 58.93 30909.92 216.39 30681.96 0.00 8.57 0.16 20.00 0.74

0.6 37106.26 56.29 40572.14 530.13 37107.07 69.44 44387.39 76.35 37403.67 307.80 37106.26 0.00 9.34 0.00 19.62 0.80

0.7 43474.96 33.40 47113.15 554.49 43509.62 62.25 51998.09 75.24 43657.69 283.15 43474.96 0.00 8.37 0.08 19.60 0.42

0.8 49885.47 48.41 54170.37 444.79 49885.89 41.80 59608.57 40.03 50285.75 280.40 49885.47 0.00 8.59 0.00 19.49 0.80

0.9 56273.17 42.15 61082.10 573.65 56299.09 41.58 67178.71 80.19 56800.15 331.82 56273.17 0.00 8.55 0.05 19.38 0.94

205

(h) Size 80

F

Objective function

Best obtained
percentage of change from mean

CS MCS PSO SA GSA

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA

0.2 17466.45 86.76 19403.48 305.61 17518.72 30.49 21094.13 34.18 17859.85 206.88 17466.45 0.00 11.09 0.30 20.77 2.25

0.3 26146.20 66.21 29302.91 498.17 26217.04 73.03 31554.30 38.79 26705.83 312.32 26146.20 0.00 12.07 0.27 20.68 2.14

0.4 34888.61 56.93 38841.66 321.48 34903.34 67.64 41945.77 38.03 35344.24 328.99 34888.61 0.00 11.33 0.04 20.23 1.31

0.5 43895.67 75.33 48645.57 595.08 43931.98 117.62 52818.72 62.28 44750.39 436.90 43895.67 0.00 10.82 0.08 20.33 1.95

0.6 52999.32 76.79 58509.00 442.20 53016.72 50.76 63686.73 68.06 53765.45 307.94 52999.32 0.00 10.40 0.03 20.17 1.45

0.7 62082.98 75.18 68342.40 504.63 62142.98 39.73 74545.13 110.30 62982.01 443.47 62082.98 0.00 10.08 0.10 20.07 1.45

0.8 71222.70 58.25 78604.66 680.77 71222.74 70.48 85431.39 54.19 72536.23 587.94 71222.70 0.00 10.36 0.00 19.95 1.84

0.9 80322.42 17.20 88887.90 939.88 80324.91 40.19 96233.21 104.88 81700.95 657.48 80322.42 0.00 10.66 0.00 19.81 1.72

(i) Size 90

CF

Objective function

Best obtained
percentage of change from mean

CS MCS PSO SA GSA

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA

0.2 23770.17 167.47 27017.91 334.46 23993.00 45.73 28888.70 47.26 24781.34 393.77 23623.33 0.00 14.37 1.38 22.13 4.90

0.3 36010.92 201.63 40345.75 37.60 36043.00 84.68 43422.00 112.70 37082.16 432.98 36192.60 0.00 11.48 0.18 20.03 2.46

0.4 47728.81 15.05 52205.64 27.96 48012.91 83.28 57558.00 60.29 48894.30 759.29 47714.41 0.00 9.46 0.90 20.83 2.47

0.5 60164.71 84.16 66219.34 119.63 60184.00 61.92 72584.70 41.78 62048.18 578.65 60182.70 0.00 10.19 0.04 20.55 3.10

0.6 72560.02 50.20 81076.37 133.71 72560.02 61.18 87255.00 15.57 74860.79 552.82 72650.94 0.00 11.85 0.00 20.10 3.04

0.7 85127.00 46.55 95944.54 87.30 85142.00 40.34 102230.00 25.18 87308.97 816.78 85154.88 0.00 12.61 0.02 20.07 2.53

0.8 97471.77 40.20 108678.68 108.15 97565.86 55.78 117080.00 31.92 100056.54 1195.41 97436.23 0.00 11.50 0.13 20.19 2.69

0.9 109880.00 60.22 122268.09 91.27 109890.00 37.20 132009.00 57.84 112993.98 1181.01 109826.67 0.00 11.38 0.03 20.23 2.88

(j) Size 100

CF

Objective function

Best obtained
percentage of change from mean

CS MCS PSO SA GSA

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA

0.2 31823.95 19.59 36405.56 57.04 31972.00 93.06 38390.70 14.69 33378.61 369.27 31821.71 0.00 14.46 0.05 20.69 4.89

0.3 46992.65 41.90 52541.84 59.03 47173.25 54.28 56880.00 70.26 49434.95 614.08 46968.55 0.00 11.86 0.49 21.15 5.25

0.4 63348.44 27.32 72155.51 47.93 63692.00 213.36 76620.30 80.55 66428.03 1218.17 63359.13 0.00 13.91 0.17 20.86 4.84

0.5 79713.39 36.87 88844.84 32.06 79882.00 126.07 96221.20 26.92 83421.13 825.74 79702.70 0.00 11.50 0.24 20.77 4.67

0.6 96097.38 56.95 108048.37 46.50 96097.38 130.39 116020.00 73.93 99860.41 862.99 96331.59 0.00 12.16 0.01 20.42 3.66

0.7 112658.42 22.72 127165.40 75.55 112730.00 98.44 135696.00 55.69 116995.41 1339.81 112630.31 0.00 12.92 0.10 20.43 3.88

0.8 128988.09 44.04 145352.22 97.34 129212.44 68.33 155303.00 108.52 134086.44 1224.61 128942.17 0.00 12.77 0.16 20.43 3.99

0.9 145503.03 43.73 163994.79 74.43 145550.00 52.83 175192.00 79.47 151396.90 1262.04 145520.85 0.00 12.64 0.03 20.31 4.04

Table 2. Mean CPU time/seconds

(a) Size 10

CF
Algorithms

CS MCS PSO SA GSA

0.2 7.24 6.17 6.86 6.15 17.18

0.3 5.97 6.50 6.63 5.89 24.10

0.4 6.34 6.58 6.36 6.46 15.71

0.5 5.92 6.32 5.31 5.02 16.06

0.6 7.11 6.26 6.57 6.23 15.37

0.7 6.69 6.03 6.58 6.82 15.40

0.8 6.84 6.59 7.42 7.56 15.19

0.9 6.25 6.53 5.24 6.05 15.59

(b) Size 20

CF
Algorithms

CS MCS PSO SA GSA

0.2 7.05 7.52 6.24 5.34 24.33

0.3 7.28 7.91 7.46 7.71 22.64

0.4 8.32 7.71 7.29 7.02 23.29

0.5 7.48 7.14 7.89 7.89 27.56

0.6 6.36 4.41 6.28 6.43 26.05

0.7 9.28 8.54 8.85 8.66 23.44

0.8 13.03 12.53 12.96 13.78 23.42

0.9 14.74 13.53 14.52 14.52 25.22

(c) Size 30

CF
Algorithms

CS MCS PSO SA GSA

0.2 26.24 23.76 25.81 26.39 41.71

0.3 40.47 35.16 40.13 39.78 37.47

0.4 62.86 35.27 65.85 74.73 33.79

0.5 16.36 10.34 14.22 14.18 44.00

0.6 10.62 10.08 10.45 10.55 40.51

0.7 12.38 10.50 12.31 12.64 41.50

0.8 10.73 10.44 11.08 10.83 40.46

0.9 22.92 18.91 22.52 22.36 40.50

(d) Size 40

CF
Algorithms

CS MCS PSO SA GSA

0.2 37.45 93.87 35.95 34.22 63.05

0.3 23.20 12.99 22.78 22.20 60.65

0.4 17.46 12.91 17.71 17.46 60.20

0.5 17.50 14.34 17.87 17.93 58.92

0.6 21.32 24.33 23.21 23.71 60.57

0.7 22.32 19.71 22.54 23.04 60.19

0.8 15.08 16.59 14.89 14.93 58.93

0.9 16.46 19.06 16.22 16.81 57.67

206

(e) Size 50

CF
Algorithms

CS MCS PSO SA GSA

0.2 26.76 28.76 28.14 27.57 97.26

0.3 25.01 22.46 25.78 24.67 79.46

0.4 41.05 25.41 43.51 44.77 87.33

0.5 54.40 6396.21 43.68 49.45 78.58

0.6 59.75 106.15 61.73 48.68 77.49

0.7 66.92 40.25 59.42 65.33 75.16

0.8 63.10 47.61 59.78 62.86 75.23

0.9 123.77 67.38 135.25 126.79 73.17

(f) Size 60

CF
Algorithms

CS MCS PSO SA GSA

0.2 60.59 69.82 72.45 96.04 129.35

0.3 70.00 56.13 76.35 76.18 121.79

0.4 104.04 127.81 322.06 94.68 122.53

0.5 84.94 23.00 96.16 98.20 124.18

0.6 68.93 25.69 83.18 87.39 122.32

0.7 120.00 26.29 124.24 131.41 122.69

0.8 90.68 25.79 214.96 57.43 125.33

0.9 88.58 25.85 135.53 91.36 130.53

(g) Size 70

CF
Algorithms

CS MCS PSO SA GSA

0.2 86.59 42.48 906.25 102.30 199.64

0.3 108.20 38.31 399.96 103.04 195.38

0.4 112.89 46.62 336.23 115.51 202.09

0.5 124.44 49.96 808.87 117.56 208.65

0.6 134.37 138.09 593.68 134.24 184.61

0.7 136.12 92.31 362.57 146.23 183.57

0.8 153.34 62.92 349.76 158.33 175.11

0.9 167.26 77.35 576.39 162.18 176.41

(h) Size 80

CF
Algorithms

CS MCS PSO SA GSA

0.2 218.27 146.30 538.07 215.32 287.84

0.3 240.13 72.20 1136.55 235.89 395.71

0.4 242.02 48.26 2764.98 246.32 339.72

0.5 325.66 57.02 555.96 327.12 294.21

0.6 389.81 53.27 791.83 327.95 349.85

0.7 487.55 53.15 595.79 343.97 700.28

0.8 528.22 49.38 679.85 341.57 518.63

0.9 693.05 55.83 708.09 382.10 1226.18

(i) Size 90

CF
Algorithms

CS MCS PSO SA GSA

0.2 365.00 269.92 913.14 380.00 347.09

0.3 800.29 307.85 1073.90 560.00 382.49

0.4 700.29 320.54 802.33 730.00 381.34

0.5 902.43 349.46 1459.90 820.00 467.95

0.6 1001.20 420.00 1530.00 923.00 642.51

0.7 1363.10 356.15 1587.14 820.00 511.91

0.8 1400.00 450.00 1600.00 923.00 584.49

0.9 1587.70 530.00 1691.20 870.00 534.99

(j) Size 100

CF
Algorithms

CS MCS PSO SA GSA

0.2 1082.40 729.54 1754.20 922.00 775.91

0.3 1790.00 750.00 2528.90 903.00 1015.67

0.4 878.65 365.95 1809.50 802.00 610.02

0.5 1709.00 325.67 1863.70 780.00 1462.89

0.6 1109.00 350.00 1650.00 870.00 644.87

0.7 1101.80 289.65 1644.40 708.00 1115.94

0.8 1140.00 450.00 1750.00 809.00 555.86

0.9 1054.50 380.58 2695.00 920.00 533.38

207

