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Modularity concepts play an important role in the process of developing new complex 

products. Modularization involves dividing a product into a set of modules - each of which 

consisting of a set of components - that are interdependent in the same cluster and 

independent between clusters. During this process, a product can be represented using a 

Design Structure Matrix (DSM). A DSM acts as a tool for system analysis to provide clear 

visualization of product elements. In addition, DSM, shows the interactions between these 

product elements. This paper aims to propose an efficient optimization algorithm that 

dynamically divides a DSM into an optimal number and size of clusters in a way that 

minimizes total coordination cost; the interactions inside clusters (modules) and 

interactions between clusters. Given problem complexity, five metaheuristic optimization 

algorithms are proposed and tested to solve it; these algorithms are used to determine: (1) 

the optimal clusters’ number within a DSM, and (2) the optimal components assignment 

clusters to minimize the total coordination cost. The five used metaheuristics are: Cuckoo 

Search, Modified Cuckoo Search, Particle Swarm Optimization, Simulated Annealing, and 

Gravitational Search Algorithm. Eighty problems with different properties are generated 

and used to examine the proposed algorithms for effectiveness and efficiency. Extensive 

comparisons are conducted and analyzed. Cuckoo Search is outperforming the other four 

algorithms.  
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1. INTRODUCTION

Modular design has a significant impact on product 

development processes that respond to market trends requiring 

large varieties within small production processes [1]. 

Modularity is an important method to break down large 

systems into smaller modules for easier management of such 

large systems. The modules are interdependent in the same 

module and independent between different modules. Modular 

design involves clustering different components forming a 

product to create modules which are effective and useful for 

production. Effective product modularity acquires more 

importance when similar modules are used in different 

products  [2]. A desirable product architecture is an 

architecture that partitions a product into modules such that, 

some modules can be updated on regular cycles of time, others 

can be changed to generate various type of products, others 

can be deleted without affecting the product function, and 

some other modules might be swapped to offer additional 

functionality [3]. 

Modularity has an impact on profit and sustainability. 

Concerning manufacturers, a modular product has modules 

that can be replaced with newly developed modules, without 

the need to develop or manufacture entirely new products. 

Concerning customers, they can upgrade their products by 

replacing existing modules with new upgraded ones without 

the need to dispose of the product. This leads to reducing total 

waste since the entire product will not be disposed [4]. 

Design Structure Matrix (DSM) is a well-recognized tool 

that assists in the analysis, as well as, management of large and 

complex systems [5]. Also, it is a product representation tool 

used to model, visualize, and analyze dependencies between 

the elements of a system, and recommends actions for the 

improvement or formation of a DSM to represent a system. A 

product can be represented by a DSM containing a list of the 

product’s components. Product’s DSM also provides 

information exchange and dependency relationships among 

these components [6]. Transformation an initial DSM to 

functional blocks of components is a process known as DSM 

clustering; the clustering process creates modules which are 

effective and useful for the company [7]. 

Within such context, this paper aims to propose an efficient 

algorithm that divides a DSM into clusters based on 

minimizing the total coordination cost as the objective 

function. The total coordination cost is a term introduced by 

Gutierrez (1998) to quantify the summation of interactions 

inside clusters (IntraClusterCost) and interactions between 

clusters (ExtraClustercost) [8]. To propose such efficient 

algorithm, a number of metaheuristic algorithms, available in 

the literature, are considered. The algorithms are tailored to 

solve the problem of dividing a DSM into clusters with the 

objective of minimizing the total coordination cost. In this 

paper, five metaheuristic algorisms are used to determine: (1) 

the optimal number of clusters of DSM, and (2) the optimal 

components assignment to clusters such that the total 

coordination cost is minimized. The five metaheuristic 

algorithms utilized in this work are:  

1-Cuckoo Search (CS)

2- Modified Cuckoo Search (MCS)

3- Particle Swarm Optimization (PSO)
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4- Simulated Annealing (SA) 

5- Gravitational Search Algorithm (GSA)  

Comprehensive comparisons are conducted between the 

results obtained using the five metaheuristic algorithms. The 

output of the comparisons is a recommendation on the efficient 

algorithm to solve the problem presented in this research. 

To the best of our knowledge, this is the first time to use 

these metaheuristic algorithms with cost minimization as the 

objective function in solving product design problem under 

modularity while having dynamic number of clusters. 

Following the introduction, the rest of the paper is 

structured as follows: Section 2 provides a brief introduction 

about DSM, followed by a review of related literature in 

Section 3. Problem definition and proposed solution 

algorithms are provided in Sections 4 and 5, respectively. 

Section 6 includes numerical experimentation and analysis of 

the algorithms and, finally, the paper conclusion and points for 

future research are provided in Section 7. 

 

 

2. DESIGN STRUCTURE MATRIX 

 

The Design Structure Matrix (DSM) is a system analysis 

tool which provides a compact and clear representation of a 

complex large system. It determines the 

interaction/interdependencies/interfaces between elements 

forming a system. DSM allows feedback, in addition to cyclic 

dependencies. This is one of the most important features of 

DSMs since many engineering applications possess that cyclic 

property [9]. 

DSM is a square matrix of size n, is the number of elements 

of the system. Figure 1 shows an example of a DSM of size 7. 

Elements names are written on the first raw and the first 

column of the matrix in the same order. An entry of 1 or x in 

the matrix means that the correspond elements i j (rowi, 

columnj) are dependent on each other [10]. A DSM is 

established for each product, and can be analyzed to identify 

modules, such process is known as clustering. DSM clustering 

aims at finding clustering arrangements where modules 

interact minimally with each other, and at the same time, 

components belonging to the same module maximally interact 

with each other [6]. For example, Figure 1(a) shows the 

original DSM without clustering, Figure 1(b) shows the DSM 

after clustering where most interactions are contained in two 

modules, namely, {A, F, E} and {D, B, C, G}. Figure 1(b) also 

shows that three interactions do not belong to any specific 

module. 

Figure 1. Example of Design Structure Matrix [11] 

 

 

3. RELATED WORK 

 

Cuckoo Search clustering algorithm is used to find the 

optimal number of clusters and the optimal assignment of 

components to clusters with total coordination cost as an 

objective [6, 9]. Genetic clustering is proposed with Minimum 

Description Length measure. a new assumption is added to 

minimize the total execution time. The proposed algorithm is 

tested on four case studies [7]. mathematical model was 

developed by Gutierrez [8], this model minimizes the 

coordination cost [8] with fixed number of clusters. A Genetic 

Algorithm is used to find optimal arrangement of elements 

within DSM which optimize the minimum description length 

(MDL) [11]. 

Eppingeret et al. introduced the idea of minimizing 

interactions between modules, while maximizing interactions 

within modules in a DSM [12]. Idicula proposed a stochastic 

clustering algorithm for DSM clustering [13]. Thebeau 

developed a stochastic hill climbing algorithm to cluster DSM 

with the objective function of cost minimization [14]. 

A new method is developed to define the difference 

between designing modular systems and integrative systems 

[15]. The study is focused on the specification of modules, 

modules architecture, and their interfaces.  

To obtain better output from a clustering algorithm, a 

method known as conceptual module generation phase can be 

employed [16]. Liang [17] developed a model known as group 

decomposition model. The proposed model decomposes a 

complex set of activities into simpler ones. The DSM is used 

as a system simplification tool. The clustering algorithm 

employed is K-means algorithm [17]. Li [18] proposed an 

integrated tool that addresses problems in matrix-based 

decomposition [18]. Four DSM types are provided with their 

corresponding application in engineering design, as well as, in 

concurrent engineering. Various techniques dealing with DSM 

partitioning, taring, banding, and clustering are proposed [19]. 

A modularization scheme based on functional modeling is 

proposed and K-means is used for clustering [20]. Neural 

networks algorithms and DSMs have been utilized to cluster 

DSM components with the objective function of clustering 

efficiency; however, the algorithm requires a predetermined 

number of clusters [21]. Borjesson and Hölttä [22] develop an 

algorithm named Idicula-Gutierrez-Thebeau Algorithm 

(IGTA) for clustering DSM. An improved algorithm, named 

IGTA-plus, is proposed. IGTA-plus provide significant 

improvement when compared with IGTA. Recorded 

improvements are in terms of computational time and solution 

quality [22].  

Yang et al. [23] developed a systematic clustering algorithm 

for organizational DSM. The algorithm evaluates clustering 

structures based on the strength of interaction. 

Another novel approach for product design is introduced by 

integrating the sequence structure planning of assembly and 

disassembly of a product [24]. 

A hybrid approach is developed, based on multidimensional 

scaling (MDS) and clustering methods. This approach is 

applied on DSM to provide product architecting [25]. A new 

practical method is proposed by Sakao et al. to support 

designers in creating service modules by extending the DSM 

[26]. research focused on the answering the questions, how 

modularity used in product design, how it is helped in product 

Varity and how modularity increased the organization 

performance [27], Finally Non-dominated Cuckoo Search is 

proposed to maximize Sustainability through DSM, This multi 

objective optimization technique wants to find s set of Pareto 

optimal solutions; each solution represents the structure of 

modules and the number of modules in the product which 
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optimize functionality and sustainability objectives. The 

problem has set of conflicting objectives, product functionality 

objective, labor time, environmental impact and labor cost. 

[28]. 

The reviewed literature on product design using DSM as a 

system analysis tool revealed the existence of several points of 

view to cluster the DSM for modularity. One major difference 

between those points of view is the objective of clustering. 

Another difference is in the solution technique. Considering 

the objective of clustering, Minimal Description Length (MDL) 

is one of the objectives [11]. Another objective is Minimizing 

the total coordination cost, which is recognized as one of the 

most widely targeted objectives [14]. Clustering Efficiency 

(CE) index with static number of clusters is also among the 

considered objectives in the literature [21]. As for the solution 

technique for solving the problem, several techniques exist in 

the literature, for example: Genetic Algorithm [11], stochastic 

hill-climbing algorithm [14], and neural networks [21].  

To the best of our knowledge, this research is the first one 

to use the five previously mentioned metaheuristic algorithms 

with cost minimization as the objective function in solving 

product design problem under modularity with dynamic 

number of clusters. 

 

 

4. PROBLEM DEFINITION 

 

Consider the DSM shown in Figure 1, if component i is 

dependent on component j, then the matrix element i j (rowi, 

columnj) contains “1” or “x” otherwise it contains “0” or 

remains empty. The objective is to cluster these components 

in such a way that minimizes the total coordination cost. 

Accordingly, two sets of decisions are to be considered; (1) the 

number of clusters will be formed, and (2) the optimal 

assignment of components in each cluster.  

For a given DSM, the total coordination cost consists of two 

parts; IntraClusterCost and ExtraClusterCost as provided by 

equations 1 and 2, respectively. If interaction DSMik belongs 

to cluster j then IntraClusterCost is to be calculated, otherwise 

ExtraClusterCost is to be calculated. The total cost is the 

summation of IntraClusterCost and ExtraClusterCost as 

shown in Eq. (3) and mentioned by Borjesson & ltta-Otto [29]. 

 

𝑖𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 =  ∑ (𝐷𝑆𝑀𝑖𝑘 + 𝐷𝑆𝑀𝑘𝑖)
𝑖,𝑘∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗

∗ ∑ (𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒
𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑗=1
𝑗)𝑝𝑜𝑤𝑐𝑐 

(1) 

 

𝐸𝑥𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 = ∑ (𝐷𝑆𝑀𝑖𝑘

𝑖,𝑘 ∉ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗

+ 𝐷𝑆𝑀𝑘𝑖)𝐷𝑆𝑀𝑆𝑖𝑧𝑒𝑝𝑜𝑤𝑐𝑐   ,
𝑗 = 1 … 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

(2) 

 

where, DSMik is the relation between elements i and k, 

DSMSize is the number of elements (rows) in the matrix, 

powcc is a value utilized to penalize clusters’ sizes, and 

ncluster is the total number of clusters. Clustersize(j) is the 

number of elements within cluster j.  

 

Total coordination Cost = IntraClusterCost + 

ExtraClusterCost  
(3) 

 

The problem under consideration involves one key 

constraint, which is: each element must be assigned to a single 

cluster; i.e., overlapping between clusters is prohibited. 

Prohibiting overlapping, or multi-cluster elements is necessary 

since elements existing in several clusters force these common 

clusters to have interactions between each other on multi-

levels. These interacting clusters reduce or even diminish the 

usefulness and efficiency of the clustering process. 

 

 

5. PROPOSED ALGORITHMS 

 

Metaheuristic optimization algorithms are general iterative 

algorithms capable of solving combinatorial optimization 

problems. These algorithms are stochastic in manner. They 

simulate the behavior of particles. Metaheuristic algorithms 

try to find optimal or near optimal solutions for complex 

problems [30] To solve the problem in this research, five 

metaheuristic algorithms are utilized. Four of the selected 

algorithms represent a population-based optimization method, 

and one algorithm represents a trajectory optimization method. 

The selected algorithms are Cuckoo Search (CS), Modified 

Cuckoo Search (MCS), Particle Swarm Optimization (PSO), 

Gravitational Search Algorithm (GSA), and Simulated 

Annealing (SA). In the following subsections, a brief 

description of the algorithms is given, along with a pseudo 

code to provide easy implementation to the problem under 

consideration. 

  

5.1 Cuckoo Search (CS) 

 

The Cuckoo Search (CS) algorithm was proposed by Yang 

and Deb [31]. The algorithm simulates the behavior of cuckoo 

birds to explore the solution space for an optimum or near 

optimum solution. CS is inspired from the behavior of some 

brood parasite cuckoo species that lay their eggs in the nests 

of host birds of other species. Brood parasite cuckoos 

distribute their eggs among several different nests. Their aim 

is to escape the parental investment in raising their offspring, 

and to minimize the risk of their egg loss [31]. 

One of the significant advantages of CS is its efficiency that 

has been proven using a considerable number of benchmark 

studies. When comparing results with other metaheuristic 

algorithms, CS performed better. Another advantage of CS 

compared to other metaheuristic algorithms is its simplicity, 

since it requires setting only two parameters. This feature 

simplifies the time and effort needed to adjust and fine tune 

the algorithm’s parameter settings [32]. 

In CS algorithm, an egg represents a solution. Initial 

solutions are randomly generated. Xi
t is solution i in generation 

t. Xi
t+1 is obtained using a levy flight using equation 4. A levy 

flight is a random walk with step lengths that follow a heavy 

tailed probability distribution given in Eq. (5). Random walks 

through Lévy flights experience longer step lengths on the 

long run, and hence are efficient in exploring search spaces. 

 

Xi
t+1 = Xi

t  + α ⨁ Levy(λ) (4) 

 

where, α is a number greater than zero that denotes the step 

size, ⨁ product denotes entry-wise multiplications.  

 

Levy ∼ u = t −λ, (1 < λ ≤ 3) (5) 

 

The main steps of the CS algorithm are given in the pseudo 

code in Figure 2. 
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Figure 2. Pseudo code of CS [33] 

 

5.2 Modified Cuckoo Search (MCS) 

 

A Modified Cuckoo Search algorithm was provided by 

Walton et al. [33] with the same structure of original Cuckoo 

Search maintained but with two modifications. The first 

modification is changing the size of the Levy flight step size 

α. In CS, α is set to the value of 1, and hence has a constant 

value at all generations. In MCS, the value of α decrease as the 

number of generations increases. This modification leads to a 

more localized search as the individuals, or the eggs, get closer 

to the solution. The second modification is the information 

exchange among the eggs, aiming to speed convergence of the 

solution. In CS, there is no information exchange among 

individuals, and hence, searches are performed independently. 

In MCS, a fraction of the eggs with the best fitness are 

categorized as a group of top eggs. Two eggs are randomly 

chosen from the group of top eggs. A new egg is then 

generated on the line connecting the two chosen top eggs. The 

new egg is located closer to the egg with the best fitness. The 

distance of the new egg along the line is calculated using the 

inverse of the golden ratio ᶲ =(1+√5)/2. If the two chosen top 

eggs have the same fitness value, then the new egg is placed at 

the midpoint. If the same egg is chosen twice, a local Levy 

flight search is performed from the randomly picked nest with 

step size α = A/G2 [34]. 
 

5.3 Particle Swarm Optimization (PSO) 
 

 
Figure 3. Pseudo code of PSO [35] 

The PSO algorithm was first introduced by Kennedy and 

Eberhart [36]. The algorithm was inspired by mimicking the 

social behavior of flocks of birds or schools of fishes. A flock 

of birds or a school of fishes has a leader. The leader guides 

the movement of all individuals of the swarm. The movement 

of every individual depends of the leader’s knowledge [36]. 

The main steps of the PSO algorithm are summarized in the 

pseudo code in Figure 3. 
 

5.4 Gravitational Search Algorithm (GSA) 
 

The GSA was first proposed by Rashedi et al. [37] as a 

nature-inspired algorithm. The algorithm is population-based, 

where Newton’s laws of gravity and motion are considered to 

solve complex optimization problems. GSA is based on the 

law of gravity and mass interactions. The algorithm requires a 

set of search agents that interact with each other through 

gravity force [37].  

Steps of the GSA algorithm are summarized in the pseudo 

code in Figure 4. 

 
Figure 4. Pseudo code of GSA [38] 

 

5.5 Simulated Annealing (SA) 
 

The SA algorithm was proposed in 1982 by Kirkpatric et al. 

[39]. SA is a probabilistic local search technique used to find 

an optimum or near optimum solutions for large combinatorial 

optimization problems. SA is best used when the search space 

is discrete. Simulated Annealing imitates the annealing 

process of metals. The algorithm explores the solution space 

using neighborhood search methods. Worse solutions are 

accepted with low probabilities to avoid being trapped in local 

optima [39]. Basic steps of the SA algorithm are summarized 

in the pseudo code in Figure 5. 
 

 
 

Figure 5. Pseudo code of SA [40] 
 

5.6 Implementation 
 

5.6.1 Solution representation 

Solution representation of the problem is a vector of length 
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that is equal to the number of elements of the DSM. Each value 

in the vector is an integer between 1 and the number of clusters, 

as shown in Figure 6. Figure 6 illustrates a vector of size 7. 

The vector represents a solution for an original DSM 

consisting of 7 elements. The solution presented in Figure 6 

means that cluster 1 contains elements 1 and 7, cluster 2 

contains elements 2, 3, and 4, and cluster 3 contains elements 

5 and 6. The presented solution representation ensures 

avoiding multi-clustering; in other words, each element will 

be assigned to exactly one cluster. The solution procedure 

starts with a number of clusters that is equal to the number of 

elements available within the DSM. Hence, the solution 

procedure starts with the maximum possible number of 

clusters. The next step is to reform sets of clusters to obtain the 

optimum number of clusters with the corresponding elements 

in each cluster.  

 

 
 

Figure 6. Solution representation vector 

 

In this work, five algorithms are proposed to solve the 

problem in hand. Four of the proposed algorithms (CS, MCS, 

PSO and GSA) are present in the literature to solve continuous 

optimization problems. The problem presented in this work is 

discrete in nature, and hence, the proposed algorithm requires 

a process of discretization. Several methods are available in 

the literature to perform discretization. Among the known 

discretization methods is the random key technique, where 

continuous values are transformed into discrete integer values 

[41]. Another method is the smallest position value (SPV) [42]. 

A different technique available in the literature is the nearest 

integer (NI) method. In this method, a continuous valueis 

trasnformed to thenearestinteger value by simply rounding, 

trancatingup, or trancatingdown [43]. 

SPV and random key methods do not permit the repetition 

of integer values in the solution. Solving the problem 

presented in this research necessarily requires repeating some 

integer values. Hence, SPV and random key methods cannot 

be used to solve the problem in hand. The nearest integer 

method, on the other hand, allows the repetition of integer 

values in a solution, and therefore, the nearest integer 

discretization technique is chosen to solve the problem in this 

research. 

When using CS and MCS to cluster a DSM, the algorithm 

begins with generating several nests. A nest consists of a 

vector having a length that is equal to the number of elements 

of the DSM to be clustered. Entries of vectors are randomly 

generated uniformly between the upper limit and lower limit. 

Then, these entries are transformed into integer values using 

the nearest integer method. Vectors represent solutions that 

require evaluation. Therefore, each vector is sent to the 

evaluation function. The evaluation function calculates the 

corresponding total coordination cost, conducts comparisons 

and performs updates using Levy flight and the probability of 

discovery (pa), details are available in Section 5.1 and Section 

5.2. 

In PSO, the algorithm begins with generating several 

particles. A particle consists of a vector having a length that is 

equal to the number of elements of the DSM to be clustered. 

Entries of vectors are randomly generated uniformly between 

the upper limit and lower limit. Then, these entries are 

transformed into integer values using the nearest integer 

method. Vectors represent solutions that require evaluation. 

Therefore, each vector is sent to the evaluation function. The 

evaluation function calculates the corresponding total 

coordination cost, and generates a new solution using a new 

position and a new velocity. Details are given in Section 5.3. 

Finally, in GSA, the process starts with a set of objects. The 

fitness function is evaluated, mass and acceleration are 

calculated, and the velocity and position are updated to 

generate a new solution Details are given in Section 5.4. 

Regarding SA, the solution is a vector of length that equals 

to the number of elements in the DSM. This vector contains 

integer numbers whose values are between lower and upper 

limits. The vector represents the current solution. A new 

solution is updated by generating a neighbor solution, then old 

and new solutions are compared. Details are given in Section 

5.5. 

 

5.6.2 Solution evaluation 

Clustering a DSM requires minimizing the total 

coordination cost which is based on IntraClusterCost and 

ExtraClusterCost. IntraClusterCost is calculated if interaction 

DSMik belongs to cluster j, otherwise, ExtraClusterCost is 

calculated. At the beginning of the solution procedure, feasible 

solutions are randomly generated, and the total coordination 

cost is calculated. Details of calculating the total coordination 

cost, IntraClusterCost, and ExtraClusterCost, are given in 

Section 4. Evaluation of the solution(s) is performed, then the 

algorithm selects the best obtained solution and a new iteration 

begins. In this research, five algorithms are used, hence, each 

algorithm moves to the next solution according to its specific 

procedure as follows: (1) CS and MCS utilize Levy flight to 

move the best nests with high quality eggs (solutions) to the 

following generation, (2) PSO moves to a new position with a 

different velocity, (3) SA obtain a neighbor solution (4) GSA 

utilizes a set of agents, each agent has a corresponding position, 

inertial mass, active gravitational mass, and passive 

gravitational mass. Gravitational masses and inertia masses 

are adjusted in each iteration to obtain the new solution, where 

the heaviest mass represents the best obtained solution. Each 

of the five algorithms moves from generation to the next till 

the stopping criteria is reached. 

 

5.6.3 Handling constraints 

The five proposed algorithms rely on unconstraint objective 

function evaluation. The problem considered in this research 

is a constrained problem. Hence, a constraint handling method 

is required to solve the problem considered in this research. 

There are several methods that can be used to handle 

constraints, one of the simplest and most common methods is 

using a penalty function. The main idea is to transform a 

constrained optimization problem to an unconstrained 

optimization problem by adding a certain value (penalty) to 

the objective function. This value depends on the amount of 

violation presented in a certain solution [44]. 

In the proposed algorithms, a penalty is added to the fitness 

function according to Eqns. (6) and (7) which guarantee 

reaching a feasible solution as iterations proceed.  

 

penalty(x) = {
0,   if no violation occurs

(C ∗ iter)α ∑ fj
β(x)m

j=1 ,   otherwise
 (6) 

 

eval(x) 

=  {
f(x),                      if x ∈ feasible solutions
f(x) +  penalty(x),                   otherwise 

 
(7) 
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where, f(x) is the fitness function (total coordination Cost), 
(𝐶 ∗ iter)α  is to make the constraint violation of the same 

order of magnitude as the objective function based on iter 

(iteration number) violation which expands when iterations 

grow; β is defined as the multiplication of violation which 

highly leads to feasibility by maximizing violation value 

which, in turn, encourages the solution to be feasible through 

differentiating between feasible and non-feasible solutions 

with a high impact. 

 

 

6. RESULTS AND DISCUSSIONS 

 

This section compares results obtained by the five 

algorithms in solving the 80 test problems with different 

dimensions and complexities.  

 

6.1 Test problems 

 

In order to examine the performance of the proposed 

algorithms, and hence recommend the efficient algorithm, they 

are applied to a number of test instances. Due to the limited 

benchmark instances available in this field, 80 DSMs are 

randomly generated. These matrices contain 1's and 0's. 

Numbers of Ones which represent the existence of interaction 

are generated according to specific complexity. These 

matrices range from size 10 (number of elements in DSM) up 

to 100, and from complexity 0.2 up to 0.9. Complexity is 

defined as the ratio between the numbers of actual interactions 

to the total number of possible interactions in a given DSM. 

For example, a DSM of size 10 and with 36 interactions among 

its components will have a complexity of 36/ ((10x10)-10) = 

0.4; where the (10*10)-10) is the total number of possible 

interactions in a given DSM and 36 is actual interactions.  

Based on size, these problems are classified to small (10 to 

50 elements), and large (60 to 100 elements). Based on 

complexity, these problems are classified as low complexity 

(0.2 to 0.5), and high complexity (0.6 and 0.9).  

For the sake of comparison in various experiments, each 

algorithm is set for 30 runs and 1000 iteration in population-

based algorithms, and for SA the initial temperature and final 

temperature are selected to provide the same number of 

solution evaluations and exploration of the search space as the 

other algorithms.  

 

6.2 Algorithms’ performance 

 

Algorithms performance are assessed using the following 

performance measures: mean value of the objective function, 

standard deviation, best obtained objective function value, 

which represents the minimum objective function value 

among the five algorithms, and the percentage of change from 

mean. The percentage of change from mean is calculated by 

dividing the difference between mean and best over best 

obtained multiplied by 100.  

The mean value of the objective function represents the 

solution quality through 30 runs of each algorithm. Standard 

deviation is used to assess how far the values are spread above 

and below the mean. Algorithms with low values of standard 

deviation tend to be more reliable than those with higher 

standard deviation values. The best objective function value 

shows the best solution among the five algorithms. The 

difference between the mean and best solutions of each 

algorithm shows the deviation of the mean solution of a 

specific algorithm from the best value among all algorithms. 

The low value of the difference indicates that the mean is near 

to the best. The percentage of change from mean shows the 

deviation percentage of mean solution of a specific algorithm 

from the best. 

Tables (1-a) to (1-j) (included in appendix) show the results 

obtained after solving the 80 generated problems using the 5 

proposed algorithms. The tables show the mean and standard 

deviation values for 30 runs of each algorithm at different 

problems' sizes and complexities. For each table, the best 

obtained objective function value among the 5 algorithms is 

identified. Comparisons between the 5 algorithms' objective 

function values are shown as the difference between the best 

values obtained and each algorithm's mean objective function 

value. Tables (2-a) to (2-j) (included in appendix A) show the 

CPU time, in seconds, for each algorithm to obtain the mean 

objective function value.  

Considering the objective function value as a performance 

measure, the following can be concluded. For small size and 

low complexity, CS outperforms 3 algorithms (MCS, PSO and 

SA) in 40% of the cases regarding the mean objective function 

value, GSA outperforms the 3 algorithms (MCS, PSO and SA) 

in 40% of the cases regarding the mean objective function 

value and the remaining 20% of the cases, the best objective 

function values are obtained from the others algorithms. For 

small size and high complexity, CS outperforms the 3 

algorithms (MCS, PSO and SA) in 50% of the cases regarding 

the mean objective function value, GSA outperforms the 3 

(MCS, PSO and SA) algorithms in 50% of the cases regarding 

the mean objective function value and the remaining 3 

algorithms do not appear in this case. Considering the large 

size and low and high complexity, CS outperforms the other 4 

algorithms in 100% of the cases regarding the mean objective 

function value. 

Another performance measure considered is the mean 

computational time. The best algorithm is the one that 

provides the minimum mean computational time. Results 

show that for small size and low complexity problems, MCS 

outperforms the other 4 algorithms in 55% of the cases 

regarding the mean computational time value. In the remaining 

45% of the cases, the best mean computational time values are 

obtained from the 4 algorithms with different percentages. For 

small size and high complexity, MCS outperforms the other 4 

algorithms in 70% of the cases regarding the mean 

computational time value. In the remaining 30% of the cases, 

the best mean computational time values are obtained from the 

4 algorithms with different percentages. Considering the large 

size and low complexity, MCS outperforms the other 4 

algorithms in 95% of the cases regarding the mean 

computational time value. Regarding, large size and high 

complexity MCS outperforms the other 4 algorithms in 100% 

of the cases regarding the mean computational time value 

The MCS records the worst objective function values due to 

using probability to discover alien (Pa) with a value of 0.5. In 

the test problems, this leads to ignoring some better solutions 

due to this limited local search ability. Therefore, the value of 

(pa) in the range [0.1, 0.4] for many test instances, achieves 

the required balance between exploration and exploitation. 

Similarly, PSO got trapped in local minimum. Considering SA, 

it is noticed that it obtains inferior solutions compared to the 

other algorithms. This could be due to the nature of the SA 

procedure providing a single solution every iteration, and 

hence the ability to explore the entire solution space is less 

than the other population-based algorithms. Finally, GSA 
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provides solutions near CS in the small scale problems, but in 

large scale problems, CS is the best. Regarding CPU time 

MCS provides the minimum mean CPU time in most cases and 

in most dimensions. This is due to the second modification 

done on CS. 

The Friedman test is a non-parametric method for 

identifying treatment discrepancies through several attempts. 

To rank the performance of the used algorithms using 

Friedman test [45], Table 3 shows the ranking of algorithms 

based on the results obtained eighty solved problems using the 

Friedman test. As expected, the CS algorithm is first in the 

ranking, GSA is coming next, PSO, MCS and SA respectively. 

 

Table 3. Ranking of algorithms based on performance using 

Friedman's test 

 
Algorithms CS MCS PSO SA GSA 

Ranking 1.28 3.79 2.54 5 2.39 

 

To find significant differences between the results obtained 

by the proposed algorithms in solving the 80 test problems, 

statistical analysis is used. To detect significant differences in 

the results, Friedman test is employed. When applying 

Friedman test using the online Friedman calculator, the result 

is significance at p < 0.05. This means that the results are 

important.  

Table 4 shows the results of the Friedman test. In this table, 

there is the Chi-Square value with 4 degrees of freedom, and 

also there is asymptotic significance of the test (p-value) with 

very close to zero value. Given the close to zero value of the 

asymptotic significance, the hypothesis is rejected. Therefore, 

it can be concluded that there is a significant difference in the 

performance of algorithms. 

 

Table 4. Results of Friedman’s tests based on performance 

 

Test 

method 

Chi-

Square 

Degrees of 

freedom 

(DF) 

P-value Hypothesis 

Friedman 260.98 4 0.00001 rejected 

 

6.3 Limiting cluster size 

 

While solving the previous problems, it was noticed that the 

cluster size can go very large and the first and last clusters were 

of larger size compared to the others clusters. This is because 

of the upper and lower bound constraint; this constraint forces 

elements to be assigned in clusters from 1 to the number of 

elements, which means that if the element is assigned in a 

cluster outside the upper bound, it is forced to be assigned to 

the upper limit cluster, the same applies for the lower bound.  

To deal with this issue, two strategies are proposed: (1) 

elements that are assigned in cluster outside the upper and 

lower bounds are re-assigned to other clusters within the range 

and not necessary to either the lower or the upper clusters, and 

(2) a new constraint is introduced to restrict the maximum 

number of elements in each cluster. This maximum number of 

elements in the cluster must be less than or equal the square 

root of the number of elements in DSM, as mentioned by Yan 

& Feng [4]. This constraint is incorporated within the model 

through a penalty function (Eq. (6)) and added to the original 

objective function of the problem. The penalty function forces 

solutions that violate the constraint to be ignored in subsequent 

iterations. 

To illustrate the effect of the proposed strategies, consider 

the original DSM of size 10 and complexity 0.2 shown in 

Figure 7. Figure 8 Provides DSM after clustering without 

controlling the size of the clusters. As shown, three clusters are 

formed and the cluster size is very large, with 5 interactions 

outside clusters, representing 29% of total interactions, and 

71% are included in clusters. This means that the clustering 

efficiency is 71%. Clustering efficiency is a modularity 

measure which calculates the percentage of interactions inside 

clusters with respect to total number of interactions. 

Figure 9 shows a clustered DSM after controlling the size 

of the clusters. Four clusters are formed, which represents the 

best number of clusters. Elements 1, 2, and 6 are in cluster 

number 1, element 3 is in cluster number 2 and so on. Nine 

interactions remain outside clusters, which represents 53% of 

the total interactions, 47% are included in clusters. This means 

that the clustering efficiency is 47%.  
 

 
 

Figure 7. Original DSM  
 

 
 

Figure 8. Clustered DSM without limiting cluster size 
 

 
 

Figure 9. Clustered DSM with limited cluster size  
 

Figures 10 to 14 show the effect of limiting cluster size on 

results obtained by CS algorithm on some test problems. The 

figures show that the objective function value is increased after 

limiting the size of a cluster. This increase happened for all 

problems’ dimensions and complexities. On the other hand, 

limiting the size of a cluster is important in modular product 

design. The smaller the modules, the more practical they are 

when they need to be replaced or upgraded. Therefore, the 

increase in the objective function value resulting from limiting 

clusters’ sizes is acceptable given the advantage of obtaining 

smaller modules. 
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Figure 10. A comparison between CS with limiting cluster 

size and CS without limiting cluster size in DSM of Size 10 
 

 
 

Figure 11. A comparison between CS with limiting cluster 

size and CS without limiting cluster size in DSM of Size 20 
 

 
 

Figure 12. A comparison between CS with limiting cluster 

size and CS without limiting cluster size in DSM of Size 30 
 

 
 

Figure 13. A comparison between CS with limiting cluster 

size and CS without limiting cluster size in DSM of Size 40 
 

 
Figure 14. A comparison between CS with limiting cluster 

size and CS without limiting cluster size in DSM of Size 50 

7. CONCLUSION AND FUTURE WORK 

 

This paper aimed to provide an efficient clustering 

algorithm capable of obtaining a high-quality solution in 

reasonable computation time for the product design problem 

under modularity. Five Meta-heuristics techniques are 

examined, namely, CS, MCS, PSO, SA, and GSA. The 

algorithms aim to find: (1) the optimal number of clusters 

within a DSM; and (2) the optimal components’ assignment 

forming clusters. The objective function was to minimize the 

total coordination cost.  

In this context, DSM was employed as a system analysis 

tool. It provided a compact and clear representation of 

complex systems. Also, it helped in visualizing the 

interactions between system elements. The utilized algorithms 

were tested and compared on eighty test instances. These 

instances were generated randomly with different dimensions 

and complexity to provide different product complexity. 

Results showed that Cuckoo Search provided better solutions 

compared to the other algorithms in most cases regarding 

mean objective function value. Modified Cuckoo Search 

provided better solutions compared to other algorithms in most 

cases regarding mean computational time.  

A Penalty method was used as constraint handling to 

prevent forming large clusters. Another comparison was 

conducted between solutions with limiting clusters’ sizes and 

without limiting clusters’ sizes, limiting cluster size is needed 

and important in product design problem, since product design 

main objective is to create small modules to be useful and 

important for the company, that can be replaced and updated 

at any time to provide new product or new functions. Future 

work includes providing multi-objective Cuckoo Search 

algorithm to find the optimal assignment of each element in 

the cluster and the optimal number of clusters which minimize 

total coordination cost of the product and maximize product 

sustainability with a fuzzy logic approach in designing 

sustainability matrix. 
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APPENDIX 

 

Table 1. Comparison between CS, MCS, PSO, SA and GSA in DSM 

 

(a) Size 10 

CF 

Objective function 

Best obtained 
percentage of change from mean 

CS MCS PSO SA GSA 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA 

0.2 56.96 0 56.96 0 57.36 0.53 61.01 0.87 56.96 0.00 56.96 0.00 0.00 0.70 7.10 0.00 

0.3 86.97 0 87.22 0.49 88.14 1.57 94.88 1.72 87.98 0.00 86.97 0.00 0.28 1.35 9.09 1.16 

0.4 119.36 0 119.36 0 120.36 0.72 129.69 1.22 119.90 0.88 119.36 0.00 0.00 0.84 8.65 0.45 

0.5 137.70 0.16 137.66 0.02 137.75 0.22 148.21 2.48 137.77 0.33 137.66 0.03 0.00 0.07 7.66 0.08 

0.6 176.47 0.37 177.19 0.91 176.84 0.78 189.94 1.87 176.94 0.99 176.47 0.00 0.40 0.21 7.63 0.27 

0.7 217.78 0 217.95 0.51 217.95 0.51 229.79 1.65 217.95 0.51 217.78 0.00 0.07 0.07 5.51 0.07 

0.8 257.59 0 257.59 0 257.59 0 272.39 1.17 257.59 0.00 257.59 0.00 0.00 0.00 5.75 0.00 

0.9 294.16 0 294.48 0.68 294.64 0.78 311.03 2.30 294.32 0.51 294.16 0.00 0.11 0.17 5.74 0.06 
CF – complexity factor             Mean – Average value            St.dev standard                    Best obtain – minimum mean value 

 

(b) Size 20 

CF 

Objective function 

Best obtained 
percentage of change from mean 

CS MCS PSO SA GSA 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA 

0.2 376.84 5.19 374.71 7.22 376.96 6.84 459.67 4.45 377.57 8.23 374.71 0.57 0.00 0.60 22.67 0.76 

0.3 606.94 7.18 610.82 8.74 605.38 5.00 705.94 4.54 610.22 4.35 605.38 0.26 0.90 0.00 16.61 0.80 

0.4 822.24 4.18 827.01 8.38 825.88 5.32 940.61 5.63 826.58 5.43 822.24 0.00 0.58 0.44 14.40 0.53 

0.5 985.18 9.37 990.55 9.64 989.76 6.64 1148.19 6.91 989.59 11.91 985.18 0.00 0.55 0.46 16.55 0.45 

0.6 1237.06 3.98 1246.68 11.84 1241.88 7.24 1408.27 15.13 1238.62 5.55 1237.06 0.00 0.78 0.39 13.84 0.13 

0.7 1477.14 5.20 1483.77 9.45 1479.48 5.51 1674.56 11.73 1478.64 7.99 1477.14 0.00 0.45 0.16 13.37 0.10 

0.8 1709.81 4.50 1712.77 14.89 1716.43 11.42 1932.20 11.72 1709.84 9.89 1709.81 0.00 0.17 0.39 13.01 0.00 

0.9 1954.91 3.88 1965.97 15.96 1957.88 5.20 2203.71 9.31 1956.52 2.63 1954.91 0.00 0.57 0.15 12.73 0.08 
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(c) Size 30 

CF 

Objective function 

Best obtained 
percentage of change from mean 

CS MCS PSO SA GSA 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA 

0.2 1187.23 18.66 1216.97 19.61 1188.10 19.31 1427.90 9.29 1184.31 21.01 1184.31 0.25 2.76 0.32 20.57 0.00 

0.3 1837.34 10.75 1879.60 34.29 1849.27 28.21 2176.70 14.31 1827.80 14.63 1827.80 0.52 2.83 1.17 19.09 0.00 

0.4 2385.50 15.78 2425.88 38.62 2405.38 33.17 2826.50 9.54 2379.87 25.11 2379.87 0.24 1.93 1.07 18.77 0.00 

0.5 3080.77 10.53 3140.55 45.78 3101.18 12.28 3606.63 14.16 3075.56 16.56 3075.56 0.17 2.11 0.83 17.27 0.00 

0.6 3756.34 12.45 3823.89 48.68 3756.34 29.35 4392.29 18.16 3746.91 10.73 3746.91 0.25 2.05 0.25 17.22 0.00 

0.7 4449.47 10.33 4517.90 55.91 4463.53 21.54 5172.59 18.49 4439.50 18.13 4439.50 0.22 1.77 0.54 16.51 0.00 

0.8 5148.96 14.50 5201.88 27.34 5149.38 12.51 5947.35 11.27 5121.03 11.78 5121.03 0.55 1.58 0.55 16.14 0.00 

0.9 5829.26 10.17 5936.62 62.55 5839.12 10.51 6748.37 22.17 5819.87 10.18 5819.87 0.16 2.01 0.33 15.95 0.00 

 

(d) Size 40 

CF 

Objective function 

Best obtained 
percentage of change from mean 

CS MCS PSO SA GSA 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA 

0.2 2584.08 27.54 2669.34 19.72 2587.97 40.89 3122.94 20.86 2551.75 2551.75 2551.75 1.27 4.61 1.42 22.38 0.00 

0.3 4021.57 27.16 4190.15 76.59 4083.01 21.35 4823.71 16.04 4002.09 32.19 4002.09 0.49 4.70 2.02 20.53 0.00 

0.4 5308.55 22.53 5525.98 116.69 5327.37 38.64 6302.92 19.37 5288.57 25.18 5288.57 0.38 4.49 0.73 19.18 0.00 

0.5 6766.37 20.71 7034.72 81.38 6794.85 19.22 8008.43 18.34 6746.54 31.61 6746.54 0.29 4.27 0.72 18.70 0.00 

0.6 8230.18 26.03 8502.36 115.25 8244.13 27.18 9695.26 31.23 8195.21 52.57 8195.21 0.43 3.75 0.60 18.30 0.00 

0.7 9699.21 19.02 10017.69 141.71 9713.76 20.98 11396.92 28.52 9678.39 57.73 9678.39 0.22 3.51 0.37 17.76 0.00 

0.8 12630.63 16.62 13065.43 92.70 12636.32 11.64 14778.01 44.12 12605.75 25.05 12605.75 0.20 3.65 0.24 17.23 0.00 

0.9 12630.84 17.35 13150.07 197.05 12634.94 18.62 14781.45 43.43 12606.58 11.73 12606.58 0.19 4.31 0.22 17.25 0.00 

 

(e) Size 50 

CF 

Objective function 

Best obtained 
percentage of change from mean 

CS MCS PSO SA GSA 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA 

0.2 4727.39 30.96 5052.79 74.44 4784.35 42.68 5729.46 12.91 4754.19 91.26 4727.39 0.00 6.88 1.21 21.20 0.57 

0.3 7366.43 37.30 7837.83 92.32 7423.84 34.61 8857.70 16.74 7369.36 28.83 7366.43 0.00 6.40 0.78 20.24 0.04 

0.4 9939.04 52.63 10529.03 135.66 9963.59 66.34 11875.58 32.90 9945.34 55.37 9939.04 0.00 5.94 0.25 19.48 0.06 

0.5 12372.73 44.42 13117.08 120.78 12437.14 26.88 14744.88 34.11 12390.61 64.97 12372.73 0.00 6.02 0.52 19.17 0.14 

0.6 15009.42 24.02 15872.36 181.64 15052.75 46.29 17831.63 50.28 15028.66 74.11 15009.42 0.00 5.75 0.29 18.80 0.13 

0.7 17630.47 21.19 18605.65 252.33 17679.19 16.66 20937.51 27.73 17639.99 66.12 17630.47 0.00 5.53 0.28 18.76 0.05 

0.8 20284.52 24.91 21350.53 171.05 20314.42 29.76 24039.00 26.04 20285.88 100.15 20284.52 0.00 5.26 0.15 18.51 0.01 

0.9 22930.18 18.88 24303.88 324.03 22933.26 21.68 27087.32 54.14 22975.48 133.96 22930.18 0.00 5.99 0.01 18.13 0.20 

 

(f) Size 60 

CF 

Objective function 

Best obtained 
percentage of change from mean 

CS MCS PSO SA GSA 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA 

0.2 7916.71 64.78 8630.80 76.98 7992.83 62.66 9594.72 23.24 7974.90 108.58 7916.71 0.00 9.02 0.96 21.20 0.73 

0.3 12099.45 66.64 12935.93 202.06 12179.07 42.87 14548.20 22.25 12117.12 85.02 12099.45 0.00 6.91 0.66 20.24 0.15 

0.4 16010.38 42.89 17278.01 220.49 16087.26 24.72 19174.35 38.45 16048.43 143.82 16010.38 0.00 7.92 0.48 19.76 0.24 

0.5 20287.35 36.85 21736.29 224.96 20310.03 44.18 24241.49 29.42 20320.58 142.24 20287.35 0.00 7.14 0.11 19.49 0.16 

0.6 24499.39 46.65 26339.99 396.89 24561.98 43.80 29246.43 31.04 24590.65 103.58 24499.39 0.00 7.51 0.26 19.38 0.37 

0.7 28772.98 39.61 30906.14 413.02 28801.57 32.43 34289.59 49.93 28823.07 137.59 28772.98 0.00 7.41 0.10 19.17 0.17 

0.8 33017.61 40.84 35322.75 471.66 33067.17 27.52 39299.92 86.85 33288.77 188.53 33017.61 0.00 6.98 0.15 19.03 0.82 

0.9 37306.83 41.81 39992.14 522.97 37319.56 24.52 44408.76 34.05 37430.44 196.22 37306.83 0.00 7.20 0.03 19.04 0.33 

 

(g) Size 70 

CF 

Objective function 

Best obtained 
percentage of change from mean 

CS MCS PSO SA GSA 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA 

0.2 12150.43 65.69 13467.47 194.74 12204.52 105.12 14699.92 39.32 12163.85 93.97 12150.43 0.00 10.84 0.45 20.98 0.11 

0.3 17962.14 59.25 19878.52 344.78 17999.50 48.61 21611.66 19.92 18080.25 186.19 17962.14 0.00 10.67 0.21 20.32 0.66 

0.4 24332.18 66.18 26442.27 430.22 24386.12 54.59 29199.98 46.65 24477.19 237.05 24332.18 0.00 8.67 0.22 20.01 0.60 

0.5 30681.96 76.69 33311.21 304.68 30731.70 62.70 36818.77 58.93 30909.92 216.39 30681.96 0.00 8.57 0.16 20.00 0.74 

0.6 37106.26 56.29 40572.14 530.13 37107.07 69.44 44387.39 76.35 37403.67 307.80 37106.26 0.00 9.34 0.00 19.62 0.80 

0.7 43474.96 33.40 47113.15 554.49 43509.62 62.25 51998.09 75.24 43657.69 283.15 43474.96 0.00 8.37 0.08 19.60 0.42 

0.8 49885.47 48.41 54170.37 444.79 49885.89 41.80 59608.57 40.03 50285.75 280.40 49885.47 0.00 8.59 0.00 19.49 0.80 

0.9 56273.17 42.15 61082.10 573.65 56299.09 41.58 67178.71 80.19 56800.15 331.82 56273.17 0.00 8.55 0.05 19.38 0.94 
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(h) Size 80 

F 

Objective function 

Best obtained 
percentage of change from mean 

CS MCS PSO SA GSA 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA 

0.2 17466.45 86.76 19403.48 305.61 17518.72 30.49 21094.13 34.18 17859.85 206.88 17466.45 0.00 11.09 0.30 20.77 2.25 

0.3 26146.20 66.21 29302.91 498.17 26217.04 73.03 31554.30 38.79 26705.83 312.32 26146.20 0.00 12.07 0.27 20.68 2.14 

0.4 34888.61 56.93 38841.66 321.48 34903.34 67.64 41945.77 38.03 35344.24 328.99 34888.61 0.00 11.33 0.04 20.23 1.31 

0.5 43895.67 75.33 48645.57 595.08 43931.98 117.62 52818.72 62.28 44750.39 436.90 43895.67 0.00 10.82 0.08 20.33 1.95 

0.6 52999.32 76.79 58509.00 442.20 53016.72 50.76 63686.73 68.06 53765.45 307.94 52999.32 0.00 10.40 0.03 20.17 1.45 

0.7 62082.98 75.18 68342.40 504.63 62142.98 39.73 74545.13 110.30 62982.01 443.47 62082.98 0.00 10.08 0.10 20.07 1.45 

0.8 71222.70 58.25 78604.66 680.77 71222.74 70.48 85431.39 54.19 72536.23 587.94 71222.70 0.00 10.36 0.00 19.95 1.84 

0.9 80322.42 17.20 88887.90 939.88 80324.91 40.19 96233.21 104.88 81700.95 657.48 80322.42 0.00 10.66 0.00 19.81 1.72 

 

(i) Size 90 

CF 

Objective function 

Best obtained 
percentage of change from mean 

CS MCS PSO SA GSA 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA 

0.2 23770.17 167.47 27017.91 334.46 23993.00 45.73 28888.70 47.26 24781.34 393.77 23623.33 0.00 14.37 1.38 22.13 4.90 

0.3 36010.92 201.63 40345.75 37.60 36043.00 84.68 43422.00 112.70 37082.16 432.98 36192.60 0.00 11.48 0.18 20.03 2.46 

0.4 47728.81 15.05 52205.64 27.96 48012.91 83.28 57558.00 60.29 48894.30 759.29 47714.41 0.00 9.46 0.90 20.83 2.47 

0.5 60164.71 84.16 66219.34 119.63 60184.00 61.92 72584.70 41.78 62048.18 578.65 60182.70 0.00 10.19 0.04 20.55 3.10 

0.6 72560.02 50.20 81076.37 133.71 72560.02 61.18 87255.00 15.57 74860.79 552.82 72650.94 0.00 11.85 0.00 20.10 3.04 

0.7 85127.00 46.55 95944.54 87.30 85142.00 40.34 102230.00 25.18 87308.97 816.78 85154.88 0.00 12.61 0.02 20.07 2.53 

0.8 97471.77 40.20 108678.68 108.15 97565.86 55.78 117080.00 31.92 100056.54 1195.41 97436.23 0.00 11.50 0.13 20.19 2.69 

0.9 109880.00 60.22 122268.09 91.27 109890.00 37.20 132009.00 57.84 112993.98 1181.01 109826.67 0.00 11.38 0.03 20.23 2.88 

 

(j) Size 100 

CF 

Objective function 

Best obtained 
percentage of change from mean 

CS MCS PSO SA GSA 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev CS MCS PSO SA GSA 

0.2 31823.95 19.59 36405.56 57.04 31972.00 93.06 38390.70 14.69 33378.61 369.27 31821.71 0.00 14.46 0.05 20.69 4.89 

0.3 46992.65 41.90 52541.84 59.03 47173.25 54.28 56880.00 70.26 49434.95 614.08 46968.55 0.00 11.86 0.49 21.15 5.25 

0.4 63348.44 27.32 72155.51 47.93 63692.00 213.36 76620.30 80.55 66428.03 1218.17 63359.13 0.00 13.91 0.17 20.86 4.84 

0.5 79713.39 36.87 88844.84 32.06 79882.00 126.07 96221.20 26.92 83421.13 825.74 79702.70 0.00 11.50 0.24 20.77 4.67 

0.6 96097.38 56.95 108048.37 46.50 96097.38 130.39 116020.00 73.93 99860.41 862.99 96331.59 0.00 12.16 0.01 20.42 3.66 

0.7 112658.42 22.72 127165.40 75.55 112730.00 98.44 135696.00 55.69 116995.41 1339.81 112630.31 0.00 12.92 0.10 20.43 3.88 

0.8 128988.09 44.04 145352.22 97.34 129212.44 68.33 155303.00 108.52 134086.44 1224.61 128942.17 0.00 12.77 0.16 20.43 3.99 

0.9 145503.03 43.73 163994.79 74.43 145550.00 52.83 175192.00 79.47 151396.90 1262.04 145520.85 0.00 12.64 0.03 20.31 4.04 

 

Table 2. Mean CPU time/seconds 

 

(a) Size 10 

CF 
Algorithms 

CS MCS PSO SA GSA 

0.2 7.24 6.17 6.86 6.15 17.18 

0.3 5.97 6.50 6.63 5.89 24.10 

0.4 6.34 6.58 6.36 6.46 15.71 

0.5 5.92 6.32 5.31 5.02 16.06 

0.6 7.11 6.26 6.57 6.23 15.37 

0.7 6.69 6.03 6.58 6.82 15.40 

0.8 6.84 6.59 7.42 7.56 15.19 

0.9 6.25 6.53 5.24 6.05 15.59 

 

(b) Size 20 

CF 
Algorithms 

CS MCS PSO SA GSA 

0.2 7.05 7.52 6.24 5.34 24.33 

0.3 7.28 7.91 7.46 7.71 22.64 

0.4 8.32 7.71 7.29 7.02 23.29 

0.5 7.48 7.14 7.89 7.89 27.56 

0.6 6.36 4.41 6.28 6.43 26.05 

0.7 9.28 8.54 8.85 8.66 23.44 

0.8 13.03 12.53 12.96 13.78 23.42 

0.9 14.74 13.53 14.52 14.52 25.22 

 

 

 

(c) Size 30 

CF 
Algorithms 

CS MCS PSO SA GSA 

0.2 26.24 23.76 25.81 26.39 41.71 

0.3 40.47 35.16 40.13 39.78 37.47 

0.4 62.86 35.27 65.85 74.73 33.79 

0.5 16.36 10.34 14.22 14.18 44.00 

0.6 10.62 10.08 10.45 10.55 40.51 

0.7 12.38 10.50 12.31 12.64 41.50 

0.8 10.73 10.44 11.08 10.83 40.46 

0.9 22.92 18.91 22.52 22.36 40.50 

 

(d) Size 40 

CF 
Algorithms 

CS MCS PSO SA GSA 

0.2 37.45 93.87 35.95 34.22 63.05 

0.3 23.20 12.99 22.78 22.20 60.65 

0.4 17.46 12.91 17.71 17.46 60.20 

0.5 17.50 14.34 17.87 17.93 58.92 

0.6 21.32 24.33 23.21 23.71 60.57 

0.7 22.32 19.71 22.54 23.04 60.19 

0.8 15.08 16.59 14.89 14.93 58.93 

0.9 16.46 19.06 16.22 16.81 57.67 
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(e) Size 50

CF 
Algorithms 

CS MCS PSO SA GSA 

0.2 26.76 28.76 28.14 27.57 97.26 

0.3 25.01 22.46 25.78 24.67 79.46 

0.4 41.05 25.41 43.51 44.77 87.33 

0.5 54.40 6396.21 43.68 49.45 78.58 

0.6 59.75 106.15 61.73 48.68 77.49 

0.7 66.92 40.25 59.42 65.33 75.16 

0.8 63.10 47.61 59.78 62.86 75.23 

0.9 123.77 67.38 135.25 126.79 73.17 

(f) Size 60

CF 
Algorithms 

CS MCS PSO SA GSA 

0.2 60.59 69.82 72.45 96.04 129.35 

0.3 70.00 56.13 76.35 76.18 121.79 

0.4 104.04 127.81 322.06 94.68 122.53 

0.5 84.94 23.00 96.16 98.20 124.18 

0.6 68.93 25.69 83.18 87.39 122.32 

0.7 120.00 26.29 124.24 131.41 122.69 

0.8 90.68 25.79 214.96 57.43 125.33 

0.9 88.58 25.85 135.53 91.36 130.53 

(g) Size 70

CF 
Algorithms 

CS MCS PSO SA GSA 

0.2 86.59 42.48 906.25 102.30 199.64 

0.3 108.20 38.31 399.96 103.04 195.38 

0.4 112.89 46.62 336.23 115.51 202.09 

0.5 124.44 49.96 808.87 117.56 208.65 

0.6 134.37 138.09 593.68 134.24 184.61 

0.7 136.12 92.31 362.57 146.23 183.57 

0.8 153.34 62.92 349.76 158.33 175.11 

0.9 167.26 77.35 576.39 162.18 176.41 

(h) Size 80

CF 
Algorithms 

CS MCS PSO SA GSA 

0.2 218.27 146.30 538.07 215.32 287.84 

0.3 240.13 72.20 1136.55 235.89 395.71 

0.4 242.02 48.26 2764.98 246.32 339.72 

0.5 325.66 57.02 555.96 327.12 294.21 

0.6 389.81 53.27 791.83 327.95 349.85 

0.7 487.55 53.15 595.79 343.97 700.28 

0.8 528.22 49.38 679.85 341.57 518.63 

0.9 693.05 55.83 708.09 382.10 1226.18 

(i) Size 90

CF 
Algorithms 

CS MCS PSO SA GSA 

0.2 365.00 269.92 913.14 380.00 347.09 

0.3 800.29 307.85 1073.90 560.00 382.49 

0.4 700.29 320.54 802.33 730.00 381.34 

0.5 902.43 349.46 1459.90 820.00 467.95 

0.6 1001.20 420.00 1530.00 923.00 642.51 

0.7 1363.10 356.15 1587.14 820.00 511.91 

0.8 1400.00 450.00 1600.00 923.00 584.49 

0.9 1587.70 530.00 1691.20 870.00 534.99 

(j) Size 100

CF 
Algorithms 

CS MCS PSO SA GSA 

0.2 1082.40 729.54 1754.20 922.00 775.91 

0.3 1790.00 750.00 2528.90 903.00 1015.67 

0.4 878.65 365.95 1809.50 802.00 610.02 

0.5 1709.00 325.67 1863.70 780.00 1462.89 

0.6 1109.00 350.00 1650.00 870.00 644.87 

0.7 1101.80 289.65 1644.40 708.00 1115.94 

0.8 1140.00 450.00 1750.00 809.00 555.86 

0.9 1054.50 380.58 2695.00 920.00 533.38 
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