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ABSTRACT. The performance of automatic control systems hinges on the parameters of 

proportional–integral–derivative (PID) controller. Therefore, this paper attempts to 

determine the most suitable parameter values of PID controller. For this purpose, the particle 

swarm optimization (PSO) was improved after introducing the flying time T and adaptive 

weight ω, and the improved PSO (IPSO) was compared against the basic PSO and the PSO 

modified with both inertial weight and constriction factor (PSO-ω, x). After that, the IPSO 

was applied to optimize the parameters of the PID controller. With a second-order inertia 

model as the control object, the parameters of PID controller optimized by the IPSO were 

contrasted with those optimized by the traditional Ziegler–Nichols optimization method. The 

results show that the IPSO is faster and more accurate than the traditional approach. The 

research findings provide new insights into the optimization of the PID controller and the 

application of the PSO. 

RÉSUMÉ. Les performances des systèmes de contrôle automatique reposent sur les paramètres 

du régulateur proportionnel – intégral – dérivé (PID). Par conséquent, cet article tente de 

déterminer les valeurs de paramètre les plus convenables du régulateur PID. À cet objectif, 

l'optimisation par essaims de particules (PSO) a été améliorée après l'introduction du temps 

de vol T et du poids adaptatif ω, et la PSO améliorée (IPSO) a été comparée à la PSO de 

base et à la PSO modifiée à la fois avec la masse d'inertie et le facteur de constriction (PSO-

ω, x). Après cela, l'IPSO a été appliqué pour optimiser les paramètres du regulateur PID. 

Avec un modèle d'inertie de second ordre comme objet de contrôle, les paramètres du 

régulatuer PID optimisés par l'IPSO ont été contrastés avec ceux qui optimisés par la 

méthode d'optimisation traditionnelle Ziegler-Nichols. Les résultats montrent que l'IPSO est 

plus rapide et plus précis que l'approche traditionnelle. Les résultats de cette recherche 

fournissent de nouvelles visions de l'optimisation du régulateur PID et de l'application de 

l'PSO. 

KEYWORDS: flying time, adaptive weight, constriction factor, improved particle swarm 

optimization (ipso), proportional–integral–derivative (PID) controller. 
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1. Introduction 

The proportional–integral–derivative (PID) controller is a robust and simple 

control loop feedback mechanism, which has been widely applied for the digital PID 

control in the manufacturing of electronics, machines, chemicals and metal products. 

The control effect depends on the proportional gain constant kp, the integral gain ki 

and the derivative gain kd, while the control error hinges on the proportional, 

integral and derivative terms (denoted as P, I and D, respectively) of the object (Yu 

and Yan, 2006). However, it is very difficult to find the most suitable parameters of 

the PID controller. To overcome the difficulty, many new methods have been 

developed to determine the parameters that ensure the stable auto-optimization and 

adaptive control of the PID controller (Sun et al., 2004). 

Traditionally, the parameters of PID controller are optimized numerically or 

graphically using trail-and-error against Bode plots. Recent years has seen the 

proliferation of intelligent optimization algorithms in parameter optimization of PID 

controller, including but not limited to genetic algorithm (GA), ant colony algorithm 

(ACA), seeker optimization algorithm (SOA) and particle swarm optimization 

(PSO) (Yu et al., 2013; Tao et al., 2012). Among them, the PSO, proposed by 

Kennedy and Eberhart (1998), has been extensively applied to optimize the 

parameters of the PID controller at home and abroad. On the upside, the PSO enjoys 

a simple structure, high accuracy, fast convergence and strong adaptability. 

Particularly, the algorithm can be extended for multi-objective optimization. On the 

downside, the PSO faces slow convergence and undesirable accuracy in certain 

conditions (Atyabi and Samadzadegan, 2011; Meng et al., 2013). 

Considering the above, this paper introduces the flying time T and adaptive 

weight ω to the PSO algorithm, and compares the improved PSO (IPSO) against the 

basic PSO and the PSO modified with both inertial weight and constriction factor 

(PSO-ω, x). The experimental results verify that the IPSO can achieve high accuracy 

and fast convergence. Next, the IPSO was applied to optimize the parameters of the 

PID controller (Ono and Nakayama, 2009). The control object is a second-order 

inertia model. The IPSO-based optimization outperformed the traditional parameter 

optimization method for PID controller (Ziegler–Nichols optimization method) 

(Gong et al., 2011; Yang et al., 2010; Yu and Cao, 2014). 

2. Improvement of the basic PSO 

The PSO was first intended for simulating social behaviors of bird flocks or fish 

schools. This algorithm has been widely adopted for parameter optimization in high-

dimensional spaces, thanks to its simple structure, search efficiency and fast global 

convergence. 



An improved particle swarm optimization algorithm     95 

2.1. The basic PSO 

The basic PSO works by having a population (called swarm) of z candidate 

solutions (called particles), which are interested in approximating the global 

minimum x0 of the objective function f: Rn→R. These particles are moved around in 

the search-space D according to a few simple formulae. The movements of the 

particles are guided by their own best known position Xz(pbest) in the search-space as 

well as the entire swarm’s best known position Xgbest. The position of particle z is 

determined by the solution of the objective function. In each iteration, the position is 

updated and represented by a vector Xl
z∈Rn. 

The position of particle z is updated based on its current velocity Vl
z ∈Rn and 

the previous position Xl-1
z: 

1

z z z

l l lX X V−= +                                                    (1) 

The vector Vl-1
z is updated by the formula below: 

( )
1 1 1 2 1  ( ) ( ) 

z pbestz z z gbest z

l l l lV V c X X c X X− − −= +  − +  −                      (2) 

where Vl-1
z is the previous velocity of particle z; Ξ is a diagonal matrix of 

random numbers in the interval [0, 1]; c1 is the cognitive parameter reflecting the 

effect of individual experience on the decision-making of the next particle; c2 is the 

social parameter reflecting the effect of social experience on the decision-making of 

the next particle. Together, the two parameters characterize the trend of velocity 

update. The previous studies have recommended the following values for c1 and c2: 

c1=c2=2, c1=c2=2.05 or c1>c2 with c1+c2<=4.10. 

The current 
velocity

 The current 
position

 The next 
position

Individual 
optimal fitness

Global optimal 
fitness

 

Figure 1. Particle movement 

It can be seen from Figure 1 and Equation (2) that the particle velocity is updated 

in three phases. The flow chart of the basic PSO is presented in Figure 2 below. 
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Figure 2. Flow chart of the basic PSO 

It can be seen that the basic PSO contains the three key steps below: 

(1) Initialize the swarm size z. 

(2) Randomly select an Xl
z from the interval [Xmax, Xmin] that obeys uniform 

distribution. 

(3) Randomly select a Vl
z from the interval [Vmax, Vmin] that obeys uniform 

distribution. 
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2.2. Variants 

Some variants of the PSO have been developed to enhance its velocity, stability 

or convergence. A well-known variant is called the PSO with inertial weight (PSO-

ω), which either fixes or reduces the inertial weight. The basic idea is to balance the 

local and global searches with the addition of the inertial weight ω. The impact of ω 

on the velocity update of each particle can be expressed as: 

( )
1 1 1 2 1( ) ( )   

z pbestz z z gbest z

l l l lV V c X X c X X − − −= +  − +  −                    (3) 

The value of the inertial weight ω is positively correlated with the global search 

ability of the algorithm and negatively with the local search ability. In other words, a 

large inertial weight helps to avoid the local minimum trap and boost the global 

search, while a small inertial weight facilitates the accurate local search and 

promotes the convergence of the algorithm. 

Many different PSO variants can be created according to different weight update 

formulas, such as linear weight decreasing PSO, adaptive weight PSO and random 

weight PSO. For example, the linear weight decreasing PSO can prevent the 

premature convergence and oscillation against the global optimum of the basic PSO. 

Currently, the most accepted strategy of inertial weight is to establish ω∈ [ωmin; 

ωmax] and reduce its value according the number of the current iteration: 

( )–
   

max min

max

max

l
Itr

 
  = =                                        (4) 

where Itrmax is the maximum number of iterations. The recommended values are 

ωmax=0.9 and ωmin=0.4. 

The basic PSO can be viewed as a special case in which the inertial weight is set 

to 1 throughout the iterations. 

For better control of particle velocity, the constriction factor x can be introduced: 

( )
1 1 1 2 1( ) ( )  [ ] 

z pbestz z z gbest z

l l l lV V c X X c X X − − −= +  − +  −                  (5) 

Where 

2 4 |

2

| 2
x

  
=

− −−                                              (6) 

and φ=c1+c2>4. 

The recommended value of x is 0.729 with c1=c2=2. The PSO modified with both 

inertial weight and constriction factor is denoted as the PSO-ω, x. 
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2.3. The IPSO 

The basic PSO was improved with the addition of flying time T and adaptive 

weight ω, aiming to enhance the stability and convergence speed. The adaptive 

weight ω can be updated as: 

( ) ( 1)( / )( ) l lF FCl e −=                                           (7) 

where ω(l) is the adaptive weight of the l-th iteration; F(l) is the global best 

fitness of the l-th iteration; C is the compressibility factor, which is a constant. The 

impact of ω(l) on the velocity update of each particle can be expressed as: 

( )
1 1 1 2 1  ( ) ( ( )  )

z pbestz z z gbest z

l l l lV l V c X X c X X − − −= • +  − +  −                 (8) 

The flying time T is updated according to the following expression 

(1 )
max

k l
T t

ltr

•
= • −                                                      (9) 

where t is the initial flying time; k is an adjusting factor, which is a constant. The 

impact of T on the positive update of each particle can be expressed as: 

1

z z z

l l lX X T V−= + •                                                 (10) 

The IPSO can be implemented in the following steps: 

(1) Initialize the swarm size, particle positions and particle velocities 

(2) Calculate the fitness of each particle. 

(3) Compare the fitness of each particle with its own best known fitness, and 

make it the new best known fitness if it is better than the latter. 

(4) Compare the fitness of each particle with the global best known fitness, and 

make it the new global best known fitness if it is better than the latter. 

(5) Update the velocity and position of each particle according to Equations (8) 

and (10). 

(6) Output the solution if the termination condition is satisfied; Otherwise, return 

to Step (2). 

2.4. Verification of the IPSO with classical functions  

Five classical functions (Table 1) were selected to compared the IPSO with the 

basic PSO and the PSO-ω, x. The pseudocodes of the basic PSO, the PSO-ω, x and 

the IPSO are given in Tables 2~4, respectively. The parameters settings of the three 

PSOs are listed in Table 5. During the verification, the solution of the classical 
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functions was restricted in the range shown in Table 6. The results of the three PSOs 

relative to the five classical functions are recorded in Table 7. Figures 3~7 compare 

the results of all three PSOs obtained through 200 iterations. 

Table 1. The selected classical function 

Classical Function 

10
2

1

1

( ) i

i

f x x
=

=
 

2 2
1 2 1 2 1 22 ( , ) 20 10 [cos(2 ) cos(2 )]f x x x x x x = + + −   + 

 

2 2 2

3 2 2 2 2

sin 0.5
( , ) 0.5

[1 0.001( ) ]

x y
f x y

x y

+ −
= +

+ +  

1/2

4

1

( ) 418.929 sin(| | )
n

i i

i

f x n x x
=

= +
 

25

2 2 2

1 2 1 1( , ) 100(x ) (1 x )x x xf = − + −
 

Table 2. Pseudo-code for basic PSO algorithm 

Data: c1c2ZItrmaxωmaxωmin 

Generete randomly X0
z and V0

z for Z particles of the swarm; 

Evaluate F(X0
z) for each particle,; 

The minimum valueof F(X0
z) for each particle is Fmin; 

update Xz(best)and Xgbest; 

for l=1 to l=ltrmaxdo 

for z=1 to z=Z do 

Update Vl
z with Eq.(3); 

Update Xl
z with Eq.(1); 

Compute F(Xl
z), seethe classical function; 

Update Fmin; 

Update Xz(pbest); 

End 

End  

Update Xgbest; 

Verify stopping criteria;SolutionXgbest; 
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Table 3. Pseudo-code for PSO with ω and x algorithm 

Data: c1c2ZItrmaxx ω 

Generete randomly X0
z and V0

z for Z particles of the swarm; 

Evaluate F(X0
z) for each particle,; 

The minimum valueof F(X0
z) for each particle is Fmin; 

update Xz(best)and Xgbest; 

for l=1 to l=ltrmaxdo 

for z=1 to z=Z do 

Update Vl
z with Eq.(5); 

Update Xl
z with Eq.(1); 

Compute F(Xl
z), seethe classical function; 

UpdateFmin; 

Update Xz(pbest); 

End 

End  

Update Xgbest; 

Verify stopping criteria; Solution Xgbest; 

Table 4. Pseudo-code for improved PSO algorithm 

Data: c1c2ZItrmaxt k 

Generete randomly X0
z and V0

z for Z particles of the swarm; 

Evaluate F(X0
z) for each particle,; 

The minimum valueof  F(X0
z) for each particle is Fmin; 

update Xz(best)and Xgbest; 

for l=1 to l=ltrmaxdo 

for z=1 to z=Z do 

Update Vl
z with Eq.(8); 

Update Xl
z with Eq.(10); 

Compute F(Xl
z),seethe classical function; 

UpdateFmin; 

Update Xz(pbest); 

End 

End  

Update Xgbest; 

Verify stopping criteria;SolutionXgbest; 
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Table 5. The parameter settings ofthree PSOs 

Basic PSO PSO withω and x Improved PSO 

c1=1.49, 

c2=1.49 

Z=50,  

Itrmax=200 

ωmax =0.91, 

ωmin = 0.45 

c1=1.49, 

c2=1.49 

Z=50,  

Itrmax=200 

χ=0.729, 

ω=1 

c1=1.49, 

c2=1.49 

Z=50,  

Itrmax=200 

T=0.6,  

k=0.9 

Table 6. The range of values of the classical function 

The classical function The range of values 

1( )f x
 

|x|<=15 

1 22( , )f x x
 

x1,x2∈[-5,5] 

3( , )f x y
 

x,y∈[-10,10] 

4 ( )f x
 

x∈[-500,500] 

Table 7. The optimization values obtained by the three PSO methods 

Classical function Target value Basic PSO PSO withω and x Improved PSO 

1( )f x
 

0 1.65 e-04 8.70 e-05 2.00 e-09 

1 22( , )f x x
 

0 4.73 e-04 2.86 e-05 3.79 e-06 

3( , )f x y
 

0 2.73 e-08 1.47 e-10 1.30 e-11 

4 ( )f x
 

0 1.31 e-04 2.67 e-04 2.50 e-08 

5 1 2( , )xf x
 

0 1.47e-05 2.73e-05 3.67 e-08 

As shown in Table 7, the IPSO outputted 2.00 e-09 for f1(x), 3.79 e-06 for f2(x1, 

x2), 1.30 e-11 for f3(x, y), 1.30 e-11 for f4(x) and 3.67 e-08 for f5(x1, x2), while the target 

values of f1(x)~ f5(x1, x2) are all zero. Compared to the contrastive algorithms, the 

IPSO approximated the theoretical value. According to Figures 5~9, the IPSO 

achieved the fastest convergence while the basic PSO the slowest convergence. 

Suffice it to say that the IPSO can greatly enhance the solution quality. 
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Figure 3. F(l) value obtained by f1(x) for each iteration of the three PSO methods 

 

Figure 4. F(l) value obtained by f2(x1, x2) for each iteration of the three PSO 

methods 
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Figure 5. F(l) value obtained by f3(x,y) for each iteration of the three PSO methods 

 

Figure 6. F(l) value obtained by f4(x) for each iteration of the three PSO methods 
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Figure 7. F(l) value obtained by f5(x) for each iteration of the three PSO methods 

3. Parameter optimization of PID controller Based on the IPSO 

3.1. Parameter optimization problem of PID controller 

In an industrial control system, the output of a control object exhibits as an S-

shaped rising curve under the action of a step signal. In this case, the output can be 

described by a second-order inertia transfer function: 

2

31 2

( )S
T S

G
TS

K

T
=

+ • +•
                                                (11) 

The PID controller is the most popular regulator tool in engineering. Since its 

birth 70 years ago, the PID controller has become the main technology of industrial 

control due to its simplicity, stability, reliability and flexibility. It is particularly 

suitable for objects that cannot be understood clearly with common theories. Based 

on system error, the PID control technology computes the control value based on the 

proportional, integral and derivative terms of the object. The control parameters of 

PID controller are detailed as follows. 

(1) Proportional  

The error signal is proportional to the scale of control system. Upon detection of 

an error, the controller will perform an action to control the error. The response 

speed and adjustment accuracy are positively correlated with the value of the 

proportional gain constant kp. However, it is easy to produce overshoot, which leads 
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to shock and instability in a certain range. 

(2) Integral 

The integral action aims to eliminate the static error, thus enhancing the stability 

and response speed of the system. The effect of the integral action is negatively 

correlated with the integral time constant Ts. The greater the constant is, the weaker 

the integral action, and the faster the elimination of the static error. Nevertheless, the 

integral action is likely to cause saturation in the initial phase, and worsen the 

overshoot in the response phase. 

(3) Differential 

The differential parameter reveals the variation in the error signal. To speed up 

system operation and shorten the adjustment time, the differential time constant TD 

is introduced before the change takes place to the error signal. The differential action 

reduces the error in response to any direction and predicts the error in advance. 

Nonetheless, this action may force the response to stop early and lengthen the 

adjustment time. 

The parameters of PID controller should remain constant in the reproduction 

process. Any variation in TD, Ts and KP will harm the control effect of the PID 

controller. 

Suppose the error e and control action u satisfy the following equation: 

0

1
[ ]

1
p D

t

s

dt
e t e t

u t K e t e t T
T dt

+
−

=
−

+ 
（）（ ）

（） （） （）                      (12) 

where e(t) is the error function; u(t) is the t function of the control action; dt is 

the sampling period; TD is the differential time constant; Ts is the integral time 

constant; KP is the proportional gain constant. 

 

Figure 8. Schematic diagram of traditional PID 

The traditional PID contoller is shown in Figure 8, where rin(t) is the set value 

and yout(t) is the output value. The goal of parameter optimization is to find the 

proper KP, Ts and TD of the PID controller, such that the solution of the fitness 

function F=∫0
∞|e(t)|tdt is minimized. The fitness function is illustrated in Figure 9, 

where Step is the set point. 

The parameter optimization of PID controller is a complex nonlinear 

programming problem. So far, there has not been a mathematical formula that can 

accurately express the relationship between parameters of PID controller and the 
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objective function. To make up for the gap, the IPSO was applied to solve the 

problem. As shown in Figure 9, the error of the control system is the difference 

between the set value and the response. The Abs refers to the absolute value of the 

error; the Error is the integration between the clock and the absolute error. 

 

Figure 9. PID simulation mode 

3.2. Tuning results 

The IPSO-based parameter optimization of PID controller is explained in Figures 

10 and 11. The goal is to obtain the best parameters that ensure the optimal PID 

control effect.  
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Figure 10. Flow chart of Optimizing PID parameters with the improved PSO 
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Figure 11. Schematic diagram of Optimizing PID parameters with the improved 

PSO 

The optimization inputs include the following data: the parameters of the object 

(T1=7.69e-3, T2=2.3e-5, T3=291 and K=3508), the parameters of the IPSO (c1=1.49, 

c2=1.49, Z=50, Itrmax=200, T=0.6 and k=0.9). The control object is a second-order 

inertial model: 

3 2 5

3508
( )

7.69 10 2.3 10 291
G S

S S− −
=

• + • +
                               (13) 

The PID control output ya constant is unit step response. To verify the effect of 

IPSO-based optimization, the control effect of the IPSO-optimized parameters was 

contrasted with that of the parameters optimized by the traditional parameter 

optimization method for PID controller (Ziegler–Nichols optimization method). 

Table 8. The Ziegler-Nichols tuning method 

Ziegler–Nichols method 

Control Type Kp TS TD. 

P 0.5 Ku - - 

PI 0.45Ku Tu/1.2 - 

PD 0.8Ku - Tu/8 

Classic PID 0.6 Ku Tu/2 Tu/8 

Peesen Inter Rule 0.7 Ku Tu/2.5 3Tu/20 

Some overshoot 0.33 Ku Tu/2 Tu/3 

No overshoot 0.2 Ku Tu/2 Tu/3 

The Ziegler–Nichols optimization method is a heuristic method developed by 

John G. Ziegler and Nathaniel B. Nichols. It is performed by setting the I (integral) 

and D (derivative) gains to zero. The P (proportion) gain Kp is then increased (from 

zero) until it reaches the ultimate gain Ku, at which the output of the control loop has 
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stable and consistent oscillations. The Ku and the oscillation period Tu are used to set 

the P, I and D gains depending on the controller used. 

Table 9. Pseudo-code for Optimization of PID parameters with improved PSO 

algorithm 

Data: c1c2ZItrmaxtk 

Generete randomly X0
z and V0

z for Z particles of the swarm; 

Evaluate F(X0
z) for each particle, 

0
| | tF dte t



=  （） ; 

The minimum valueof F(X0
z) for each particle is Fmin; 

update Xz(best)and Xgbest; 

for l=1 to l=ltrmaxdo 

for z=1 to z=Z do 

Update Vl
z  with Eq.(8); 

Update Xl
z  with Eq.(10); 

Compute F(Xl
z),seethe classical function; 

UpdateFmin; 

Update  Xz(pbest); 

End 

End  

Update  Xgbest; 

Verify stopping criteria;SolutionXgbest, Xgbest isresults of optimization parameters 

Table 10. Parameters obtained by the three PSO methods and Z-N 

Parameter Improved PSO Z-N 

KP 2.9 3.6 

TS 1.8212 2.3076 

TD. 0.01978 0.05616 

Time 0.1509 s 0.2599 s 

The results of the comparison test are displayed in Table 10 and Figure 12. It can 

be seen from the table that the IPSO reached the equilibrium faster than the 

traditional method. Figure 12 shows a small overshoot and fast convergence to the 

set value, indicating that the IPSO-based optimization outperformed the traditional 

method. 
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Figure 12. Response of PID control system 

4. Conclusions 

In order to optimize the control effect of the PID controller, this paper improves 

the PSO by replacing the fixed weight with the adaptive weight and introducing the 

flying time. Then, the IPSO was validated through comparison with the basic PSO 

and the PSO-ω, x. After that, the IPSO was applied to optimize the parameters of the 

PID controller. With a second-order inertia model as the control object, the IPSO-

optimized parameters of PID controller were contrasted with those optimized by the 

traditional parameter optimization method for PID controller (Ziegler–Nichols 

optimization method). The comparison shows that the IPSO outperformed the 

traditional method in both convergence speed and accuracy. The research findings 

shed new light on the parameter optimization of the PID controller and the 

application of the PSO. 
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