
Traitement du signal – n° 1-2/2017, 93-110

An improved particle swarm optimization

algorithm for parameter optimization of

proportional–integral–derivative controller

Changhong Jiang1,*, Chao Zhang2, Yongheng Zhang1, Hong Xu2

1. College of Electrical and Electronic Engineering,

Changchun University of Technology, Changchun 130012, China

2. Changchun University, Changchun 130012, China

125813120@qq.com

ABSTRACT. The performance of automatic control systems hinges on the parameters of

proportional–integral–derivative (PID) controller. Therefore, this paper attempts to

determine the most suitable parameter values of PID controller. For this purpose, the particle

swarm optimization (PSO) was improved after introducing the flying time T and adaptive

weight ω, and the improved PSO (IPSO) was compared against the basic PSO and the PSO

modified with both inertial weight and constriction factor (PSO-ω, x). After that, the IPSO

was applied to optimize the parameters of the PID controller. With a second-order inertia

model as the control object, the parameters of PID controller optimized by the IPSO were

contrasted with those optimized by the traditional Ziegler–Nichols optimization method. The

results show that the IPSO is faster and more accurate than the traditional approach. The

research findings provide new insights into the optimization of the PID controller and the

application of the PSO.

RÉSUMÉ. Les performances des systèmes de contrôle automatique reposent sur les paramètres

du régulateur proportionnel – intégral – dérivé (PID). Par conséquent, cet article tente de

déterminer les valeurs de paramètre les plus convenables du régulateur PID. À cet objectif,

l'optimisation par essaims de particules (PSO) a été améliorée après l'introduction du temps

de vol T et du poids adaptatif ω, et la PSO améliorée (IPSO) a été comparée à la PSO de

base et à la PSO modifiée à la fois avec la masse d'inertie et le facteur de constriction (PSO-

ω, x). Après cela, l'IPSO a été appliqué pour optimiser les paramètres du regulateur PID.

Avec un modèle d'inertie de second ordre comme objet de contrôle, les paramètres du

régulatuer PID optimisés par l'IPSO ont été contrastés avec ceux qui optimisés par la

méthode d'optimisation traditionnelle Ziegler-Nichols. Les résultats montrent que l'IPSO est

plus rapide et plus précis que l'approche traditionnelle. Les résultats de cette recherche

fournissent de nouvelles visions de l'optimisation du régulateur PID et de l'application de

l'PSO.

KEYWORDS: flying time, adaptive weight, constriction factor, improved particle swarm

optimization (ipso), proportional–integral–derivative (PID) controller.

94 TS. Volume 34 – n° 1-2/2017

MOTS-CLÉS: temps de vol, poids adaptatif, facteur de constriction, optimisation améliorée par

essaims de particules (ipso), régulateur proportionnel – intégral – dérivé (PID).

DOI:10.3166/TS.34.93-110 © 2017 Lavoisier

1. Introduction

The proportional–integral–derivative (PID) controller is a robust and simple

control loop feedback mechanism, which has been widely applied for the digital PID

control in the manufacturing of electronics, machines, chemicals and metal products.

The control effect depends on the proportional gain constant kp, the integral gain ki

and the derivative gain kd, while the control error hinges on the proportional,

integral and derivative terms (denoted as P, I and D, respectively) of the object (Yu

and Yan, 2006). However, it is very difficult to find the most suitable parameters of

the PID controller. To overcome the difficulty, many new methods have been

developed to determine the parameters that ensure the stable auto-optimization and

adaptive control of the PID controller (Sun et al., 2004).

Traditionally, the parameters of PID controller are optimized numerically or

graphically using trail-and-error against Bode plots. Recent years has seen the

proliferation of intelligent optimization algorithms in parameter optimization of PID

controller, including but not limited to genetic algorithm (GA), ant colony algorithm

(ACA), seeker optimization algorithm (SOA) and particle swarm optimization

(PSO) (Yu et al., 2013; Tao et al., 2012). Among them, the PSO, proposed by

Kennedy and Eberhart (1998), has been extensively applied to optimize the

parameters of the PID controller at home and abroad. On the upside, the PSO enjoys

a simple structure, high accuracy, fast convergence and strong adaptability.

Particularly, the algorithm can be extended for multi-objective optimization. On the

downside, the PSO faces slow convergence and undesirable accuracy in certain

conditions (Atyabi and Samadzadegan, 2011; Meng et al., 2013).

Considering the above, this paper introduces the flying time T and adaptive

weight ω to the PSO algorithm, and compares the improved PSO (IPSO) against the

basic PSO and the PSO modified with both inertial weight and constriction factor

(PSO-ω, x). The experimental results verify that the IPSO can achieve high accuracy

and fast convergence. Next, the IPSO was applied to optimize the parameters of the

PID controller (Ono and Nakayama, 2009). The control object is a second-order

inertia model. The IPSO-based optimization outperformed the traditional parameter

optimization method for PID controller (Ziegler–Nichols optimization method)

(Gong et al., 2011; Yang et al., 2010; Yu and Cao, 2014).

2. Improvement of the basic PSO

The PSO was first intended for simulating social behaviors of bird flocks or fish

schools. This algorithm has been widely adopted for parameter optimization in high-

dimensional spaces, thanks to its simple structure, search efficiency and fast global

convergence.

An improved particle swarm optimization algorithm 95

2.1. The basic PSO

The basic PSO works by having a population (called swarm) of z candidate

solutions (called particles), which are interested in approximating the global

minimum x0 of the objective function f: Rn→R. These particles are moved around in

the search-space D according to a few simple formulae. The movements of the

particles are guided by their own best known position Xz(pbest) in the search-space as

well as the entire swarm’s best known position Xgbest. The position of particle z is

determined by the solution of the objective function. In each iteration, the position is

updated and represented by a vector Xl
z∈Rn.

The position of particle z is updated based on its current velocity Vl
z ∈Rn and

the previous position Xl-1
z:

1

z z z

l l lX X V−= + (1)

The vector Vl-1
z is updated by the formula below:

()
1 1 1 2 1 () ()

z pbestz z z gbest z

l l l lV V c X X c X X− − −= +  − +  − (2)

where Vl-1
z is the previous velocity of particle z; Ξ is a diagonal matrix of

random numbers in the interval [0, 1]; c1 is the cognitive parameter reflecting the

effect of individual experience on the decision-making of the next particle; c2 is the

social parameter reflecting the effect of social experience on the decision-making of

the next particle. Together, the two parameters characterize the trend of velocity

update. The previous studies have recommended the following values for c1 and c2:

c1=c2=2, c1=c2=2.05 or c1>c2 with c1+c2<=4.10.

The current
velocity

 The current
position

 The next
position

Individual
optimal fitness

Global optimal
fitness

Figure 1. Particle movement

It can be seen from Figure 1 and Equation (2) that the particle velocity is updated

in three phases. The flow chart of the basic PSO is presented in Figure 2 below.

96 TS. Volume 34 – n° 1-2/2017

Start

Initialization of the
velocity and position

of each particle

Calculate the
fitness value of
each particle

Calculate
individual optimal

fitness value

Calculate global
optimal fitness

value

Update the velocity
of each particle

Update the position
of each particle

Is iteration equal to the
maximum of iterations

Output optimal
value

End

N

Y

Figure 2. Flow chart of the basic PSO

It can be seen that the basic PSO contains the three key steps below:

(1) Initialize the swarm size z.

(2) Randomly select an Xl
z from the interval [Xmax, Xmin] that obeys uniform

distribution.

(3) Randomly select a Vl
z from the interval [Vmax, Vmin] that obeys uniform

distribution.

An improved particle swarm optimization algorithm 97

2.2. Variants

Some variants of the PSO have been developed to enhance its velocity, stability

or convergence. A well-known variant is called the PSO with inertial weight (PSO-

ω), which either fixes or reduces the inertial weight. The basic idea is to balance the

local and global searches with the addition of the inertial weight ω. The impact of ω

on the velocity update of each particle can be expressed as:

()
1 1 1 2 1() ()

z pbestz z z gbest z

l l l lV V c X X c X X − − −= +  − +  − (3)

The value of the inertial weight ω is positively correlated with the global search

ability of the algorithm and negatively with the local search ability. In other words, a

large inertial weight helps to avoid the local minimum trap and boost the global

search, while a small inertial weight facilitates the accurate local search and

promotes the convergence of the algorithm.

Many different PSO variants can be created according to different weight update

formulas, such as linear weight decreasing PSO, adaptive weight PSO and random

weight PSO. For example, the linear weight decreasing PSO can prevent the

premature convergence and oscillation against the global optimum of the basic PSO.

Currently, the most accepted strategy of inertial weight is to establish ω∈ [ωmin;

ωmax] and reduce its value according the number of the current iteration:

()–

max min

max

max

l
Itr

 
  = = (4)

where Itrmax is the maximum number of iterations. The recommended values are

ωmax=0.9 and ωmin=0.4.

The basic PSO can be viewed as a special case in which the inertial weight is set

to 1 throughout the iterations.

For better control of particle velocity, the constriction factor x can be introduced:

()
1 1 1 2 1() () []

z pbestz z z gbest z

l l l lV V c X X c X X − − −= +  − +  − (5)

Where

2 4 |

2

| 2
x

  
=

− −− (6)

and φ=c1+c2>4.

The recommended value of x is 0.729 with c1=c2=2. The PSO modified with both

inertial weight and constriction factor is denoted as the PSO-ω, x.

98 TS. Volume 34 – n° 1-2/2017

2.3. The IPSO

The basic PSO was improved with the addition of flying time T and adaptive

weight ω, aiming to enhance the stability and convergence speed. The adaptive

weight ω can be updated as:

() (1)(/)() l lF FCl e −=  (7)

where ω(l) is the adaptive weight of the l-th iteration; F(l) is the global best

fitness of the l-th iteration; C is the compressibility factor, which is a constant. The

impact of ω(l) on the velocity update of each particle can be expressed as:

()
1 1 1 2 1 () (())

z pbestz z z gbest z

l l l lV l V c X X c X X − − −= • +  − +  − (8)

The flying time T is updated according to the following expression

(1)
max

k l
T t

ltr

•
= • − (9)

where t is the initial flying time; k is an adjusting factor, which is a constant. The

impact of T on the positive update of each particle can be expressed as:

1

z z z

l l lX X T V−= + • (10)

The IPSO can be implemented in the following steps:

(1) Initialize the swarm size, particle positions and particle velocities

(2) Calculate the fitness of each particle.

(3) Compare the fitness of each particle with its own best known fitness, and

make it the new best known fitness if it is better than the latter.

(4) Compare the fitness of each particle with the global best known fitness, and

make it the new global best known fitness if it is better than the latter.

(5) Update the velocity and position of each particle according to Equations (8)

and (10).

(6) Output the solution if the termination condition is satisfied; Otherwise, return

to Step (2).

2.4. Verification of the IPSO with classical functions

Five classical functions (Table 1) were selected to compared the IPSO with the

basic PSO and the PSO-ω, x. The pseudocodes of the basic PSO, the PSO-ω, x and

the IPSO are given in Tables 2~4, respectively. The parameters settings of the three

PSOs are listed in Table 5. During the verification, the solution of the classical

An improved particle swarm optimization algorithm 99

functions was restricted in the range shown in Table 6. The results of the three PSOs

relative to the five classical functions are recorded in Table 7. Figures 3~7 compare

the results of all three PSOs obtained through 200 iterations.

Table 1. The selected classical function

Classical Function

10
2

1

1

() i

i

f x x
=

=

2 2
1 2 1 2 1 22 (,) 20 10 [cos(2) cos(2)]f x x x x x x = + + −   + 

2 2 2

3 2 2 2 2

sin 0.5
(,) 0.5

[1 0.001()]

x y
f x y

x y

+ −
= +

+ +

1/2

4

1

() 418.929 sin(| |)
n

i i

i

f x n x x
=

= +

25

2 2 2

1 2 1 1(,) 100(x) (1 x)x x xf = − + −

Table 2. Pseudo-code for basic PSO algorithm

Data: c1c2ZItrmaxωmaxωmin

Generete randomly X0
z and V0

z for Z particles of the swarm;

Evaluate F(X0
z) for each particle,;

The minimum valueof F(X0
z) for each particle is Fmin;

update Xz(best)and Xgbest;

for l=1 to l=ltrmaxdo

for z=1 to z=Z do

Update Vl
z with Eq.(3);

Update Xl
z with Eq.(1);

Compute F(Xl
z), seethe classical function;

Update Fmin;

Update Xz(pbest);

End

End

Update Xgbest;

Verify stopping criteria;SolutionXgbest;

100 TS. Volume 34 – n° 1-2/2017

Table 3. Pseudo-code for PSO with ω and x algorithm

Data: c1c2ZItrmaxx ω

Generete randomly X0
z and V0

z for Z particles of the swarm;

Evaluate F(X0
z) for each particle,;

The minimum valueof F(X0
z) for each particle is Fmin;

update Xz(best)and Xgbest;

for l=1 to l=ltrmaxdo

for z=1 to z=Z do

Update Vl
z with Eq.(5);

Update Xl
z with Eq.(1);

Compute F(Xl
z), seethe classical function;

UpdateFmin;

Update Xz(pbest);

End

End

Update Xgbest;

Verify stopping criteria; Solution Xgbest;

Table 4. Pseudo-code for improved PSO algorithm

Data: c1c2ZItrmaxt k

Generete randomly X0
z and V0

z for Z particles of the swarm;

Evaluate F(X0
z) for each particle,;

The minimum valueof F(X0
z) for each particle is Fmin;

update Xz(best)and Xgbest;

for l=1 to l=ltrmaxdo

for z=1 to z=Z do

Update Vl
z with Eq.(8);

Update Xl
z with Eq.(10);

Compute F(Xl
z),seethe classical function;

UpdateFmin;

Update Xz(pbest);

End

End

Update Xgbest;

Verify stopping criteria;SolutionXgbest;

An improved particle swarm optimization algorithm 101

Table 5. The parameter settings ofthree PSOs

Basic PSO PSO withω and x Improved PSO

c1=1.49,

c2=1.49

Z=50,

Itrmax=200

ωmax =0.91,

ωmin = 0.45

c1=1.49,

c2=1.49

Z=50,

Itrmax=200

χ=0.729,

ω=1

c1=1.49,

c2=1.49

Z=50,

Itrmax=200

T=0.6,

k=0.9

Table 6. The range of values of the classical function

The classical function The range of values

1()f x

|x|<=15

1 22(,)f x x

x1,x2∈[-5,5]

3(,)f x y

x,y∈[-10,10]

4 ()f x

x∈[-500,500]

Table 7. The optimization values obtained by the three PSO methods

Classical function Target value Basic PSO PSO withω and x Improved PSO

1()f x

0 1.65 e-04 8.70 e-05 2.00 e-09

1 22(,)f x x

0 4.73 e-04 2.86 e-05 3.79 e-06

3(,)f x y

0 2.73 e-08 1.47 e-10 1.30 e-11

4 ()f x

0 1.31 e-04 2.67 e-04 2.50 e-08

5 1 2(,)xf x

0 1.47e-05 2.73e-05 3.67 e-08

As shown in Table 7, the IPSO outputted 2.00 e-09 for f1(x), 3.79 e-06 for f2(x1,

x2), 1.30 e-11 for f3(x, y), 1.30 e-11 for f4(x) and 3.67 e-08 for f5(x1, x2), while the target

values of f1(x)~ f5(x1, x2) are all zero. Compared to the contrastive algorithms, the

IPSO approximated the theoretical value. According to Figures 5~9, the IPSO

achieved the fastest convergence while the basic PSO the slowest convergence.

Suffice it to say that the IPSO can greatly enhance the solution quality.

102 TS. Volume 34 – n° 1-2/2017

Figure 3. F(l) value obtained by f1(x) for each iteration of the three PSO methods

Figure 4. F(l) value obtained by f2(x1, x2) for each iteration of the three PSO

methods

An improved particle swarm optimization algorithm 103

Figure 5. F(l) value obtained by f3(x,y) for each iteration of the three PSO methods

Figure 6. F(l) value obtained by f4(x) for each iteration of the three PSO methods

104 TS. Volume 34 – n° 1-2/2017

Figure 7. F(l) value obtained by f5(x) for each iteration of the three PSO methods

3. Parameter optimization of PID controller Based on the IPSO

3.1. Parameter optimization problem of PID controller

In an industrial control system, the output of a control object exhibits as an S-

shaped rising curve under the action of a step signal. In this case, the output can be

described by a second-order inertia transfer function:

2

31 2

()S
T S

G
TS

K

T
=

+ • +•
 (11)

The PID controller is the most popular regulator tool in engineering. Since its

birth 70 years ago, the PID controller has become the main technology of industrial

control due to its simplicity, stability, reliability and flexibility. It is particularly

suitable for objects that cannot be understood clearly with common theories. Based

on system error, the PID control technology computes the control value based on the

proportional, integral and derivative terms of the object. The control parameters of

PID controller are detailed as follows.

(1) Proportional

The error signal is proportional to the scale of control system. Upon detection of

an error, the controller will perform an action to control the error. The response

speed and adjustment accuracy are positively correlated with the value of the

proportional gain constant kp. However, it is easy to produce overshoot, which leads

An improved particle swarm optimization algorithm 105

to shock and instability in a certain range.

(2) Integral

The integral action aims to eliminate the static error, thus enhancing the stability

and response speed of the system. The effect of the integral action is negatively

correlated with the integral time constant Ts. The greater the constant is, the weaker

the integral action, and the faster the elimination of the static error. Nevertheless, the

integral action is likely to cause saturation in the initial phase, and worsen the

overshoot in the response phase.

(3) Differential

The differential parameter reveals the variation in the error signal. To speed up

system operation and shorten the adjustment time, the differential time constant TD

is introduced before the change takes place to the error signal. The differential action

reduces the error in response to any direction and predicts the error in advance.

Nonetheless, this action may force the response to stop early and lengthen the

adjustment time.

The parameters of PID controller should remain constant in the reproduction

process. Any variation in TD, Ts and KP will harm the control effect of the PID

controller.

Suppose the error e and control action u satisfy the following equation:

0

1
[]

1
p D

t

s

dt
e t e t

u t K e t e t T
T dt

+
−

=
−

+ 
（）（ ）

（） （） （） (12)

where e(t) is the error function; u(t) is the t function of the control action; dt is

the sampling period; TD is the differential time constant; Ts is the integral time

constant; KP is the proportional gain constant.

Figure 8. Schematic diagram of traditional PID

The traditional PID contoller is shown in Figure 8, where rin(t) is the set value

and yout(t) is the output value. The goal of parameter optimization is to find the

proper KP, Ts and TD of the PID controller, such that the solution of the fitness

function F=∫0
∞|e(t)|tdt is minimized. The fitness function is illustrated in Figure 9,

where Step is the set point.

The parameter optimization of PID controller is a complex nonlinear

programming problem. So far, there has not been a mathematical formula that can

accurately express the relationship between parameters of PID controller and the

106 TS. Volume 34 – n° 1-2/2017

objective function. To make up for the gap, the IPSO was applied to solve the

problem. As shown in Figure 9, the error of the control system is the difference

between the set value and the response. The Abs refers to the absolute value of the

error; the Error is the integration between the clock and the absolute error.

Figure 9. PID simulation mode

3.2. Tuning results

The IPSO-based parameter optimization of PID controller is explained in Figures

10 and 11. The goal is to obtain the best parameters that ensure the optimal PID

control effect.

 Set the values

for c1,c2,Z, Itrmax,

t, k.

End

Start

Generete

randomly X0
z and

V0
z for Z particles

of the swarm.

Evaluate F(X0
z
)

for each particle,

The minimum

value of F(X0
z
)

for each particle

is Fmin.

Update

X
z(best)

and

X
gbest

.

l=ltrmax

Update X
gbest

, the final X
gbest is

the parameters of optimizing the

PID controller .

Update Vl
z
 with

Eq.(8)

Update XLz with

Eq.(10)

Compute F(Xl
z
)

z=Z

Update Fmin

Update X
z(pbest)

l=l+1

z=z+1

l=ltrmax

Y

N

N

Y

Y

N

Figure 10. Flow chart of Optimizing PID parameters with the improved PSO

An improved particle swarm optimization algorithm 107

PID
Controller

Controlled
Object

Improved
PSO

Fitness
Function

Feedback

Error

Set value

Output
value

Figure 11. Schematic diagram of Optimizing PID parameters with the improved

PSO

The optimization inputs include the following data: the parameters of the object

(T1=7.69e-3, T2=2.3e-5, T3=291 and K=3508), the parameters of the IPSO (c1=1.49,

c2=1.49, Z=50, Itrmax=200, T=0.6 and k=0.9). The control object is a second-order

inertial model:

3 2 5

3508
()

7.69 10 2.3 10 291
G S

S S− −
=

• + • +
 (13)

The PID control output ya constant is unit step response. To verify the effect of

IPSO-based optimization, the control effect of the IPSO-optimized parameters was

contrasted with that of the parameters optimized by the traditional parameter

optimization method for PID controller (Ziegler–Nichols optimization method).

Table 8. The Ziegler-Nichols tuning method

Ziegler–Nichols method

Control Type Kp TS TD.

P 0.5 Ku - -

PI 0.45Ku Tu/1.2 -

PD 0.8Ku - Tu/8

Classic PID 0.6 Ku Tu/2 Tu/8

Peesen Inter Rule 0.7 Ku Tu/2.5 3Tu/20

Some overshoot 0.33 Ku Tu/2 Tu/3

No overshoot 0.2 Ku Tu/2 Tu/3

The Ziegler–Nichols optimization method is a heuristic method developed by

John G. Ziegler and Nathaniel B. Nichols. It is performed by setting the I (integral)

and D (derivative) gains to zero. The P (proportion) gain Kp is then increased (from

zero) until it reaches the ultimate gain Ku, at which the output of the control loop has

108 TS. Volume 34 – n° 1-2/2017

stable and consistent oscillations. The Ku and the oscillation period Tu are used to set

the P, I and D gains depending on the controller used.

Table 9. Pseudo-code for Optimization of PID parameters with improved PSO

algorithm

Data: c1c2ZItrmaxtk

Generete randomly X0
z and V0

z for Z particles of the swarm;

Evaluate F(X0
z) for each particle,

0
| | tF dte t



=  （） ;

The minimum valueof F(X0
z) for each particle is Fmin;

update Xz(best)and Xgbest;

for l=1 to l=ltrmaxdo

for z=1 to z=Z do

Update Vl
z with Eq.(8);

Update Xl
z with Eq.(10);

Compute F(Xl
z),seethe classical function;

UpdateFmin;

Update Xz(pbest);

End

End

Update Xgbest;

Verify stopping criteria;SolutionXgbest, Xgbest isresults of optimization parameters

Table 10. Parameters obtained by the three PSO methods and Z-N

Parameter Improved PSO Z-N

KP 2.9 3.6

TS 1.8212 2.3076

TD. 0.01978 0.05616

Time 0.1509 s 0.2599 s

The results of the comparison test are displayed in Table 10 and Figure 12. It can

be seen from the table that the IPSO reached the equilibrium faster than the

traditional method. Figure 12 shows a small overshoot and fast convergence to the

set value, indicating that the IPSO-based optimization outperformed the traditional

method.

An improved particle swarm optimization algorithm 109

Figure 12. Response of PID control system

4. Conclusions

In order to optimize the control effect of the PID controller, this paper improves

the PSO by replacing the fixed weight with the adaptive weight and introducing the

flying time. Then, the IPSO was validated through comparison with the basic PSO

and the PSO-ω, x. After that, the IPSO was applied to optimize the parameters of the

PID controller. With a second-order inertia model as the control object, the IPSO-

optimized parameters of PID controller were contrasted with those optimized by the

traditional parameter optimization method for PID controller (Ziegler–Nichols

optimization method). The comparison shows that the IPSO outperformed the

traditional method in both convergence speed and accuracy. The research findings

shed new light on the parameter optimization of the PID controller and the

application of the PSO.

References

Atyabi A., Samadzadegan S. (2011). Particle swarm optimization-a survey. Applications of

Swarm Intelligence, pp. 167-179.

Gong D. W., Zhang J. H., Zhang Y. (2011). Multi-objective particle swarm optimization for

robot path planning in environment with danger sources. Journal of Computers, Vol. 6,

No. 8, pp. 1554-1561. http://dx.doi.org/10.4304/jcp.6.8.1554-1561

Kennedy J. (1998). The behavior of particles. Evolutionary Programming VII, pp. 581-590.

http://dx.doi.org/10.1007/BFb0040809

Meng L., Han P., Ren Y., Wang D. (2013). Design of PID controller based on multi-objective

particle swarm optimization algorithm. Computer Simulation, Vol. 30, No. 7, pp. 388-

391.

110 TS. Volume 34 – n° 1-2/2017

Ono S., Nakayama S. (2009). Multi-objective particle swarm optimization for robust

optimization and its hybridization with gradient search. IEEE International Conference on

Evolutionary Computations, pp. 1629-1636. http://dx.doi.org/10.1109/CEC.2009.4983137

Sun J., Feng B., Xu W. B. (2004). A global search strategy of quantum behaved particle

swarm optimization. IEEE Conf. on Cybernetics and Intelligent Systems Piscataway, pp.

111-116. http://dx.doi.org/10.1109/ICCIS.2004.1460396

Tao X. M., Liu F. R., Liu Y., Tong Z. J. (2012). Multi-scale cooperative mutation particle

swarm optimization algorithm. Journal of Software, Vol. 23, No. 7, 1805-1815.

http://dx.doi.org/10.1007/s10957-016-0959-1

Yang Z., Chen Z., Fan Z., Li X. (2010). Tuning of PID controller based on improved paticle-

swarm-optimization. Control Theory & Application, Vol. 27, No. 10, 1345-1352.

Yu G., Liu G., Liu Z. F., Liu X. (2013). Multi-objective optimal planning of distributed

generation based on quantum differential evolution algorithm. Power System Protection

and Control, No. 14, 66-72.

Yu S., Cao Z. (2014). Optimization parameters of PID controller parameters based on seeker

optimization algorithm. Computer Simulation, Vol. 31, No. 9, 347-350.

Yu T. M., Yan D. S. (2006). Differential evolution algorithm formulti-objective optimization.

Journal of Changchun University of Technology, Vol. 16, No. 4, pp. 77-80.

