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ABSTRACT. This paper integrates the particle filtering (PF) algorithm with the Lie group theory 

into an innovative video target tracking algorithm. This algorithm describes the target features 

with covariance matrix, and expresses the position and shape changes of the target, considering 

the spatial and temporal statistics. There are three innovations in this research: the state 

equation and observation equation of the PF under the Riemannian manifold were derived, the 

geodesic distance under the Riemannian manifold was defined, and a novel PF framework was 

developed based on the Lie group manifold and applied to video target tracking. The proposed 

algorithm was tested in the tracking experiments on two video targets. The experimental results 

show that, compared to the traditional PF algorithm based on the Euler vector space (EVPF), 

the proposed algorithm enjoys good robustness and tracking effect despite the particle 

degradation, target occlusion and target deformation. The research findings provide a new 

alternative for various applications based on target tracking. 

RÉSUMÉ. Cet article intègre l'algorithme de filtrage particulaire (PF en anglais) à la théorie de 

groupe de Lie dans un algorithme de match moving innovant. Cet algorithme décrit les 

caractéristiques de cible avec la matrice de covariance et exprime les changements de position 

et de forme de cible en prenant en compte les statistiques spatiales et temporelles. Cette 

recherche présente trois innovations: l’équation d’état et l’équation d’observation du filtrage 

particulaire sous la variété Riemannienne ont été dérivées, la distance géodésique sous la 

variété Riemannienne a été définie et un nouveau système de filtrage particulaire a été 

développé sur la base de la variété de groupe de Lie et appliqué au match moving. L'algorithme 

proposé a été testé dans les expériences de suivi sur deux vidéos ciblés. Les résultats 

expérimentaux montrent que, par rapport à l'algorithme filtrage particulaire traditionnel basé 

sur l'espace vectoriel d'Euler (EVPF en anglais), l'algorithme proposé bénéficie d'une bonne 

robustesse et d'un bon effet de suivi malgré la dégradation des particules, l'occlusion et la 

déformation de la cible. Les résultats de la recherche offrent une nouvelle alternative pour 

diverses applications basées sur le match moving. 
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1. Introduction  

In video target tracking, the moving target in a video sequence is detected, 
extracted, recognized and tracked to obtain their motion states (e.g. position, velocity 

and acceleration) and trajectory parameters. On this basis, the behaviours of the 

moving target are understood through further analysis and processing of the obtained 

data, laying the basis for more advanced tasks. With the recent, overall development 
of computer technology, the tracking of a single target or multiple targets in the video 

sequence has become a research hotspot in the field of computer vision, which 

involves various cutting-edge techniques like image processing, pattern recognition, 

artificial intelligence, automation control and signal treatment. So far, video target 
tracking has been widely applied in such fields as missile guidance, intelligent traffic 

monitoring (Pai et al., 2004), mobile robot visual navigation, human-computer 

interaction (Newcombe et al., 2011), auxiliary diagnosis (Rabbi and Ullah, 2013) and 

3D scene reconstruction. 

The Lie group manifold is adopted in many target tracking and matching 

algorithms. For instance, Wang et al., (2010) puts forward a novel tracking algorithm 

for the non-rigid target, in which each target is expressed as a feature covariance 

matrix; this algorithm, with a few dimensions, can capture the spatial and statistical 
features of the region while depicting the relationship between the pixels, and can 

effectively integrate different types of features and attributes. Based on particle 

filtering (PF), Li et al., (2010) proposes a video tracking method capable of gradual 

self-correction on affine groups, which takes the scale-invariant feature transform as 
the basic feature descriptor. Wu et al., (2009) presents a tracking method that 

gradually increases the covariance tensor on Riemannian manifold; this method 

describes the deformation of the target by affine transformation, and effectively 

eliminates background interference using the PF framework. Targeting stereo 
matching, Gu and Zhou, (2008) creates a novel similarity measure under the 

Riemannian metric: the point information is depicted by structural tensors, and then 

the similarity is measured by the distance between the structural tensors, which equals 

the geodesic distance on the Riemannian manifold because the structural tensors obey 

this manifold. 

In light of the above algorithms, this paper develops a novel video target tracking 

algorithm based on Lie group manifold and PF. Firstly, the foreground target features 

were constructed in the Lie group space. Then, the target was described and tracked 
by the manifold theory. Finally, the proposed algorithm was applied to a simulation 

experiment, and proved to be capable of tracking the target under particle degradation, 

target occlusion and target deformation. Suffice it to say that this research provides a 

robust tracking method under complex background. 

The remainder of this paper is organized as follows: Section 2 introduces the 

theoretical basis of the proposed algorithm; Section 3 discusses the feature 

representation method and extraction method of the tracking target; Section 4 
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constructs the framework of the target tracking algorithm through the combination of 

PF and a popular theory; Section 5 analyses the experimental results; Section 6 wraps 

up this paper with some meaningful conclusions. 

2. Background 

Video target tracking can be viewed as the estimation of the motion states of the 

target. Kalman filtering (KF) (Pedersen, 2013; Bourmaud et al., 2015; Sipos, 2008) 
and PF (Kwon et al., 2007; Choi and Christensen, 2012) are two poplar methods to 

estimate the motion states. The translation, rotation, expansion and deformation of a 

target in the video sequence can be represented by projective transformation. With the 

aid of the mathematical tool of differential manifold, the projective transformation of 
the target in the image can be constructed into a Lie group, taking the transformation 

parameters as state variables. In this way, the state transfer model can be set up on the 

Lie group, and combined with the PF algorithm framework to realize state estimation. 

2.1. Lie group and lie algebra 

The Lie group is a group of finite-dimensional smooth manifolds, also known as 

differential manifolds, with geometrically symmetric smooth group operations, in 

which the multiplication and inversion satisfy the smooth mapping on a pair of group 

elements. Simply speaking, the Lie group is a differentiable smooth manifold. 

Each Lie group corresponds to a Lie algebra whose vector space is the tangent 

space of the Lie group manifold at the unit element. The Lie algebra describes the 

local properties of the Lie group. The Lie group and Lie algebra are connected by 

exponential mapping (Hall, 2004). 

A Lie algebra, consisting of a set V, a number field F and a binary operation [,], 

should carry the following properties: 

(1) Closed: ∀X, Y ∈ V, [X, Y] ∈ V. 

(2) Bilinear: ∀X, Y, Z ∈ V, a, b ∈ F  such that [aX+bY, Z]=a[X,Z]+b[Y,Z], [Z, 

aX+bY]=a[Z,X]+b[Z,Y]. 

(3) Reflexive: ∀X ∈ V, [X, X] = 0. 

(4) Jacobian equivalent: ∀X, Y, Z ∈ V, [X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0. 

The binary operation is called the Lie bracket. 

The general linear group GL(n) is a set of n×n invertible matrices with 

conventional matrix operations. Among them, the set of matrices with a determinant 

of 1 forms a special linear group SL(n). Since the target deformation is continuous, 
the homography matrix satisfies the condition of SL(3) and becomes a Lie group, after 

normalization. The corresponding Lie algebra and base are denoted as sl(3) and 𝐴𝑖 , 𝑖 ∈
[1,8], respectively. The details are as follows: 
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𝐴1 = [
1 0 0
0 −1 0
0 0 0

] , 𝐴2 = [
0 1 0
0 0 0
0 0 0

] , 𝐴3 = [
0 0 0
1 0 0
0 0 0

] , 𝐴4 = [
0 0 0
0 1 0
0 0 −1

] 

𝐴5 = [
0 0 1
0 0 0
0 0 0

] , 𝐴6 = [
0 0 0
0 0 1
0 0 0

] , 𝐴7 = [
0 0 0
0 0 0
1 0 0

] , 𝐴8 = [
0 0 0
0 0 0
0 1 0

]   (1) 

2.2. PF 

The PF is a statistical filtering method based on Monte-Carlo method and recursive 

Bayesian estimation. In essence, the PF approximates the probability density function 

by the values of a group of random samples (particles) propagating in the state space, 

and replaces the integral calculation with the sample mean, thereby yielding the 

minimum variance estimate of the system state (Kwon et al., 2014). 

Compared with the KF, the PF can be applied to any nonlinear non-Gaussian 

stochastic system that can be represented by a state space model, and can accurately 

approximate the optimal estimation (Kwon et al., 2014). As a result, the KF algorithm 
framework has been extensively implemented in video target tracking systems. The 

basic steps of the PF algorithm are as follows: 

(1) Initializing the particle set: Generate the particle set {𝑥0
𝑖 }

𝑖=1

𝑁
 from the prior 

probabilityp(𝑥0), in which each particle weighs 
1

𝑁
. 

(2) Updating weights: Select the weights through importance sampling. The 

weight of particle i at time k can be updated by the following formula: 

𝜔𝑘
𝑖 ∝

𝑝(𝑧𝑘 |𝑥𝑘
𝑖 )𝑝(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 )𝑝(𝑥0:𝑘−1

𝑖 |𝑧1:𝑘−1)

𝑞(𝑥𝑘
𝑖 |𝑥0:𝑘−1

𝑖 , 𝑧1:𝑘)𝑞(𝑥0:𝑘−1
𝑖 |𝑧1:𝑘−1)

= 𝜔𝑘−1
𝑖 𝑝(𝑧𝑘|𝑥𝑘

𝑖 )𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 )

𝑞(𝑥𝑘
𝑖 |𝑥0:𝑘−1

𝑖 , 𝑧1:𝑘)
         (2) 

Taking the prior probability density function as the importance density function, 

formula (2) can be simplified to: 

𝜔𝑘
𝑖 = 𝜔𝑘−1

𝑖 𝑝(𝑧𝑘|𝑥𝑘
𝑖 ) (𝑖 = 1,2, ⋯ , 𝑁)                          (3) 

After weight normalization, we have: 

𝜔𝑘
𝑖 = 𝜔𝑘

𝑖 / ∑ 𝜔𝑘
𝑖𝑁

𝑖=1                                         (4) 

The least mean squares of unknown parameter x at time k can be estimated as:  

𝑥�̃� ≈ ∑ 𝜔𝑘
𝑖 𝑥𝑘

𝑖𝑁
𝑖=1 。                                      (5) 

(3) Resampling: If the particles are severely degraded, resampling is needed to 

obtain a new set of particles {𝑥𝑘
𝑖 }

𝑖=1

𝑁
. 
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(4) Predicting the state at time k+1: Predict the unknown parameter 𝑥𝑘+1
𝑖  by the 

sate equation, and go to Step (2). 

3. Feature extraction method 

Single feature-based tracking is easy to fail when the target deforms significantly, 
encounters intense illumination changes, or suffers from partial or complete occlusion. 

Therefore, this paper takes the feature covariance matrix as the target feature to be 

tracked. In general, the tracking target is limited to the rectangular area R. The basic 

principle of the feature covariance matrix is as follows: Let M*N be the size of area 
R, and F={fi | i=1,2,…,M*N} be the set of d-dimensional vectors corresponding to the 

pixels in area R; then, the d-dimensional feature covariance matrix CR of the area R 

can be expressed as: 

𝐶𝑅 =
1

𝑀∗𝑁
∑ (𝑓𝑖

𝑀∗𝑁
𝑖=1 − 𝜇𝑅)(𝑓𝑖 − 𝜇𝑅)𝑇                           (6) 

where 𝜇𝑅 =
1

𝑀∗𝑁
∑ 𝑓𝑖

𝑀∗𝑁
𝑖=1  is the vector mean. The features like position, grayscale 

and gradient can be used together to ensure the robustness of the feature against 

illumination changes. Here, the feature vector is defined as 𝑓𝑖 =
[𝑥, 𝑦, 𝐼, |𝐼𝑥|, |𝐼𝑦|, ∆, |𝐼𝑥𝑥|, |𝐼𝑦𝑦|], where 𝑥, 𝑦 are the coordinates of pixel position; 𝐼 is 

the grayscale; |𝐼𝑥|, |𝐼𝑦|, |𝐼𝑥𝑥| and |𝐼𝑦𝑦| are the first-order gradient in the x direction, 

the first-order gradient in the y direction, the second-order gradient in the x direction 

and the second-order gradient in the y direction, respectively; ∆= √𝐼𝑥
2 + 𝐼𝑦

2 is the 

mode of the first-order gradient. The 𝐶𝑅 thus calculated is a real symmetric positive 

definite matrix of 8*8 elements, and independent of the size of the target area (Wang 

et a., 2010). 

The covariance matrix is a Riemannian manifold rather than an Euler space. The 

Riemannian manifold is a non-compact Lie group with no double-invariant 
Riemannian metric, and its exponential mapping is no longer a geodesic. Thus, the 

metric structure should be redefined on the covariance matrix manifold. In most cases, 

the length of the vector on the tangent space of a point on the manifold is defined as 

∥ U ∥=< U, U >
1

2, with <∙,∙> being the inner product of the tangent space, i.e. the 

Riemann metric. The two covariance matrices on the manifold are denoted as X and 
Y, respectively. This paper adopts the Riemann metric defined in Reference (Porikli 

et al., 2006): 

< 𝑦, 𝑧 >𝑋= 𝑡𝑟(𝑋−1 2⁄ 𝑦𝑋−1𝑧𝑋−1 2⁄ )                             (7) 

Then, the distance between two points is: 

𝑑2(𝑋, 𝑌) =∥ y ∥𝑋
2 =< 𝑦, 𝑧 >𝑋=< log𝑋 𝑌 , log𝑋 𝑌 >𝑋 

= 𝑡𝑟(𝑙𝑜𝑔2(𝑋−1 2⁄ 𝑌𝑋−1 2⁄ )                                       (8) 
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4. PF on manifold 

The target tracking problem was modelled as a hidden Markov model, such that 

the current state 𝑆𝑡  can be estimated according to the images 𝐼1:𝑡 = {𝐼1, 𝐼2, ⋯ , 𝐼𝑡} 

observed at different times. 

During the tracking process, the shape and position changes of the target can be 

represented as projective transformation. Correspondingly, the apparent change 

between two frames of the target can be regarded as the motion of the point 

corresponding to the feature covariance matrix on the manifold (Choi and Christensen, 
2012). Therefore, the target motion model can be depicted by the manifold, while the 

transformation relationship between two adjacent points can be described by the 

tangent space of the point on the manifold (Kwon et al., 2014; Porikli et al., 2006). 

The motion model based on the Riemannian manifold and the tangent space can be 

rewritten as: 

𝑆𝑡 = 𝑆𝑡−1exp (𝑉𝑡−1)                                      (9) 

𝑉𝑡 = 𝜆(𝑉𝑡−1 − 𝑉𝑡−2) + 𝜇𝑡−1                           (10) 

where 𝑆𝑡 = [𝑥1, 𝑥2 ⋯ , 𝑥8] are the parameter vectors of projective transformation; 

𝑉𝑡 is the motion velocity of the target from the state 𝑆𝑡−1 to state 𝑆𝑡, that is, the tangent 

vector corresponding to the state point 𝑆𝑡−1 on the manifold. The velocity variation is 

expressed as a second-order autoregressive model, with 𝜆 being the autoregressive 

model parameter and 𝜇𝑡−1 being the Gaussian white noise.  

During the tracking process, the latest state estimate at each time was correctly 

iteratively against the observed data; the probability of each sample (particle) was 

estimated by measuring the similarity between the observed data and the model. Let 

𝑝(𝐼𝑡|𝑆𝑡)  be the observation of 𝐼𝑡  under 𝑆𝑡 . Then, an observation model was 

established as: 𝑝(𝐼𝑡|𝑆𝑡) ∝ exp (−𝑎 ∥ 𝑑2(𝐶∗, 𝐶𝑆𝑡
) ∥2) , where 𝐶∗ is the feature 

covariance matrix of the target template, and 𝐶𝑆𝑡
 is the feature covariance matrix of 

the target image under the projective transformation 𝑆𝑡. 

The weight of each particle was defined as: 𝜔𝑡
𝑗
= exp (−𝑎 ∥ 𝑑2(𝐶∗, 𝐶𝑆𝑡

𝑗 ) ∥2), with 

𝐶𝑆𝑡

𝑗
 being the feature covariance matrix corresponding to the candidate point 𝑆𝑡

𝑗
. After 

normalization, we have 𝜔𝑡
𝑗 = 𝜔𝑡

𝑗 ∑ 𝜔𝑡
𝑗𝑁

𝑗=1⁄ , where N is the number of particles. 

5. Experiments and results analysis 

Two videos were selected and processed by Euler vector space PF algorithm 
(EVPF) and the proposed algorithm (LMPF), which is based on Lie group manifold 

and the PF. The tracking effects of the two algorithms were contrasted to verify the 

effectiveness of the LMPF. In one of the videos, the set of images is featured by a 

complex background and occluded scenes, and the tracking target (helicopter), a rigid 
body, has an irregular shape and time-varying postures. In the other video, the 
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background is relatively stable, but the tracking target (footballer) is a non-rigid body. 

Both algorithms were compiled with Matlab 2015b on a computer (Intel® Core™ i5-
7200U; 2.70GHz; 8G). A total of 400 frames were tracked for each video. The number 

of particles was set to 400, and the area error ratio by the algorithm in Reference (Mei 

et al., 2006): 

𝐴𝑣𝑔𝐴𝑟𝑒𝑎𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
∑

|𝑆𝑡𝑟𝑎𝑐𝑘
𝑖 −𝑆𝑡𝑒𝑚𝑝|

𝑆𝑡𝑒𝑚𝑝

𝑛
𝑖=1                          (11) 

where n is the number of tracked frames; 𝑆𝑡𝑟𝑎𝑐𝑘
𝑛  is the area of the target area 

tracked by the n-th frame; 𝑆𝑡𝑒𝑚𝑝 is the area of the target template. 

   

 

Figure 1. EVPF tracking effect of helicopter. 

   

 

Figure 2. LMPF tracking effect of helicopter. 
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Figure 3. EVPF tracking effect of footballer. 

   

 

Figure 4. LMPF tracking effect of footballer. 

In the experiment on the first video, each frame has 320×240 pixels and the target 

template has 55×45 pixels. Figures 1 and 2 respectively display the tracking effects of 

the EVPF and the LMPF at the 90-th, 180-th, 270-th and 360-th frames. The effects 

at the 270-th frame show that the EVPF had a large deviation under a complex 
background and the occlusion of the tracking target, while the proposed algorithm 

tracked the target well. Under the experimental conditions, the relative error of the 

EVPF algorithm was 0.237, and that of the proposed algorithm was 0.178. This means 

the proposed algorithm performs well in the tracking of irregular rigid target under a 

complex background and occlusions. 
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In the experiment on the second video, each frame has 480×360 pixels and the 

target template has 30×55 pixels. Figures 3 and 4 respectively show the tracking 
effects of the EVPF and the LMPF at the 90-th, 180-th, 270-th and 360-th frames. 

Through comparison, it is learned that the proposed algorithm outperformed the EVPF 

when the human body exhibited obvious deformations (the 270-th and the 360-th 

frames). Under the experimental conditions, the relative error of the EVPF algorithm 
was 0.197, and that of the proposed algorithm was 0.122. Thus, the proposed 

algorithm is a better alternative than the traditional EVPF for the tacking of non-rigid 

target. 

6. Conclusions 

This paper puts forward a video target tracking algorithm based on Lie group 

manifold. Inspired by the PF, the projective transformation was employed to express 

the position and shape changes of the target, forming the Riemannian manifold. 

Meanwhile, the covariance matrix was taken as the target feature for tracking. The 
experimental results demonstrate that the proposed algorithm outperformed the 

traditional EVPF under particle degradation, target occlusion and target deformation. 

However, the proposed algorithm only applies to single-target tracking, and does not 

support real-time tracking due to the features of the PF algorithm. The future research 
will try to extend the proposed algorithm to multi-target tracking and improve its real-

time tracking ability. 
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