
ISO-26262 Compliant Safety-Critical Autonomous Driving Applications: Real-Time

Interference-Aware Multicore Architectures

Abdullah El-Bayoumi1,2

1 TTTech Auto Iberia, TTTech Group, Barcelona 08029, Spain
2 Electronics and Electrical Communications Engineering Department, Cairo University, Giza 12613, Egypt

Corresponding Author Email: abdullah.elbayoumi@pg.cu.edu.eg

https://doi.org/10.18280/ijsse.110103 ABSTRACT

Received: 12 September 2020

Accepted: 26 December 2020

Over the decades, autonomous vehicles have been developed and qualified using variant

single-core architectures. With the evolutionary trend of safety critical applications,

innovative safety design methodologies have raised present requirements constraints and

limitations to mitigate such design complexity deviations. The main objectives of this

work are to investigate, evaluate and introduce an efficient safety-critical multi-cache

multicore architecture, that is fully compliant with methods and principles of ISO 26262.

Moreover, this paper presents new safety design choices applied to timing monitoring,

temporal protection, runtime monitoring and services protection to overcome multicore

processor challenges in runtime that eventually decay the worst case execution time and

the interconnections (symmetric and asymmetric processors, critical timing, data

coherency and synchronization predictability, core interconnects, etc.), as well as to

tolerate real-time interference faults.

Keywords:

real-time operating system, multicore

architecture, multi-processor, freedom from

interference, functional safety, fault-tolerance,

reliability, worst case execution time

1. INTRODUCTION

The decay of the semiconductor scaling [1] during the past

decade marked the end of the gigahertz era, whereas the

current shift rises towards multicore designs due to their more

favorable performance-power ratio [2]. Moreover, there is no

need to have a higher clock speed, as discussed in the research

[3]. Optimizing inter-core resource sharing distributed among

software application components, presented by Schliecker et

al. [4], minimizes the computing power by avoiding

concurrent accesses of wait-states to the shared resources with

the expense of independent data processing and parallelization

losses [5]. Thus, system architectures experiencing high-

performance data processing and computation have been

trending to be real-time mixed-criticality multicore processor

platforms, as interpreted in Figure 1.

Figure 1. Multicore architecture block diagram

These platforms target complex automotive applications

such as Advanced Driver Assistance Systems (ADASs), which

target reliable recognition of moving objects to provide

decision-making algorithms. Autonomous driving imposes

significant challenges at various levels as it mostly depends on

technology fusion of one or more of the following: radar, high-

resolution camera, laser, and Light Detection and Ranging

(LiDAR), examined in the studies [6, 7]. Software applications

run with different criticality such as scheduling, sharing

computation, communication delays, communication links,

and communication resources. These issues become

challenges at an operating system (OS) level in today’s

multicore environments [8, 9].

Autonomous driving is both a rapidly advancing technology

as it will ensure a better future with increased safety on the

roads, and a subject of controversy due to automotive hacking

incidents, and the risks of fatal crashes. There are 5 levels of

autonomous driving [8], developed by the Society of

Automotive Engineers (SAE), spanning from driver assistance

to fully autonomous cars without considering the level zero

that correlates to having no automation and instead complete

human control of the vehicle.

In level 1 which named as driver assistance, It ś a fail-safe

system where the vehicle manages to detect the fault, but a

human driver is responsible for all tasks associated with

operating the car and to react to such a fault (i.e. normally

stopping the operation). There is a driving automation system

in the car that helps with either steering or accelerating, but not

both.

In level 2 which named as partial automation, the

automation system in the car can assist with both steering and

acceleration, while the driver is still responsible for most of

the safety-critical functions and environment monitoring.

Currently, the level 2 autonomous vehicles are by far the most

International Journal of Safety and Security Engineering
Vol. 11, No. 1, February, 2021, pp. 21-34

Journal homepage: http://iieta.org/journals/ijsse

21

https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.110103&domain=pdf

common on the roads.

In level 3 which named as conditional automation, the car

itself monitors the environment by utilizing autonomous

vehicle sensors and performs other dynamic driving tasks,

such as braking. It can also react partially to the undesirable

event, by operating in a degraded mode with the help of the

safety mechanisms. The human driver must be prepared to

intervene if a system failure occurs or other unexpected

conditions arise while driving.

In level 4 which named as high automation, it is a fail

operation where it correlates to a high level of automation. The

car can complete an entire journey without any intervention

from the driver and react to all hazardous events due to the

sufficient level of redundancy. However, there are some

restrictions: the driver can switch the vehicle into this mode

only when the system detects that the traffic conditions are

safe and there are no traffic jams.

Finally, in level 5 which named as full automation,

automakers are striving to achieve this level where the driver

simply specifies their destination, and the vehicle takes

complete control and responsibility for all driving modes.

Therefore, level 5 cars will have no provisions for any human

control, such as steering wheels or pedals.

One of the major metrics that certifies the project street

allowance is the functional safety (i.e., catastrophic

consequences absence that affect the user(s) and the

environment). Usually, safety-critical functions are subject to

timing requirements. The criticality concept controls and

potentially impacts the functional safety, informally refers to

the system application. A more formal definition of a

criticality (level) illustrated in ISO 26262 [10] for road

vehicles which defined the design and development processes

for the safety-critical embedded system (hardware and

software).

The criticality level results from performing Failure Mode,

Effect and Criticality Analysis (FMECA) process, discussed

by Tobias [11] which requires:

(1) Defining the functionality and failure modes,

(2) analyzing failure causes and effects,

(3) assigning severities to the failure modes according to the

failure effects,

(4) identifying the existing compensating provisions, and

(5) assign criticality categories and recommendations.

ISO 26262 regulates mixed safety-critical systems in both

design and integration. Although, mixed functionalities are

defined in both the spatial and temporal domains, the whole

system is developed according to the highest level of criticality.

By the time, the Automotive Safety Integrity Level (ASIL)

of such systems raises. The main cause is that ASIL, resulted

from the hazard analysis and risk assessment [12], illustrates

the frequency and severity of a failure mode and assign the

corresponding safety requirements to the probability of failure,

architectures, and design processes. Meantime, the state-of-

the-art ADAS functionalities are usually Quality Management

(QM) and subject to the driver control and responsibility.

Wherefore, autonomous driving transfers this responsibility to

complex ADAS multicore critical systems depending on the

autonomy level that results in producing highly safety-critical

functions with high-performance requirements, as they have

been introduced in the literature [8, 13, 14]. Moreover,

traditional safety-critical mechanical features, such as antilock

braking, have moved towards new autonomous driving

solutions, such as the electronic stability program with the help

of networked layered architecture systems. Furthermore,

customers (i.e. ultimately passengers) constantly demand for

fully autonomous vehicles.

AUTOSAR illustrated in Ref. [15] supports an abstracted

layered architecture in a runtime environment that resolve the

tremendous development efforts performed to provide a new

software if a component has become obsolete or outdated. So,

the number of different messages revealed from various

communication types provided on automotive networks has

grown much faster than the number of implemented functions.

As a result, the software integration becomes more complex,

in addition to having a huge increase in the consumed

computing power. This pushes the processing performance to

its limits.

AUTOSAR and OSEK/VDX OS utilize allowing controlled

communication between partitions and uses time division

multiple access (TDMA) scheduling for fixed time

partitioning, in preparation of achieving timing independence

as in FlexRay communication protocol. This is mandated by

ISO 26262 as in memory and time partitioned system.

Moreover, ISO 26262 permits static priority scheduling (as in

CAN communication protocol), with higher priorities

assigned to multiple critical tasks, and without considering

inversion effects [16].

ISO 26262 guarantees Freedom from Interference (FFI) in

which the separation mechanism must always adhere to the

highest ASIL involved. The main goal is that a safety code

execution cannot be corrupted by a non-safety code. This

means assuring the critical signals flow through software

components with being protecting from lower ASIL or QM

interfering software components that would affect the data

correctness. Software architectures including communication

interfaces (i.e. FlexRay, CAN, LIN, Ethernet, I2C, SPI, etc.)

must be developed accordingly. A disruptive challenge of

functional safety reveals in the system efficiency in which

there is a performance loss, at least for the critical tasks by

going to a safe state (i.e. degraded mode) and aborting fault

propagation in case of failure. By increasing multicore system

dynamics complexity, TDMA scheduling limitations increase

[17, 18].

Although multicore CPUs have huge potential to produce

efficient and sophisticated functionalities with a high return of

its investment, ISO 26262 implicates many architectural and

design requirements to assure the system operates in safe state

in a time less than fault time tolerant interval (FTTI) if

erroneous values affects critical signals (even related to

calibration data). There are means of FFI corruption methods

affect the safety-related Software Components (SWCs) such

as: information exchange interference, memory interference,

real-time interference, and shared peripheral interference.

Functional safety methods and mechanisms reduces the

functional system efficiency especially if it is a multicore

architecture.

This work is unprecedented and sets the basis for future

development and discussions. This paper presents optimized

safety-related configuration, and enhanced safety mechanisms

protection for complex multicore architectures to seize and

react to real-time faults and to let the system behave in a safe

way. This work is fully compliant with ISO 26262 methods for

Aurix and Renesas multicore microcontrollers.

The rest of the paper is organized as follows. In Section 2,

functional safety constraints of multicore architectures metrics

that mostly deteriorate the safety-related WCET are discussed.

While Section 3 represents the analysis of freedom from real-

time interference challenges for runtime faults. Whereas

22

Section 3 illustrates the proposed software safety mechanisms

for real-time cutting-edge challenges encountered in multicore

processors with proposed software safety-related

configuration. Meanwhile future work is delineated for a full

research scope in Section 5. Finally, a conclusion is provided

in Section 6.

2. SAFETY-CRITICAL MULTICORE

ARCHITECTURES CHALLENGES DESIGN AND

ANALYSIS

Multicore processors integrate independent cores into a

single Integrated Circuit (IC) that runs at lower clock

frequencies with a lower power consumption and a higher

performance. This performance is not multiples of single-core

processor performance due to the exhibition of the required

parallelism needed, by extra software, to have concurrent

running cores. In this section, safety-relevant design measures

featured in variant multicore architectures are presented.

2.1 Symmetric and asymmetric multi-processors

challenges

A multicore processor is defined as homogenous or

heterogeneous (usage of non-identical cores). While

symmetric multi-processors involve utilizing a single OS

running across multicore processor to reduce the IC footprint.

Limitation of either shared-memory performance, or core

performance, or input/ output performance impact the

symmetric multicore scalability. In symmetric multi-

processors, as shown in Figure 2(a), the OS kernel executes

application processes and threads scheduling across multiple

cores. Even though, an affinity OS as a safety mechanism ties

these processes and threads to individual cores to enhance real-

time performance.

On the contrary, number of cores in symmetric multi-

processors is limited to protect critical shared resources that

ensure serialized access. Consequently, application

performance of such processors is limited. Many independent

applications that are running simultaneously on different cores

may require an inter-partition communication (IPC) as a safety

mechanism. However, exploiting symmetric multi-processors

experiences losses in determination as the consumed time to

access a shared critical resource is not predictable due to

depending on an activity in another core that attempts to gain

another access to a shared critical resource. Furthermore, there

are execution timings variances among rescheduled tasks on

the multicore due to caching and interconnection effects as

represented in the state-of-the-art cache-interference

management [3, 19-22].

Asymmetric multi-processors, symbolized in Figure 2(b),

employ a hypervisor instead of a framework to implement

control and inter-core communication. This offers more

flexibility and control and a higher level of security. They are

distinguished processors as they treat each core as an

individual processing unit in a way to replicate instances of the

same application and operate on separate data sets across the

multicores. Wherefore, they permit more operating systems

(i.e. real-time OS, Linux, etc.) to operate on variant cores. The

running operating systems may propagate faults from a core to

another as the individual cores uses L2 cache and memory

buses to share critical hardware resources. Thereby, utilizing

supervision or virtualization to the multicore architecture

increases as a defensive safety mechanism so as not to violate

a safety goal by preventing multicore applications from

contending for shared critical resources to provide more

isolation among running QM applications on a core, and

running safety-critical applications on another core (i.e.

software partitioning) [23].

Figure 2. Multicore architecture configuration (a) Symmetric

multi-processor (b) Asymmetric hypervisor multi-processor

However, exploiting asymmetric multi-processor indices

potential barriers due to the increased coupling among

application on the multicores due to sharing critical resources,

memory controllers, caches, and hardware peripherals. Thus,

deadlocks could be produced. By using semaphores, spinlocks,

to protect shared safety critical resources from QM SWCs as

safety mechanisms, it resolves the challenge of either having

many running applications at the same/ different criticality

levels with adjusting the tasks properties as well.

2.2 Timing challenges

If a safety-related task misses its deadline, it means the

system will not go to the safe state (i.e. a software reset). This

leads to a safety goal violation. So, the task must terminate

before it reaches its deadline [24] (e.g. its, Worst Case

Execution Time, WCET). There are many challenges to

measure the WCET. Firstly, the WCET can be blocked or

preempted if the OS is multi-tasking. The term Worst Case

Response Time (WCRT), which include the WCET in addition

to preemption/ blockage time jitter, is more accurate to depend

on. In practice, using non-preemptive scheduling for higher-

ASIL short tasks shall reduce latency of safety critical outputs.

In addition, tasks with long WCET should be preemptive to

reduce latency of critical outputs.

Secondly, because of the processor caching and pipe-lining

effects, the timing sequence of an instruction represents part

of previously executed instructions. Abstract interpretation is

one of the safest method, which is processed during either

static testing or fault injection to check timing, infeasible paths

and how instructions flows in pipelining with consideration of

cache hit/miss [3] for safety-related tasks. It is based on a

semantics procedure mapped to an abstracted model, which

provide faster computation. Predicting timing of tasks allows

abstract interpretation to measure the WCET and WCRT

maximum execution time for critical tasks (without exceeding

program execution time) if they are performed during system

23

scheduling analysis.

Lastly, resource sharing by concurrent accesses among

tasks on either the core level or the multi cores level make the

corresponding WCET and WCRT become variable. This

results from accesses to shared caches, shared flash memory

pre-fetch buffers, or shared memory controllers. Highly

recommended safest solutions are to configure the access

rights of software components especially for safety-related

tasks as in the Memory Protection Unit (MPU), also to activate

the hardware safety mechanisms such as instruction caches,

branch history table, out-of-order pipelining, or static/dynamic

branch prediction. However, this could make the local WCET

(revealed as cache miss) not to be part of critical global WCET.

In other words, the WCET is significantly less than the cache

hit due to scheduling effects of processor. Additionally,

configuring the lock-step mode achieves a predictable

performance.

2.3 Predictability challenges

As the WCET prediction is complex, queues, represented

before the caches for buffering and neglecting cache misses,

are a suitable safety mechanism for load/ store operations in

multicore architectures. Queue inter-connections are based on

faster data flow of concurrent accesses into cache lines that are

requested by ongoing instructions, in which their data might

be available in the same core or another one. Precise memory

addresses requests decrease WCET measurements for multiple

scenarios. Hence, efficient Transactions on the architecture

bus are maintained. In particular, hardware mechanisms of

branch prediction and history tables provide extra bits that

increase memory consumption.

There are many safe, precise and efficient queue predictable

procedures target processor caches. The Least-Recently-Used

(LRU) procedure depends on classifying memory read access.

Less performed read accesses make LRU procedure more

accurate in WCET determination than First-In-First-Out

(FIFO) and Pseudo-LRU (PLRU) procedures. On the other

side, there are two-write procedures. The first procedure is

write-through, in which an operation storage is written in the

memory hierarchy level. The second procedure is write-back

which follows write-through procedure if the memory field is

freed from the cache. Due to the cache analysis uncertainties,

as well as, increasing the cache levels, the write-back

procedure analysis becomes more difficult.

In other words, FIFO is a queue with new elements are

inserted at the front, while evicting elements are at the end of

the queue. In contrast, LRU hits do not change the queue. Their

implementations utilize a round-robin replacement counter for

each set pointing to the cache line to replace next. This counter

is increased if an element is inserted into a set, while a hit does

not change this counter. Moreover, PLRU is a tree-based

approximation of the LRU policy. It arranges ways in a tree

bits pointing to the line to be replaced. It is much cheaper to

implement than true LRU in terms of storage requirements and

update logic which reduces predictability. PLRU also tracks

invalid lines. On a cache miss, invalid lines are filled from left

to right, ignoring the tree bits. The tree bits are still updated.

The same predictability procedures are followed for

external devices connected with the caches over the system

bus. These devices as static/ dynamic memory controllers (or

communication controllers. On the other hand, WCRT shall be

set with other overheads for asynchronous events of program

executions. This strategy is followed for safety-related

interrupts, Direct-Memory-Access (DMA), Error Correcting

Code (ECC) in Random Access Memory (RAM) and

hardware exceptions.

2.4 Core interconnect challenges

Figure 1 shows a 4-core architecture block diagram similar

to Intel Core I7 with some changes. It consists of four physical

cores connected with high-speed communication path

illustrated as Interconnect with a shared L3 cache (shared with

all physical/logical cores) for high power and performance

efficiencies. Each physical core has two logical cores and an

individual L2 cache. For a faster simultaneous multi-threading

OS, each logical core has its private instruction and data L1

cache, as well as shared memory controllers placed among all

physical cores. Moreover, there is no inherited timing

interferences among the cores. Each core has redundant nine

banks of five registers (control, status, address and error

information registers) linked to hardware safety units.

Therefore, the architecture includes a safe hardware error

reporting mechanism for: uncorrected errors, uncorrected

recoverable errors, and corrected errors.

All cores are interconnected with buses, crossbars, meshes

and typical routed communication structures. To have a

coherent system, interconnect accesses require arbitration

accesses from the other cores due to the utilized architecture

memory hierarchy defined as (L1, L2 and L3) caches per each

core. Furthermore, additional core communication is required,

since the L1 cache data of a core may be old as this data is

renewed either in the L1 cache of another core, or in the

memory controller.

A shared resource access causes variants interconnect

traffic challenges that appear on the processor interconnection

to process a single instruction. This traffic includes data traffic,

cohesion traffic and eviction traffic. The first interconnect

traffic challenge is a cacheable read access issued by one core.

If there is a cache hit to another core, the cacheable read

memory access produces a silent communication. While, if

there is a cache miss to another core, it initiates a read request.

Finally, it initiates a prime write access to evict the modified

data from the cache.

Meanwhile, the second interconnect traffic challenge is a

write access to a cacheable memory area issued by one core.

With the same methodology, if there is a cache hit to another

core, the cacheable write access memory causes no traffic.

While, if a cache hit occurs to update directories of other cores,

it produces a coherency traffic. Moreover, if there is a cache

miss, it initiates a read access. Finally, it initiates a prime write

access to evict the modified data from the cache.

Lockstep mode is a hardware safety mechanism represented

in many microcontrollers (i.e. Aurix Tri-core and Renesas

RH850). The lockstep mode includes two identical hardware

cores that execute the same software code. A unique

independent hardware comparator is placed to compare each

core output. ISO 26262 assures the microcontroller goes to a

safe state if the comparator result is false, without having an

additional multicore software handling (i.e. no intention to

increase computing power). As it eliminates all interferences

within cores that execute the same set of instructions in

parallel, it makes the processor behave like a single-core

architecture. When all available safety and performance

hardware mechanism are utilized, the resolved challenges of

core interconnect make the resulted timing bounds reach an

accurate WCET.

24

3. FREEDOM FROM REAL-TIME INTERFERENCE

CHALLENGES IN MULTICORE ARCHITECTURES

In mixed safety critical systems, if a SWC experiences with

the coexistence, where it includes mixed-ASIL sub-functions.

The SWC is treated with the highest ASIL represented in its

sub-functions if it interferes with other ASIL SWCs, as means

of FFI are interpreted in Figure 3. While, from the FFI

definition, where cascading failures absence among SWCs

lead to a safety goal violation. Therefore, developing the

whole SWCs with the highest ASIL assures FFI analysis by its

definition, since there are no QM SWCs.

Figure 3. Example of FFI due to information exchange

interference, memory interference and shared peripheral

interference

In general, there is at least one critical path represents the

data flow of a critical signal from input conditions to the output

root-cause in a safety-related software architecture. It is

represented in a software design critical path analysis that also

includes different-ASIL SWCs interferences. In the critical

path, it is sufficient to have SWCs that detect and react to

means of software/ hardware faults. If all SWCs are developed

according to the highest-ASIL ISO 26262 compliance matrix,

there are redundant safety mechanisms that perform the same

detection and reaction behavior. Thereby, the CPU load will

exceed its limits enough to make the system not performing at

all. As a result, this is a high-cost inefficient design choice [25].

On the other hand, if set of safety mechanisms are provided

to the mixed critical system to contain QM SWCs failures on

the ASIL SWCs. Hence, no safety efforts are needed in QM

SWCs with the expense of a CPU overhead and an architecture

optimization. Interferences to critical SWCs could affect its

properties in multicore architectures with data faults, timing

faults, OS faults, sequence faults and hardware faults.

ISO 26262 abides to analyze dependent failures, portrayed

in Figure 3, to show independence between software

components used to implement independence requirements

coming from ASIL decomposition at system level [26]. Thus,

neither cascading failures nor common cause failures shall

propagate among SWCs whether they are successive or placed

in different paths, accordingly. Although common cause

failures result from a single specific event or a root cause that

shall affect 2 or more internal sub-functions of a SWC or

external SWCs, they may result from a defined hardware block.

This means that single point of failure metrics of the highest

ASIL SWC before decomposition should be covered by an

analysis method. To perform the dependent failure analysis,

such ways of FFI methods among SWCs are used to

implement the ASIL decomposition shall be progressed, even

if they have the same ASIL level. In addition, FFI between

each ASIL SWC that is used to implement ASIL

decomposition and the shared component shall be analyzed.

Software data faults may corrupt either memory [27, 28] (i.e.

RAM, Flash, EEPROM, registers, DMA) or initialization data

or calibration data (in pre-compile, link-time, post-build).

They may affect logical data processing and data transmission

among SWCs (in inter/intra ECU communication). Means of

exchange faults are:

(1) multiple message reception,

(2) message deletion/ loss,

(3) additional message insertion,

(4) message corruption,

(5) incorrect message flow,

(6) message delay/ timeout,

(7) invalid message destination address,

(8) message inconsistency due to faulty network status in

communication nodes,

(9) blocking access to a communication channel, and (10)

invalid message data range.

Timing faults are represented as:

(1) aliveness timing issues incomplete execution or no

execution of a Supervised Entity (SE) within the OS

periodicity due to unexpected termination), as shown in Figure

4(a); and

(2) deadline timing issues (i.e. non-terminating calculation

or incorrect frequency/ timing execution or which means

execution is either too slow/ fast or too early/ late), as shown

in Figure 4(b).

Figure 4. Timing diagram of safety-related impacted

supervised entities (SE) (a) Aliveness timing issue (b)

Deadline timing issue

SEs of a critical SWC include multiple checkpoints to

represent important elements (i.e. ASIL task, runnable, and

function) for timing measurements and control flow.

The SE has transitions to checkpoints with one or multiple

beginning/ end checkpoints. Processing a fault instruction in

the program flow or even missing to process a correct one from

any beginning/ end checkpoint may lead to data corruption,

data inconsistency, fail-silent violations, and process crashes

in the control flow. These faults produce incorrect checkpoints

control flow and timing faults that affect the program flow due

to divergence that lead to sequence faults.

The real-time interference is represented by means of

runtime faults as:

(1) Lower-ASIL non-preemptive tasks with a longer execution

time (i.e. larger than the maximum allowed higher-ASIL

task jitter) which delay execution of higher-ASIL tasks,

(2) Critical sections used by lower-ASIL tasks, with undefined

WCET, longer than the maximum allowed jitter of higher-

ASIL tasks with lower priority,

25

(3) Waiting hardware or external event loops without a

timeout in lower-ASIL tasks/ interrupts may cause

blocking of higher-ASIL tasks/ interrupts,

(4) Shared resources (peripheral, or non-reentrant code

segment, or shared data structure) acquired by lower-ASIL

SWCs longer than the maximum allowed jitter of a higher-

ASIL SWCs shared the same resource, may block critical

tasks,

(5) Interrupts WCET of lower-ASIL SWCs longer than the

maximum latency of higher-ASIL tasks/ interrupts which

may cause a violation of real-time constraints allocated to

higher-ASIL SWCs,

(6) Improper choice of priority among higher-ASIL and

lower-ASIL SWCs (i.e. higher-ASIL interrupts latency

increases when lower-ASIL interrupts are assigned with

higher priority than ASIL interrupts priority; or when 2

mixed-ASIL tasks are ready at the same time, but the

lower-ASIL task with higher priority starts causing

delaying the execution of higher-ASIL task with lower

priority; or when a lower-ASIL task with higher priority

become ready, and may interrupt the execution of the

currently running preemptive higher-ASIL task with lower

priority),

(7) Blocking of higher-ASIL tasks execution due to interrupt

overloads in lower-ASIL interrupts,

(8) Execution of higher-ASIL tasks triggered by external

events communicated by lower-ASIL tasks may be

delayed or not activated which causes a violation of a

safety goal,

(9) A higher-ASIL task calling synchronous services with a

longer execution time from a lower-ASIL task enough to

increase the WCET of the higher-ASIL task more than the

maximum latency of critical output, and to delay/ block

critical outputs.

In this section, safety mechanisms for failure detection and

reaction are proposed to develop ISO 26262 methods of FFI

efficiently in multicore architectures. For real-time

interference: timing monitoring with temporal protection,

runtime monitoring, and service protection mechanisms are

proposed to resolve timing faults, sequence faults and OS

faults, respectively.

4. PROPOSED SAFETY MECHANISMS FOR

MULTICORE ARCHITECTURES

The proposed safety mechanisms presented in this section

are carried out for Aurix Tri-core, Renesas RH850, and

Freescale targets. They detect and react to timing faults,

sequence faults and services faults that take place during real-

time intercommunication of multicores among mixed-ASIL

SWCs or even inside a single core at runtime.

Practically, the safe OS is developed by a supplier with the

minimum required quality of ISO 26262 methods for a target

ASIL to get this SWC accredited and certified. It implements

additional safety requirements to guarantee a systematic

behavior at all expected operation failures for different kinds

of freedom from interferences. The OS supplier takes

responsibility if the OS fails (due to internal systematic fault

in the OS), given that the safe OS is well integrated as defined

in the supplier integration manual.

Meanwhile, the QM OS is developed, as per the standard

quality process, with no guarantee whether it is better or not

than what ISO 26262 requirements cover. There are no

additional mechanisms, added within it, to cover runtime

errors (other than what stated by the OSEK standard). Thus, it

is preferred to define additional safety mechanisms to cover

possible OS failures, as stated in Section 3, identified by the

performed safety analysis. Because the safe OS is costly in a

way compared to the QM OS, the decision to begin a mixed-

critical project with a specific OS should be made earlier.

There are major metrics must be ensured in choosing an OS:

(1) Freedom from real-time interferences where the use of an

ASIL watchdog manager with a proper monitoring strategy

and good software integration could be sufficient, while

using the QM OS to schedule safety critical tasks,

(2) Freedom from memory interference where the choice

between either the safe OS or the QM OS depends on:

a. the memory protection safety mechanisms that shall be

implemented,

b. the used software architecture,

c. implemented safety requirements in SWCs,

d. the method and amounts information exchange in cross

partitions including the critical shared variables, and

e. in AUTOSAR, whether the Run-Time Environment

(RTE) is used or not to communicate among SWCs and

the basic software via the IPC.

Choices to utilize the QM OS are based on whether the

implementation of software requirements is centralized in a

few SWCs with having a few cross partitions communication,

a few amounts of critical data, an efficient memory mapping

where safety critical data are aligned together and with non-

AUTOSAR architecture.

Developing the OS as a specific ASIL level ensures only

that there are no real-time failures caused by the OS itself,

during scheduling (i.e. causing wrong context switching,

delaying certain ASIL tasks, or blocking certain tasks from

execution). However, ASIL and QM activities entitled in a

software architecture inherit observable real-time

interferences, on the scheduling sequence of the OS itself,

caused by the QM runnable/ interrupts. Consequently, an

interference on the ASIL tasks might reveal (the QM tasks

takes more time than expected by preventing the ASIL tasks

from operation. Thus, the solution is to ensure an efficient

design with using monitoring functionalities to satisfy the

safety real-time constrains and to ensure the freedom from

real-time interference.

4.1 Timing monitoring safety mechanisms

Timing monitoring safety mechanisms aim to let safety

critical tasks meet their execution time budgets. On top of that,

the mechanisms shall detect potential risks, in which whether

the QM tasks monopolize the OS by requesting many

interrupts or loading the CPU in a way to block the critical

tasks. Timing faults are not limited to execution blockage,

deadlocks, live-locks, erroneous allocation of execution time,

and invalid synchronization among SWCs. This means either

SEs, or unrelated QM tasks or Cat2 interrupts miss their

deadline at runtime, and they become blocking. As a result,

this fault propagates through the critical system until reaching

a target ASIL SE that misses its deadline, which will be

detected by the watchdog.

There are many reasons to consider QM or lower-ASIL

interrupts configured as Cat2 over Cat1 in the real-time

interferences. Cat2 interrupts are managed by the OS interrupt

handler before the user’s interrupt. Thus, they interact with OS

and can make OS calls. They have a higher latency, if

26

requested by the hardware until the first instruction execution.

Besides, they can be completely controlled by the OS. They

can communicate with other tasks or Cat2 interrupt handlers

with the help of the OS resource.

Unlike Cat2 interrupts, Cat1 interrupts are managed by the

interrupt handler, which is called by the hardware interrupt

vector. They are not supported by the OS and can just make a

minor selection of OS calls to disable/ enable all interrupts.

Manipulation of Cat1 interrupts depends on the target itself.

There is no need to lock out interrupts as the shared critical

regions are shared with low-priority tasks or interrupts. The

hardware interrupts occurrences must be limited with an

appropriate recovery strategy, in case of such failures.

In contrast, Cat1 interrupts must be configured as Trusted,

as proposed in Table 1, since:

(1) blocking all interrupts eliminates the execution timer

monitoring of such interruptions,

(2) not supported by spatial and temporal protection

configured in the OS as they sup-port only Non-Trusted

code to detect and prevent time or space overruns, and

(3) the usage of simple scheduler that disables interrupts.

Thus, in such critical systems, Cat1 interrupts usage and

frequency should be tuned, if and only if:

(1) Cat2 interrupts latency are low,

(2) small amount of jitter is required from interrupts, and

(3) inter-arrival rate of an interrupt increases with extra

overheads due to nested interrupts or interrupt wrappers

effects.

Table 1. Proposed OS application and MPU configurations

for ISR categories given that there are ASIL-D SWCs in a

software architecture

Entity
OS

Application

CPU

Mode

MPU

Configuration Set

OS Trusted Supervisor 0

CAT1 ISR/

TRAP
Trusted Supervisor 0

CAT2 ISR Non-Trusted User 0 or 1 1

To control timing faults in runtime for a multicore

architecture, firstly, an interrupt/ task meets its deadline, if the

fixed-priority preemptive OS is accurately configured with

Scalability Class 2 (SC2) to have the OS timing protection

safety mechanisms as:

(1) Monitoring the execution time budget upper bound for

tasks/ Cat2 interrupts to detect when lower-ASIL tasks

exceed the expected execution time, as represented in

Figure 5(a). An exception shall be thrown when lower-

ASIL task execution time exceeds the expected value

specified during the task creation.

(2) Monitoring the uppers bound of resources/ peripherals

blockage, locking budget and suspending all interrupts to

prevent lower-ASIL SWCs from blocking higher-ASIL

components execution due to excessive usage of the shared

resources. Mutex, semaphore or spinlocks can be used by

higher-ASIL SWCs to ensure mutual access to resources

shared with lower-ASIL SWCs. An exception shall be

thrown when lower-ASIL tasks continue using the shared

resources for more than the maximum allowed interval

specified during task creation.

Supervision of the lower bound among activated successive

tasks (at running or at ready state for basic tasks and at waiting

state for extended tasks) or Cat2 interrupts inter-arrival, as

revealed in Figure 5(b). This means that interrupt overload

protection monitors number of interrupts received on certain

channel to be disabled temporarily once they exceed the

expected limits (interrupt counter is reset). This is

implemented inside an interrupt. After consuming the

configured delay, the interrupt will be reenabled. If the

interrupt overrun is detected again, then the interrupt will be

disabled permanently until the next ignition cycle. Thus, the

usage of interrupts that are based on external trigger signals

shall be limited to the avoid interrupt overload. This is

implemented inside man-ager function that is responsible of

the interrupt. On other words, the interrupt overload

mechanism protects higher-ASIL SWCs from being blocked/

delayed due to high CPU overload occurs because of the

arrival of many interrupts.

Figure 5. Timing diagram illustrated between ASIL task1

interfered with QM or lower-ASIL task2 (a) Practical

execution timing (b) Inter-arrival timing (C) Deadline timing

Then, with the support of safety mechanisms built-in a

hardware timer element, and with setting the relevant interrupt

with a higher priority, the timing enforcement is promised. The

mode of hardware watchdog shall be configured as Slow at

initialization, as Fast at steady state, and as Off. Furthermore,

interrupts latency time shall abide architecture real-time

constraints.

4.2 Temporal protection safety mechanisms

Even though a safe behavior permits the system to detect

and react on a failure during the FTTI, as illustrated in Figure

6, timing protection of AUTOSAR OS cannot individually

assure exact timing protection in multicore architectures.

Thereupon, it must be combined with temporal protection

safety mechanisms to provide a fully timing protection to

correctly identify tasks/ interrupts that cause timing faults.

In temporal protection, a non-safety code is forbidden to

impact safety-related code timings. This is monitored by the

qualified watchdog component as shown in Figure 7. The

AUTOSAR watchdog manager SWC monitors SEs execution

by triggering the watchdog hardware component. It

periodically monitors the frequency (i.e. the configured

occurrence number of cyclic checkpoints) during the OS

periodicity range to feature the SE aliveness supervision.

On top of that, the watchdog manager monitors the time

duration delay (not the exact timeout) of aperiodic consecutive

checkpoints in a SE in case of irrelevant interrupts/ tasks are

interfering with the SE execution. Hence, it features the

deadline supervision, as interference delineated in Figure 5(c);

to assure that the SE flow is meeting its deadline. The

27

watchdog manger shall check the timing before calling the

next checkpoint, so as not to fail to detect non-occurrence of

the second checkpoint. Thus, more checkpoints may be

proposed to critical tasks or functions (at the expense of RAM

consumption) as a runtime safety mechanism to make use of

the watchdog supervision mechanisms.

Figure 6. Achieving the safe state after applying a safety mechanism during the FTTI slot

Figure 7. Temporal protection for the FFI performed by the

watchdog component

Figure 8 shows a time span with 3 aliveness supervision

cycles as a detection mechanism. In each cycle, checkpoints

(CP1 and CP2) are hit once. Once the watchdog manager main

function is called, the window for the next watchdog trigger is

defined by WdgMTriggerWindowStart and

WdgMTriggerConditionValue. Whereas Figure 9 and Figure

10 show the minimum and the maximum reaction time

required by the watchdog manager because of the aliveness

supervision, respectively. At first a checkpoint being hit first.

Then, after the next checkpoint hit, the fault can be detected,

which is due to the subsequent supervision cycle. Therefore,

violation, detection, communication and system reset take

place in the second call of the watchdog manager main

function. In other words, the fault detection is placed at the end

of the next supervision reference cycle for alive supervision.

Figure 8. Aliveness supervision detection cycle of the watchdog manager

28

Figure 9. Timing diagram of the minimum reaction time required by the watchdog

Figure 10. Timing diagram of the maximum reaction time allowed by the watchdog

4.3 Runtime monitoring safety mechanisms

In SC2, AUTOSAR OS experiences runtime monitoring, in

which it verifies no QM task grants continued privilege to

access interrupts hardware elements, or to operate with

uncontrolled deadline. In addition to watchdog manager

features illustrated in previous section, it performs the logical

supervision, which monitors an accurate program flow order

at runtime (i.e. the execution sequence of a SE that is

represented in check-points transition directions according to

its configured graph). Moreover, it will verify the checkpoints

timings in the SE. However, the transition timing itself is

verified by the deadline supervision featured by the watchdog

manager SWC.

Figure 11 and Figure 12 represent the program flow

monitoring mechanism of a multicore architecture. It is

recommended be implemented for each core address the

following challenges:

(1) no mutual checkpoints are involved in the SE of cores,

(2) checkpoint availability request placed in one core and

called by the program flow monitoring placed in the other

core,

(3) core interconnect synchronization to verify the

interconnect acceptable jitter among the cores, and

(4) one-core program flow monitoring mechanism fatal failure

that may need to activate its watchdog reaction mechanism

synched accurately with reporting this status, to the other-

core program flow monitoring mechanism.

In this case, the second program flow mechanism assesses

the first-core failure reaction mechanism with the help of its

watchdog manager, for the sake of activating its own failure

reaction mechanism. Based on the system architecture

constraints, different watchdog drivers may be interfaced to

each core or a global watchdog may be utilized for all cores.

The main purpose of this use-case is verifying the multicore

initialization synchronization.

If a checkpoint is reached, SEs report to the watchdog

manager SWC through function calls. An instance of the SE is

created, for each core. Hence, concurrent SEs and overlapping

checkpoints among SEs are limitations to that solution.

However, it gathers and monitors all SEs logical sequence

inside or among all cores that trigger the watchdog. In addition,

in each core, the SEs run independently and can inform their

status to the watchdog SWC over core boundaries.

29

Consequently, temporal protection and logical supervision of

program flow sequences are utilized as safety measures of

failure detection of either the hardware clock or the

microcontroller unit.

A local SE failure status reveals once a confirmed failure

reaches a SE where the detection mechanism occurs, while the

global failure status of a microcontroller represents all

gathered and combined local SEs failure status. The watchdog

shall activate recovery mechanisms from such failures based

on the global and local failure status.

Firstly, the watchdog manager SWC shall report such

failures to the SE with the help of the RTE protection

mechanism. Moreover, it stores a new SE failure with its

relevant attributes that illustrate the faulty items with the help

of the diagnostic manager. Thus, the SE shall react to recover

from such failures based on those reporting mechanisms.

Secondly, if there is no watchdog hardware triggering

performed by the watchdog stack (i.e. refreshments timeout

due to checkpoints failures), a hardware reset to either the

microcontroller or the whole Electronic Control Unit (ECU) is

performed by the watchdog hardware element. After that, an

initialization is progressed to free such hardware failures. The

watchdog refreshment ensures the program execution

monitoring as it covers all ECU and functional modes, their

transitions and all exceptions. Lastly, a global SE failure

affects the whole system mandates an immediate

microcontroller reset may occur by the watchdog manager

followed by an initialization to the watchdog element.

Figure 11. Watchdog flow monitoring safety mechanism in the AU-TOSAR layered architecture

Figure 12. Watchdog flow monitoring safety mechanism in the Microsar layered architecture

30

4.4 Services protection safety mechanisms

During interaction between an ASIL OS application and

QM or lower-ASIL OS services, the services calls (i.e. handled

by StartupHook, PreTaskHook, PostTaskHook, Alarm

Callback, Tasks, Cat1/ Cat2 interrupts, Shutdown Hook,

Protection Hook and Error Hook) shall not corrupt the OS

itself. Several service protection safety mechanisms are highly

recommended to be configured in the OS if they are supported

or to be developed in case of an inhouse developed OS.

Firstly, services in wrong context, which are not called from

Cat1 interrupts (i.e. calling non-reentrant higher-ASIL

services in reentrant context by lower-ASIL SWCs or calling

out-of-order higher-ASIL services), shall not be processed as

the OS is highly recommended to protect them against the

Non-Trusted Cat2 interrupts by returning an invalid value or a

call level error. These out-of-bound context services shall not

produce any behavior once called. Besides, the whole OS

services must be fully configured whether used or not for the

OS objects related to an OS application. Meanwhile, the

higher-ASIL SWC design shall assure the exclusive access to

non-reentrant services. Reentrance shall be supported and

checked if used.

Secondly, Non-Trusted QM or lower-ASIL OS applications

may affect higher-ASIL OS applications indirectly though OS

services that have a global context through means of service

faults such as: non-safe service calls; or non-safe handling of

either global data, or function input parameters, or function

input/output parameters, or function return value, or wrong

periodicity, or wrong function pointer (invalid pointer

arithmetic, or memory corruption). As a result, the OS services

calls context shall be restricted. Besides, they can perform

trusted restricted actions (i.e. not shutting down the OS).

Values of different tasks shall be selected to be unique and to

keep large with proper hamming distance among different tag

values to detect bit errors easily.

Figure 13. Protection hooks representation for between

higher-ASIL Task A and lower-ASIL or QM Task B in the

extended status OS

In general, restoring the wrong context for higher-ASIL

tasks can be detected by using unique task context tag pushed

into stack when task preempted and checked when task

resumed. PreTaskHook is periodically called directly after a

new task enters the running state, while PostTaskHook, is

periodically called directly before the old task leaves the

running state, as shown in Figure 13. Thus, GetTaskId does

not return any issue, if the task is still/ already in the running

state.

Thirdly, calls to undefined services are enough to make the

OS behavior is undefined in an extended state and to be

corrupted. The service protection shall describe all use-cases

for such behaviors so as not to jeopardize the impacted OS

application, the OS and the whole system. This shall be

considered either for tasks that end without a termination, or

for Cat2 interrupts that end with locked resources and

interrupts, or out of order call (i.e. processing Post hook during

shutdown call, processing interrupts without the

corresponding disable or calling services during disabling

interrupts). On top of that, Disable/ Enable interrupts shall

support nested calls.

Fourthly, service calls with invalid objects not defined in

the OSEK Implementation Language (OIL) or with out of

range parameters (i.e. erroneous set of alarm cycle) shall not

be processed and the OS shall return either an invalid identifier

or an invalid value, respectively.

A configuration shall be done to permit Non-Trusted OS

application with invoking Trusted OS services provided by the

Trusted OS application with the help of the OS interrupt or

trap. The OS shall verify the memory access rights allocated

to the calling OS application against concurrent accesses, for

proper memory protection, with such services to assert the

memory left in the stack region. Every memory write access

shall be conditioned by a writing request and a writing

authorization, located in non-consecutive source code areas.

Meanwhile, the maximum memory write duration shall be

guaranteed.

Lastly, in multi OS applications, as in shown in Figure 1,

controlling OS objects related to other Non-Trusted higher-

ASIL OS applications by Non-Trusted QM or lower-ASIL OS

application could provide an interference. Consequently, the

QM OS application should not have such permissions to

modify the ASIL OS objects. Moreover, the OS shall return an

invalid identifier for that restricted access rights privileges. In

case of an error detected during message reception, the

reception buffer shall be reinitialized to ensure the erroneous

previous message will not be used.

In case of failure, a safe reaction shall be performed in order

to go to a safe state. Suitable error handling mechanisms shall

be implemented in the OS with the intention of trapping such

an erroneous state and even before an OS fault detection. This

mechanism shall detect such protection errors, which are

considered as software systematic faults generated in an OS

application.

The protection errors are not limited to illegal service (i.e.

unauthorized service call); memory access violations; timing

faults (exceeding WCET); and hardware exceptions (i.e.

illegal arithmetic instructions). An out-of-context occurrence

of a protection error (i.e. during OS shutdown) leads to

operating on an infinite loop, even before calling the

reasonable mechanism. With the support of the watchdog, a

microcontroller reset is activated due to this endless loop. A

timeout limitation of the endless loop shall be verified to let

the elapsed time measurement be performed before the process

completion test.

Firstly, in SC3 and SC4, the application-specific startup

hook mechanisms relevant to OS applications may be called

by the OS after the OS startup call, to initiate other hook safety

mechanisms. Secondly, in SC3 and SC4, the configured

generalized error hook mechanism shall be activated before

the application-specific error hook, which is activated if Cat2

interrupts/ tasks related to an OS application produce an error.

Thirdly, in SC3 and SC4, the configured generalized

shutdown hook mechanism shall be activated after calling the

application-specific shutdown hook, which is activated if the

safety critical system begins to shutdown itself. It is preferably

to have all application-specific shutdown hooks return

parameters to the corresponding calling OS application so that

the processing of the generalized shutdown hook is initiated.

Lastly, in SC2, SC3, and SC4, the protection hook

31

mechanism is called by the OS in a Trusted code to notify the

means of protection errors take place at runtime. Depending

on the return value of the protection error, the protection hook

shall respond with either an OS shutdown, or a silent behavior,

or an immediate termination of the current faulty Cat2

interrupt (while the newly requested/ waiting interrupts are

invoked correctly), or an immediate termination of all

interrupts (including newly requested/ waiting interrupts) and

tasks related to a faulty OS application with/ without restarting

the OS application.

There are limitations on choosing the OS scalability class as

in SC2 there are timing protection, global time

synchronization support, and protection hook features, while

in SC3 there are MPU, OS application, other hook functions,

service protection and Trusted functions features. Regardless

all features can be configured in the SC4 OS, the SC4 OS is

costly, and all SC4 proposed features might not be the aimed

design choices for such a system architecture. As a result, this

work is proposing multiple safety mechanisms to cover the gap

of not being privileged with such OS features.

5. FUTURE WORK

The full scope of this work is to design a safety-compliant

efficient multicore architecture that serve various autonomous

driving applications to demonstrate the benefits of the

proposed safety mechanisms to vehicle decisions (sensor

fusion) of deep reinforcement learning. Assuring that higher-

ASIL SWCs operate with no impact of the lower-ASIL or QM

SWCs (i.e. guaranteeing the freedom from interference),

regardless the used sophisticated architecture is, is mandatory

to have a safe improved accuracy of vehicle decisions. The

improvement in the safe vehicle operation obtained with fault

injection verification asserts that there is still a lot of scope for

improvement. The future work is summarized as follows:

(1) Experiencing, proposing safety mechanisms for possible

ways of interferences (information exchange interference,

shared peripheral interference) are the next step to have a

fully compliant set of multicore architectures.

(2) Incorporating safe configuration of different set of

multicore processor targets to tolerate means of hardware

faults.

(3) Proposing and examining ISO 26262 compliant enhanced

algorithms for sensor fusion for moving object detection,

tracking, and calibration.

The author hopes that this study becomes a candidate to

encourage for further deep research in exploring other real-

time residual faults for perfect detection and reaction in

cutting-edge nanoscale processors, or in web-based processors

to validate the detection accuracy, or possible enhancements

of the proposed safety mechanisms nature.

6. CONCLUSION

In this paper, safety-critical challenges of multicore

architectures for autonomous driving applications have been

explored, leveraged, analyzed and mitigated. These challenges

represented for set of multi-cache multicore architectures in

symmetric and asymmetric processors, critical timing, data

coherency and synchronization predictability, core

interconnects. Furthermore, various novel solutions, to each

single challenge/ constraint, are proposed to present complex

architectures designs to be compliant with the ISO 26262

methods and principals based on the examined system

architecture ASIL. The proposed safety mechanisms target

real-time faults detection and immediate reaction mechanisms,

enough to let the system behave in the safe state before the

defined FTTI.

Several proposed safety mechanisms to detect timing faults

are combined as: timing monitoring, resource locking time

protection, execution time protection and inter-arrival time

protection with possible configurations improvements to Cat2

interrupts rather than Cat1 interrupts; as well as temporal

protection are proposed: watchdog aliveness supervision, and

watchdog deadline supervision. Whereas runtime flow

monitoring and logical supervision detect the sequence faults

with the support of the watchdog. Meanwhile, safe OS hooks

configuration and safety mechanisms are proposed to detect

all runtime services faults to higher ASIL OS applications,

tasks and interrupts.

ACKNOWLEDGMENT

The work presented here has been partially carried out for

the framework of autonomous driving applications, which are

supported by the TTTech Auto Iberia, Spain. The author

would like to thank the expert staff of the Research and

Development Center of Valeo.

REFERENCES

[1] El-Bayoumi, A., Mostafa, H., Soliman, A.M. (2017). A

novel MIM-capacitor-based 1-GS/s 14-bit variation-

tolerant fully-differential voltage-to-time converter

(VTC) circuit. Journal of Circuits, Systems and

Computers, 26(5): 1750073.

https://doi.org/10.1142/S0218126617500736

[2] El-Bayoumi, A., Salem, M.A., Khalil, A., El-Emam, E.

(2015). A new Checkout-and-Testing-Equipment (CTE)

for a satellite Telemetry using LabVIEW. In 2015 IEEE

Aerospace Conference, pp. 1-9.

https://doi.org/10.1109/AERO.2015.7119305

[3] Datta, A.K., Patel, R. (2014). CPU scheduling for

power/energy management on multicore processors

using cache miss and context switch data. IEEE

Transactions on Parallel and Distributed Systems, 25(5):

1190-1199. https://doi.org/10.1109/TPDS.2013.148

[4] Schliecker, S., Negrean, M., Ernst, R. (2009). Response

time analysis on multicore ECUs with shared resources.

IEEE Transactions on Industrial Informatics, 5(4): 402-

413. https://doi.org/10.1109/TII.2009.2032068

[5] Xie, G., Zeng, G., Li, R. (2020). Safety enhancement for

real-time parallel applications in distributed automotive

embedded systems: A stable stopping approach. IEEE

Transactions on Parallel and Distributed Systems, 31(9):

2067-2080.

https://doi.org/10.1109/TPDS.2020.2984719

[6] Kang, D., Kum, D. (2020). Camera and radar sensor

fusion for robust vehicle localization via vehicle part

localization. IEEE Access, 8(1): 75223-75236.

https://doi.org/10.1109/ACCESS.2020.2985075

[7] Schalling, F., Ljungberg, S., Mohan, N. (2019).

Benchmarking LiDAR sensors for development and

evaluation of automotive perception. 2019 4th IEEE

32

International Conference and Workshops on Recent

Advances and Innovations in Engineering (ICRAIE), pp.

1-6. https://doi.org/10.1109/ICRAIE47735.2019.

9037761

[8] Iturbe, X., Venu, B., Jagst, J., Ozer, E., Harrod, P., Turner,

C. (2018). Addressing functional safety challenges in

autonomous vehicles with the arm TCL S architecture.

IEEE Design & Test Magazine, 35(3): 7-14.

https://doi.org/10.1109/MDAT.2018.2799799

[9] Martin, H., Winkler, B., Grubmüller, S., Watzenig, D.

(2019). Identification of performance limitations of

sensing technologies for automated driving. 2019 IEEE

International Conference on Connected Vehicles and

Expo (ICCVE), pp. 1-6.

https://doi.org/10.1109/ICCVE45908.2019.8965181

[10] ISO 26262:2018- Road Vehicles - Functional Safety –

Part 1–12. https://www.iso.org/standards.html, accessed

on 2 Dec., 2018.

[11] Tobias, S. (2018). Safety analysis for highly automated

driving. 2018 IEEE International Symposium on

Software Reliability Engineering Workshops (ISSREW),

pp. 154-157.

https://doi.org/10.1109/ISSREW.2018.000-7

[12] Sini, J., Violante, M., Dodde, V., Gnaniah, R., Pecorella

L. (2019). A novel simulation-based approach for ISO

26262 hazard analysis and risk assessment. 2019 25th

IEEE International Symposium on On-Line Testing and

Robust System Design (IOLTS), pp. 253-254.

https://doi.org/10.1109/IOLTS.2019.8854385

[13] Adedjouma, M., Pedroza, G., Bannour, B. (2018).

Representative safety assessment of autonomous vehicle

for public transportation. 2018 21st IEEE International

Symposium on Real-Time Distributed Computing

(ISORC), pp. 124-129.

https://doi.org/10.1109/ISORC.2018.00025

[14] Nag, P., Ghanekar, U., Harmalkar, J. (2019). A novel

multi-core approach for functional safety compliance of

automotive electronic control unit according to ISO

26262. 2019 5th IEEE International Conference for

Convergence in Technology (I2CT), pp. 1-5.

https://doi.org/10.1109/I2CT45611.2019.9033841

[15] AUTOSAR Layered Architecture. http://www.autosar.

org/standards/classic-platform/release-40/software-arch-

itecture/general/, accessed on 6 Jul. 2017.

[16] Gupta, P., Singh, N.P., Srinivasan, G. (2019). A

framework for real-time automotive applications to

multicore platform in perspective of AUTOSAR. 2019

4th IEEE International Conference on Recent Trends on

Electronics, Information, Communication & Technology

(RTEICT), pp. 706-709.

https://doi.org/10.1109/RTEICT46194.2019.9016689

[17] Agirre, I., Cazorla, F.J., Abella, J., Hernandez, C.,

Mezzetti, E., Azkarate-askatsua, M. (2018). Fitting

software execution-time exceedance into a residual

random fault in ISO 26262. IEEE Transactions on

Reliability, 67(3): 1314-1327.

https://doi.org/10.1109/TR.2018.2828222

[18] Piper, T., Winter, S., Schwahn, O., Bidarahalli, S., Suri,

N. (2015). Mitigating timing error propagation in mixed-

criticality automotive systems. 2015 IEEE 18th

International Symposium on Real-Time Distributed

Computing, pp. 102-109.

https://doi.org/10.1109/ISORC .2015.13

[19] Pan, X., Jonsson, B. (2014). Modeling cache coherence

misses on multicores. Proceeding of 2014 IEEE

International Symposium on Performance Analysis of

Systems and Software (ISPASS 2014), pp. 96-105.

https://doi.org/10.1109/ISPASS.2014.6844465

[20] Naderializadeh, N., Maddah-Ali, M.A., Avestimehr, A.S.

(2017). Fundamental limits of cache-aided interference

management. IEEE Transactions on Information Theory,

63(5): 3092-3107.

https://doi.org/10.1109/TIT.2017.2669942

[21] Hachem, J., Niesen, U., Diggavi, S. (2016). A layered

caching architecture for the interference channel. 2016

IEEE International Symposium on Information Theory

(ISIT), pp. 415-419. https://doi.org/10.1109/ISIT.2016.

7541332

[22] Piovano, E., Joudeh, H., Clerckx, B. (2020). Centralized

and decentralized cache-aided interference management

in heterogeneous parallel channels. IEEE Transactions

on Communications, 68(3): 1881-1896.

https://doi.org/10.1109/TCOMM.2019.2960503

[23] Tellabi, A., Ruland, C. (2019). Empirical study of real-

time hypervisors for industrial systems. 2019 IEEE

International Conference on Computational Science and

Computational Intelligence (CSCI), pp. 208-213.

https://doi.org/10.1109/CSCI49370.2019.00042

[24] Zuepke, A., Kaiser, R. (2019). Deterministic Futexes:

Addressing WCET and Bounded Interference Concerns.

2019 IEEE Real-Time and Embedded Technology and

Applications Symposium, pp. 65-76.

https://doi.org/10.1109/RTAS.2019.00014

[25] Xie, G., Chen, Y., Liu, Y., Li, R., Li, K. (2018).

Minimizing development cost with reliability goal for

automotive functional safety during design phase. IEEE

Transactions on Reliability, 67(1): 196-211.

https://doi.org/10.1109/TR.2017.2778070

[26] Frigerio, A., Vermeulen, B., Goossens, K. (2019).

Component-level ASIL decomposition for automotive

architectures. 2019 49th IEEE Annual IEEE/IFIP

International Conference on Dependable Systems and

Networks Workshops (DSN-W), pp. 62-69.

https://doi.org/10.1109/DSN-W.2019.00021

[27] El-Bayoumi, A. (2020). An enhanced algorithm for

memory systematic faults detection in multicore

architectures suitable for mixed-critical automotive

applications. International Journal of Safety and Security

Engineering, 10(4): 467-474.

https://doi.org/10.18280/ijsse.100405

[28] El-Bayoumi, A. (2021). New safe reliable design

methodologies examined by fault injection testing and

Monte Carlo simulation: Tolerating shared-memory

interferences in multicore architectures. International

Journal of Embedded Systems, 1-12.

NOMENCLATURE

ADAS advanced driver assistance system

LiDAR light detection and ranging

OS operating system

FMECA failure mode, effect and criticality analysis

ASIL automotive safety integrity level

QM quality management

TDMA time division multiple access

FFI freedom from interference

33

FTTI fault time tolerant interval

SWC

IC

software component

integrated circuit

IPC inter-partition communication

WCET worst case execution time

WCRT worst case response time

MPU memory protection unit

LRU least-recently-used

FIFO first-in-first-out

PLRU pseudo least-recently-used

DMA direct memory access

ECC error correcting code

RAM random access memory

RTE run-time environment

SC scalability class

ECU electronic control unit

OIL osek implementation language

34

