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 In this paper, we present a hybrid optimization framework for gridless sparse Direction 

of Arrival (DoA) estimation under the consideration of heteroscedastic noise scenarios. 

The key idea of the proposed framework is to combine global and local minima search 

techniques that offer a sparser optimizer with boosted immunity to noise variation. In 

particular, we enforce sparsity by means of reformulating the Atomic Norm 

Minimization (ANM) problem through applying the nonconvex Schatten-p quasi-norm 

(0<p<1) relaxation. In addition, to enhance the adaptability of the relaxed ANM in more 

practical noise scenarios, it is combined with a covariance fitting (CF) criterion 

resulting in a locally convergent reweighted iterative approach. This combination forms 

a hybrid optimization framework and offers the advantages of both optimization 

approaches while balancing their drawbacks. Numerical simulations are performed 

taking into account the configuration of co-prime array (CPA). The simulations have 

demonstrated that the proposed method can maintain a high estimation resolution even 

in heteroscedastic noise environments, a low number of snapshots, and correlated 

sources. 
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1. INTRODUCTION 

 

DoA estimation is one of the most addressed topics in recent 

researches, which is playing a significant role in several 

applications such as smart antennas, wireless communication, 

and radar. The major objective of DoA estimation is to acquire 

the direction information of multiple sources from the outputs 

of the sensor array. Many methods have been proposed for this 

purpose, including conventional subspace-based techniques 

such as MUSIC, ESPRIT, and their variants [1-3]. In general, 

these methods are subject to certain well-known disadvantages. 

For example, they require the number of sources and sufficient 

numbers of snapshots to attain accurate estimation, that may 

not be available in practice. Moreover, they are affected 

considerably by the correlations of sources. 

Major advances have been made in the DoA estimation over 

the last decade with the evolution of sparse representation and 

compressed sensing (CS) [4, 5], which yields to a variety of 

sparse methods for estimating DoA. Early grid-based sparse 

approaches have been devoted to discrete linear systems and 

encounter the basis or grid mismatch problem [6, 7]. Many off-

grid solutions have been proposed to address this problem [8, 

9]. However, these methods impose high complexity and 

maintain the grid determination issue. Recently, the gridless 

sparse methods have been presented [10, 11]. These methods 

remove gridding by directly working in a continuous 

dictionary and estimate the DoAs by solving a semidefinite 

programming (SDP) problem. 

One of the distinct gridless sparse approaches in DoA 

estimation depends on the notion of atomic norm minimization 

(ANM) introduced by Chandrasekaran et al. [12]. ANM is a 

deterministic approach that seeks the minimum number of 

“atoms” from a manifold required to reconstruct a signal. The 

theoretical performance of the noiseless ANM problem was 

investigated by Candès and Fernandez-Granda [13] without 

any statistical assumptions. Mainly, it has been successfully 

used to estimate a spectrally sparse signal, provided that the 

frequency components are adequately separated by minimum 
4

𝑛
, where n indicates the dimension of full data. Later, this 

condition was minified to 
2.52

𝑛
 by Fernandez-Granda [14]. The 

ANM problem was expanded to the compressive data case and 

referred to as continuous CS [15]. Meanwhile, several 

theoretical works [16-19] have investigated the robustness of 

ANM in the case of corrupted measurements. Atomic norm 

denoising approach was presented for line spectral estimation 

application by Bhaskar et al. [17]. This approach was further 

extended to the multiple measurement vectors (MMVs) case 

[8, 18]. Tang et al. [19] proposed a nearly optimal method to 

denoise a mixture of complex sinusoids from full data case, 

which was designated as atomic norm soft thresholding (AST). 

Atomic norm denoising is applied to test the efficiency of 

super-resolution under the consideration of white noise, it 

offered theoretical guarantees for parameter recovery [20]. 
One competitive alternative approach is the structured 

covariance fitting (CF) [10, 21-23], which takes advantage of 

the second-order statistical properties of the directions 

coefficients. In particular, CF-based methods exploit the 

Toeplitz and Hermitian structure of the covariance matrix. As 

well, they exhibit high estimation accuracy without requiring 

to angle separations as long as the statistical assumptions of a 

sufficient number of snapshots and non-correlated sources are 

respected.  

Although gridless DoA estimators enjoy remarkable  

Mathematical Modelling of Engineering Problems 
Vol. 8, No. 1, February, 2021, pp. 125-133 

 

Journal homepage: http://iieta.org/journals/mmep 
 

125

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.080116&domain=pdf


 

advantages, they have considerable drawbacks. In general, 

CF-based approaches are statistically compatible in the total 

count of snapshots and do not provide adequate results in the 

case of the correlated sources. While ANM-based methods 

suffer from restricted resolution due to the separation 

condition and unsatisfying performance in the modest signal-

to-noise ratio (SNR). Furthermore, regarding noise, ANM-

based estimators assume that the noises of sensor array are 

white with identical variances (i.e. homoscedastic noise). This 

assumption helps to set the regularization parameter in the 

optimization problem. However, this may be violated in a 

range of practical applications due to the imperfect real 

implementation or non-idealities of the communication 

channel. Further, the noise may be heteroscedastic and exhibit 

non-stationary manners by changing its variance in both space 

and time. It is worth mentioning that CF is recommended in 

the absence of the noise level or in the presence of 

heteroscedastic noise, while ANM approaches are preferred 

when the sources are strongly correlated or when the noise is 

considered to have the upper bound power [11]. 

Reweighted optimization is common in the literature on 

sparse DoA estimation. Typically, it is used to reduce the 

limitation of estimation resolution in ANM-based methods [24, 

25], or to encounter solution deviation from the prime problem 

(i.e. rank minimization) when other assumptions are violated 

(e.g. sources separation limit, signals correlations) -as in the 

case of CF-based methods [23, 26]. Moreover, some 

reweighted methods are derived using nonconvex 

optimization. Compared to the convex problem, it has been 

shown that applying nonconvex surrogate functions, such as 

𝑙𝑝 norm, Logarithm, Laplace, and Schatten-p quasi-norm [23, 

27, 28], can achieve better sparse parameter estimation and 

signal recovery within a few iterations. In the notable work of 

[24], the so-called reweighted ANM (RAM) was suggested 

based on a nonconvex log-det heuristic, RAM provides 

sparsity and resolution enhancement, with applicability to 

DoA estimation. Our earlier work [29] presented a high-

resolution reweighted CF approach for gridless DoA 

estimation based on nonconvex Schatten-p quasi-norm that 

provided better performance compared to the state-of-the-art 

methods. The major drawback of the methods derived from 

nonconvex penalties is that they suffer from local convergence. 

Table 1 summarizes the gridless DoA estimation methods 

based on nonconvex optimization with their penalties. 

 

Table 1. The gridless DoA estimation methods and their 

dependent approaches and nonconvex penalties 

 

Method Approach Penalty 

Formula 

𝑿 ∈ ℂ𝑛×𝑚, 𝑥 =
𝜎(𝑿) ≥ 0, 𝜀 > 0 

RAM [24] ANM Log-det ln|𝑿 + 𝜀𝐼| 
[26] 

CF 

Laplace ∑(1 − 𝑒
𝒙
𝜀) 

ICMRA 

[23] 
Logarithm ∑ 𝑙𝑛(𝑥 + 𝜀) 

Schatten-

p 
∑(𝑥 + 𝜀)𝑝 Rwp-GLS 

[29] 

 

 

2. MAIN CONTRIBUTIONS 

 

In this paper, we study the problem of denoising the gridless 

DoA estimation, from compressive and corrupted 

measurements of multiple sparse signals, in the spatial domain. 

Our motivation is twofold: (i) take advantage of the attractive 

properties of the recent nonconvex optimization techniques in 

low-rank matrix recovery. Accordingly, we have introduced 

the nonconvex Schatten-p quasi-norm surrogate function as a 

sparsity metric. Then the resulting objective function is 

linearized by the use of Taylor expansion leading to a locally 

converging reweighted iterative method. (ii) Cast the ANM-

based DoA estimation in the background of anonymous 

practical noise cases (i.e. heteroscedastic noise) by 

incorporating the covariance fitting criterion into the proposed 

ANM problem, which has not been analyzed in the literature 

to the best of our knowledge. Furthermore, with regard to the 

main role of array geometry, and with a view to achieving a 

high degree of freedom, with a reasonable number of physical 

sensors, we have followed the co-prime array (CPA) structure 

[30, 31].  

The remainder of the paper will be arranged as follows. 

Section 3 demonstrates the signal model in the DoA estimation 

problem. Section 4 revisits the preliminary results of ANM 

and CF frameworks that motivate this paper. Section 5 

presents the suggested hybrid method for gridless DoA 

estimation. Section 6 provides numerical simulations to 

validate the performance of the proposed method. Finally, the 

paper is concluded in Section 7. 

Through this paper, we use bold letters for vectors and 

matrices. ℂ  and ℝ  stand for the sets of complex and real 

numbers respectively. The transpose is symbolized by (. )𝑇 , 

and the complex conjugate or Hermitian is symbolized by (. )𝐻. 

𝑟𝑎𝑛𝑘(. ) and 𝑡𝑟(. ) denote matrix rank and trace respectively. 

‖. ‖𝐹 states to Frobenius norm, and 𝐀 ≥ 0 signifies that 𝐀 is a 

Positive SemiDefinite (PSD) matrix.  

 

 

3. SIGNAL MODEL 

 

Consider 𝐾  narrow-band far-field uncorrelated sources 𝑠𝑘 

impinge on a sparse linear CPA array from the directions of 

𝜽=[𝜃1, …, 𝜃𝐾]. Specifically, for a co-prime pair 𝑁 > 𝑀, CPA 

consists of two uniform linear subarrays: the first composed of 

𝑀  sensors with an inter-element spacing of 𝑁𝑑 . The other 

comprises of 𝑁 sensors with an inter-element spacing of 𝑀𝑑, 

where 𝑑 is picked to be half of the wavelength 𝜆/2. Note that 

the CPA contains a total of 𝑀 + 𝑁 − 1 physical sensors in 

total. Further, the CPA output data matrix 𝒀𝜴  =
[𝒚𝜴(1), … . . , 𝒚𝜴(𝐿)] ∈ ℂ(𝑀+𝑁−1)×𝐿  can be viewed as the 

output of virtual 𝑁 × 𝑀 sensors of a uniform linear array by 

keeping the sensors indexed by 𝜴 = [𝑙1, 𝑙2, … . , 𝑙𝑀+𝑁−1] ⊂
{1, … , 𝑁𝑀}. The observation model at t snapshot of CPA can 

be described as follows, 

 

𝒚𝜴(𝑡) = ∑ 𝒂𝜴(𝜃𝑘)𝑠𝑘(𝑡) +

𝐾

𝑘=1

𝒏𝜴(𝑡) 

= 𝑨𝜴(𝜽)𝒔(𝑡) + 𝒏𝜴(𝑡),             𝑡 = 1, … . . , 𝐿 

(1) 

 

where, L is the total number of snapshots, and 𝒔(𝑡) ∈ ℂ𝐾×1, 

𝒚𝜴(𝑡) ∈ ℂ(𝑀+𝑁−1)×1and 𝒏𝜴(𝑡) ∈ ℂ(𝑀+𝑁−1)×1 are the vectors 

of sources signals, the array output, and the noise, respectively. 

𝑨𝜴(𝜽) = [ 𝒂𝜴(𝜃1), … . , 𝒂𝜴(𝜃𝐾)] ∈ ℂ(𝑀+𝑁−1)×𝐾  indicates the 

steering matrix, where 𝒂𝜴(𝜃𝑘) is the steering vector of the kth 

source which is specified by the geometry of the sensor array 

and is set as,  
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𝒂𝜴(�̃�𝑘)

= [𝑒𝑖2𝜋
𝑑 𝑙1

𝜆
�̃�𝑘 , 𝑒𝑖2𝜋

𝑑 𝑙2
𝜆

�̃�𝑘 , … . . , 𝑒𝑖2𝜋
𝑑 𝑙𝑀+𝑁−1

𝜆
�̃�𝑘]𝑇 

(2) 

 

where, �̃�𝑘 = 𝑠𝑖𝑛 (𝜃𝑘)  is kth normalized ungrided direction, 

and 𝑙𝑖 is the physical position of the ith sensor.  

Let {𝒔}1
𝐾  be temporarily and spatially uncorrelated, this 

implies that 𝐸[𝒔𝒔𝐻] = 𝑑𝑖𝑎𝑔(𝑷) , where 𝑷 =
[𝑃1, 𝑃2, … . , 𝑃𝐾] ∈ ℝ+

1×𝐾 is the vector of the sources’ powers. 

In addition, 𝒏𝜴(𝑡) is independent of 𝒔(𝑡)  and fulfils 

𝐸[𝒏𝜴(𝑡𝑖)𝒏𝜴
𝐻(𝑡𝑗)] = 𝑑𝑖𝑎𝑔(𝝈𝜴)  for any  𝑖 ≠ 𝑗 , where 𝝈𝜴 

represents the noise variance vector. In this case the sample 

covariance matrix is given by, 

 

𝑹𝜴 = 𝐸[𝒚𝜴𝒚𝜴
𝐻] = 𝑨𝜴(�̃�)𝑑𝑖𝑎𝑔(𝑷)𝑨𝜴

𝐻(�̃�) +

𝑑𝑖𝑎𝑔(𝝈𝜴)  
(3) 

 

𝑹𝜴  is a PSD Toeplitz matrix and has rank 𝐾  under the 

assumption that 𝑁 > 𝐾, while �̃� = [�̃�1, … , �̃�𝐾]. 
Shortly, the output of the array can be rewritten as, 

 

𝒀𝜴 = 𝑨𝜴(�̃�)𝑺 + 𝑵𝜴 (4) 

 

where, 𝑺 = [𝒔(1), … . . , 𝒔(𝐿)] ∈ ℂ𝐾×𝐿  is the sources signals 

matrix, and 𝑵𝜴 = [𝒏𝜴(1), … . . , 𝒏𝜴(𝐿)] ∈ ℂ(𝑀+𝑁−1)×𝐿  is the 

matrix of the measurements noise. 

Referring to the key objective of the DoA estimation, the 

purpose of this paper is to estimate the parameters (𝜽, 𝝈𝜴) 

provided the compressed corrupted measurement matrix 𝒀𝜴. 

 

 

4. PRELIMINARY RESULTS 

 

4.1 ANM approach for gridless DoA estimation  

 

Principally, the ANM approach has strong theoretical 

guarantees. The main merits of ANM are embodied in 

exploiting the signal sparsity and resolving the grid mismatch 

problem by working directly on a continuous dictionary. As 

well, ANM preserves the signal structure, which is critical in 

the noisy cases. Further, it can be used in a single or limited 

number of snapshots cases.  

Inspired by atomic norm representation, the objective of 

DoA problem is reduced to describe the spatial sparsity as 

atomic decomposition of 𝒀𝜴 with the smallest number of 

atoms. The atomic 𝑙0 norm offers the proper description of this 

problem [12, 15], and it is defined as, 

 
‖𝒀‖𝑨,𝟎 = 

𝑖𝑛𝑓
�̃�𝑘,𝑠𝑘

{𝐾: 𝒀 = ∑ 𝒂(�̃�𝑘)𝒔𝑘: 𝒂(�̃�𝑘) ∈ 𝑨, ‖𝒔𝑘‖2 ≥ 0

𝐾

𝑘=1

} 
(5) 

 

where, 𝒀  refers to the full data matrix, which is a linear 

combination of a number of atoms 𝒂(�̃�𝑘) =

[1, 𝑒𝑖2𝜋�̃�𝑘 , … . . , 𝑒𝑖2𝜋(𝑀𝑁−1)�̃�𝑘]𝑇 ∈ ℂ𝑀𝑁×1 from the continuous 

dictionary  𝑨 ∶= {𝒂(�̃�)  ∶  �̃� ∈ [0,1], } . While, 𝒔𝑘 =

[𝑠𝑘(1), … . , 𝑠𝑘(𝐿)] ∈ ℂ1×𝐿  represents the multiple snapshots 

coefficients vector of the kth source. Following from [12], in 

the noiseless case, ‖𝒀‖𝑨,𝟎 can be characterized by the next 

rank minimization problem, 

 

‖𝒀‖𝑨,𝟎 = 𝑚𝑖𝑛
𝑿,𝒖

𝑟𝑎𝑛𝑘(𝑻(𝒖)) 

subject to    [
𝑿 𝒀𝐻

𝒀 𝑻(𝒖)
] ≥ 0. 

(6) 

 

𝑻(𝒖) ∈ ℂ𝑁𝑀×𝑁𝑀 is a Toeplitz Hermitian PSD matrix, with 

vector 𝒖 being its first row. Since rank minimization problem 

is nonconvex and NP-hard to compute; then the nonconvexity 

is avoided by using convex relaxation, through replacing 
‖𝒀‖𝑨,𝟎  by the atomic 𝑙1  norm -denoted briefly as atomic 

norm-, which is identified as the gauge function of the convex 

hull of 𝑨 or 𝑐𝑜𝑛𝑣(𝑨) [12]. 
 

‖𝒀‖𝑨 = 𝑖𝑛𝑓{𝑡 > 0: 𝒀 ∈ 𝑡. 𝑐𝑜𝑛𝑣(𝑨)} 

= 𝑖𝑛𝑓
�̃�𝑘,𝒔𝑘

{∑‖𝒔𝑘‖2

𝑘=1

: 𝒀 = ∑ 𝒂(�̃�𝑘)𝒔𝑘: �̃�𝑘 ∈ [0,1]

𝐾

𝑘=1

} 
(7) 

 

According to ref. [15, 18], ‖𝒀‖𝑨 has the following efficient 

computation SDP formulation, 
 

‖𝒀‖𝑨 = 𝑚𝑖𝑛
𝑿,𝒖

1

2√𝑁𝑀
(𝑡𝑟(𝑻(𝒖)) + 𝑡𝑟(𝑿)) 

              subject to     [
𝑿 𝒀𝐻

𝒀 𝑻(𝒖)
] ≥ 0. 

(8) 

 

Notice the interesting directions are embedded in 𝑻(𝒖). As 

a result, whenever an optimizer of 𝒖 is found, the directions 

can be recovered either by using Vandermonde decomposition 

of 𝑻(𝒖) [14, 15] (this decomposition is unique if 𝐾 < 𝑁𝑀), 

or through conventional covariance-based subspace methods, 

depending on the fact that 𝑻(𝒖) is the data covariance of 𝒀 

after removing the sources’ correlations.  

In the presence of noise, ANM assumes given bounded 

energy noise. Hence, the SDP in (8) can be cast to the next 

regularized optimization formula, 
 

‖𝒀‖𝑨 = 𝑚𝑖𝑛
𝑿,𝒖

𝜇

2√𝑁𝑀
(𝑡𝑟(𝑻(𝒖)) + 𝑡𝑟(𝑿)) + 

‖𝒀𝜴 − 𝒀𝜴
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ‖

𝐹

2
 

               subject to    [
𝑿 𝒀𝐻

𝒀 𝑻(𝒖)
] ≥ 0. 

(9) 

 

where, 𝒀𝜴
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∈ ℂ(𝑀+𝑁−1)×𝐿  is the compressive 

corrupted measured matrix on CPA, and 𝜇 is the regularization 

parameter required to harmonize the data fidelity and the 

signal sparsity. On the basis of i.i.d Gaussian noise with 

variance 𝜎, and in the case of a single measurement vector and 

a sparse linear array, it has been shown by Yang and Xie [21] 

that 𝜇 ≈ √(𝑁 + 𝑀 − 1)𝑙𝑜𝑔(𝑁𝑀𝜎)  leads to a consistent 

estimator. 

 

4.2 Gridless covariance fitting 

 

The key concept of a gridless CF is to manipulate the data 

covariance matrix structure and to make estimates in an 

ungrided parameterized domain. Depending on the statistical 

considerations set out in Section 3, and a reasonable number 

of snapshots 𝐿 ≥ 𝑀 + 𝑁 − 1; in which the inverse of sample 

covariance matrix �̃�𝜴 =
1

𝐿
𝒀𝜴𝒀𝜴

𝐻  exists with probability one. 

Consequently, we adopt the CF criterion [21, 32] which is 

given by, 
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𝑓(𝒖, 𝝈𝜴) = ‖𝑹𝜴

−
1
2(�̃�𝜴 − 𝑹𝜴)�̃�𝜴

−
1
2‖

𝐹

2

 

               = 𝑡𝑟(𝑹𝜴
−𝟏�̃�𝜴) + 𝑡𝑟(�̃�𝜴

−𝟏𝑹𝜴) − 2𝑁𝑀 

(10) 

 

where, 𝑹𝜴 is the covariance matrix that is modeled as: 

 

𝑹𝜴  = 𝐸{𝒚𝜴(𝑡)𝒚𝜴
𝑯(𝑡)} 

    =  𝑻𝒖,𝜴 + 𝑑𝑖𝑎𝑔(𝝈𝜴),           𝑻𝒖,𝜴 ≥ 0 , 𝝈𝜴 > 0 
(11) 

 

where, 𝑻𝒖,𝜴 = 𝜞𝜴 𝑻(𝒖)𝜞𝜴
𝑻 = 𝑨𝜴(�̃�)𝑑𝑖𝑎𝑔(𝑷)𝑨𝜴

𝐻(�̃�) . 𝜞𝜴 ∈

{0,1}(𝑀+𝑁−1)×𝑁𝑀 represents a selection matrix, so that the ith 

row of 𝜞𝜴 comprises zeros except a single 1 at the 𝑙𝑖 position. 

Note that in the case of heteroscedastic noise, the variances 

{𝝈𝜴} are distinct. In contrary to homoscedastic noise in which 

{𝝈𝜴} are identical. 

From Eq. (10), by applying the linear parameterization of 

𝑹𝜴 , then CF can be accomplished by minimizing 𝑓, which 

yields to the next equivalences: 

 

𝑚𝑖𝑛
𝒖,{𝝈≥0}

𝑡𝑟 (�̃�𝜴

1
2 (𝑻𝒖,𝜴 + 𝑑𝑖𝑎𝑔(𝝈𝜴))

−1

�̃�𝜴

1
2)

+ 𝑡𝑟(�̃�𝜴
−1𝑻𝒖,𝜴)

+ 𝑡𝑟 (�̃�𝜴
−1𝑑𝑖𝑎𝑔(𝝈𝜴)), 

        subject to    𝑻𝒖,𝜴 ≥ 0 

(12) 

 

⇔     𝑚𝑖𝑛
𝑿,𝒖,{𝝈≥0}

𝑡𝑟(𝒁) + 𝑡𝑟(�̃�𝜴
−1𝑻𝒖,𝜴)  

+ 𝑡𝑟 (�̃�𝜴
−1𝑑𝑖𝑎𝑔(𝝈𝜴)), 

            subject to    𝑻𝒖,𝜴 ≥ 0    

                 and    𝒁 ≥ �̃�𝜴

𝟏

𝟐 (𝑻𝒖,𝜴 + 𝑑𝑖𝑎𝑔(𝝈𝜴))
−1

�̃�𝜴

𝟏

𝟐 

(13) 

 

⇔     𝑚𝑖𝑛
𝑿,𝒖,{𝝈≥0}

𝑡𝑟(𝒁) + 𝑡𝑟(�̃�𝜴
−1𝑻𝒖,𝜴)

+ 𝑡𝑟 (�̃�𝜴
−1𝑑𝑖𝑎𝑔(𝝈𝜴)), 

           subject to     [
𝒁 �̃�𝜴

𝟏

𝟐

�̃�𝜴

𝟏

𝟐 𝑻𝒖,𝜴 + 𝑑𝑖𝑎𝑔(𝝈𝜴)

] ≥ 𝟎 

(14) 

 

Minimizing 𝑓  is convex, and can be formulated as SDP. 

Problem 14 was derived under the development of the gridless 

sparse iterative covariance-based estimation (GLS) method 

[21]. The strength of the GLS method relates to the 

transformation of the problem of direction estimation into the 

estimation of the PSD Toeplitz matrix wherein the DoAs 

parameters are encoded. This agrees with ANM which tends 

to estimate the matrix 𝑻(𝒖), then extract the directions. 

 

 

5. THE PROPOSED FRAMEWORK 

 

Despite the impressive theoretical guarantees of the ANM 

system, it has substantial weaknesses, such as restricted 

resolution and unsatisfactory performance in the moderate 

SNR range. However, we believe that ANM performance 

might be further enhanced by combining with CF criterion and 

using the nonconvex penalty. In fact, the sparse continuous-

field and super-resolution method (SCSM) [33] combined the 

CF criterion with the atomic norm of 𝒖 vector. However, this 

paper differs from SCSM in the following aspects. First, in this 

paper, the sparsity is enforced by means of nonconvex 

relaxation of the atomic norm of signal vector 𝒀, while SCSM 

was based on the conventional ANM of 𝒖. Second, in this 

paper, we seek to generalize the ANM framework to more 

realistic noise scenarios, while this issue has not been 

considered in SCSM. Regarding source localization and power 

estimation, SCSM used Prony’s method [34], which is 

sensitive to measurement noise, while our work is based on the 

high-resolution Root-MUSIC method [35]. 

 

5.1 Sparsity promoting by nonconvex relaxation 

 

Inspired by the significant advantages of the nonconvex 

penalties, we reformulate Problem 8 in a new relaxed ANM 

using the nonconvex Schatten-p quasi-norm penalty. Recall 

the Schatten-p quasi-norm of a matrix 𝒀 ∈ ℂ𝑁𝑀×𝐿 is given by,  

 

‖𝒀‖𝑝 = ( ∑ 𝜎𝑘
𝑝(𝒀)

min(𝑁𝑀,𝐿)

𝑘=1

)

1
𝑝

 

= (𝑡𝑟((𝒀𝑇𝒀)
𝑝
2))

1
𝑝

,     0 < 𝑝 < 1 

(15) 

 

where, 𝜎𝑘(𝐘)  are the singular values of 𝒀 . Noting that 

Schatten-p quasi-norm is equal to the trace or nuclear norm 

when  𝑝 = 1 , thus, the nuclear norm is a special case of 

Schatten-p quasi-norm. As well, if 𝑝 → 0 , then  ‖𝒀‖𝑝 →

𝑟𝑎𝑛𝑘(𝒀) , which implies that Schatten-p quasi-norm can 

provide a low-rank solution when 𝑝 has a small value. 

Next, we are introducing our method by substituting the 

term 𝑡𝑟(𝑻(𝒖))  in Problem 8 by its Schatten-p quasi-norm, 

resulting in the subsequent optimization problem, 

 

𝑚𝑖𝑛
𝑿,𝒖

1

2√𝑁𝑀
(‖𝑻(𝒖)‖𝑝

𝑝
+ 𝑡𝑟(𝑿)) 

                subject to     [
𝑿 𝒀𝐻

𝒀 𝑻(𝒖)
] ≥ 0. 

(16) 

 

for, 

 

‖𝑻(𝒖)‖𝑝
𝑝

= (∑(𝜎𝑘(𝑻(𝒖)) + 𝜉)𝑝

𝑁𝑀

𝑘=1

) (17) 

 

where, {𝜎𝑘 ≥ 0}1
𝑁𝑀 are descendingly sorted singular values of 

𝑻(𝒖), 𝜉 >0 is a smoothing parameter and 0 < 𝑝 < 1. 

Since Problem 16 has a nonconvex objective function, we 

have to linearize it. Thus, we use Taylor expansion for 

Schatten-p term. In the lth iteration, the expansion will be as 

follows: 

 

(𝜎𝑘 (𝑻𝒍(𝒖)) + 𝜉)
𝑝

 

+
𝑝

 (𝜎𝑘(𝑻𝒍(𝒖)) + 𝜉)
1−𝑝 (𝜎𝑘(𝑻(𝒖)) − 𝜎𝑘 (𝑻𝒍(𝒖))) 

(18) 

 

As 𝑻𝒍(𝒖) is fixed, then the related terms can be excluded 

from the optimization problem. As a result, Problem 16 can be 

reformulated as: 

 

𝑚𝑖𝑛
𝑿,𝒖

1

2√𝑁𝑀
(𝑡𝑟(𝑾𝒍𝑻(𝒖)) + 𝑡𝑟(𝑿)) 

             subject to     [
𝑿 𝒀𝐻

𝒀 𝑻(𝒖)
] ≥ 0. 

(19) 
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where, 𝑡𝑟(𝑾𝑙𝑻(𝒖)) = ∑ (𝑤𝑘
𝑙 𝜎𝑘(𝑻(𝒖)))𝑁𝑀

𝑘=1  is the weighted 

nuclear norm of matrix 𝑻(𝒖) , and 𝑾𝑙 =
𝑽𝑑𝑖𝑎𝑔(𝑤1

𝑙 , 𝑤2
𝑙 , … , 𝑤𝑁𝑀

𝑙 )𝑽𝐻  is the reweighting matrix whose 

elements 𝑤𝑘
𝑙 = 𝑝 (𝜎𝑘(𝑻𝒍(𝒖)) + 𝜉)

1−𝑝
⁄  are updated 

depending on the previous problem solution. 𝑽 is acquired by 

using the eigendecomposition of 𝑻𝒍(𝒖). 

 

5.2 The hybrid reweighted method 

 

Motivated by the properties of the covariance fitting (CF) 

technique and in order to generalize the proposed ANM 

framework to more realistic noise scenarios, we develop a 

hybrid method by combining Problem 19 with CF 

minimization in Problem 14 as a noise metric. This leads to 

the following SDP problem: 

 

𝑚𝑖𝑛
𝒖,𝒀,{𝝈≥𝟎}

𝛼

2√𝑁𝑀
𝑡𝑟(𝑿) + 𝑡𝑟(𝑾ℎ

𝑙 𝑻(𝒖)) 

+𝑡𝑟(𝒁) + 𝑡𝑟 (�̃�𝜴
−1𝑑𝑖𝑎𝑔(𝝈𝜴)) 

             subject to    [
𝑿 𝒀𝐻

𝒀 𝑻(𝒖)
] ≥ 0, 

[
𝒁 �̃�

𝜴

𝟏
𝟐

�̃�𝜴

𝟏
𝟐 𝜞𝜴 𝑻(𝒖)𝜞𝜴

𝑻 + 𝑑𝑖𝑎𝑔(𝝈𝜴)

] ≥ 0 

(20) 

 

where, 𝑾ℎ
𝑙 =

𝛼

2√𝑁𝑀
𝑾𝒍 + 𝜞𝜴

𝑻 �̃�𝜴
−𝟏𝜞𝜴 is the hybrid reweighting 

matrix and 𝛼 is a regularization parameter that balances the 

sparsity and the covariance fitting criterion. 

We refer to Problem 20 as denoising reweighted ANM 

(DRAM) method. Mainly, DRAM inherits the merits of the 

CF technique and promotes sparsity as well. In addition, 

DRAM automatically estimates the noise variance(s) 𝝈𝜴 with 

the ability to handle both homoscedastic and heteroscedastic 

noise models, without the knowledge of noise level, which is 

not available in ANM. 

In DRAM, we switch our focus on estimating the 

covariance matrix 𝑻(𝒖) rather than the direction parameters. 

Thus, when 𝑻(�̂�) is acquired by solving the SDP in Problem 

20 using off-the-shelf SDP solvers, the next step is to estimate 

the parameters {�̂�}. Recognize that DRAM presumes that 𝐾 is 

unknown, which must be specified in order to complete the 

final stage of the estimation. Since 𝑟𝑎𝑛𝑘 (𝑻(�̂�))  =  𝐾, then 

𝐾 could be specified as the number of eigenvalues of 𝑻(�̂�) 

that are higher than a pre-assigned threshold. Consequently, 

{�̂�}  are acquired from 𝑻(�̂�)  either by applying the 

Vandermonde decomposition lemma (see, e.g., [36]) or 

through the conventional covariance-based subspace 

techniques such as Root-MUSIC. In this paper, the latter 

technique is applied. 

The brief outline of the DRAM method for DoAs estimation 

is presented in following: 

 

Method: Denoising Reweighted ANM (DRAM)  

Input The compressed corrupted measurement 

matrix  𝒀𝜴
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 , 𝛼 ,  𝑝  , 𝜉 , 𝑁 , 𝑀 , 𝜴 , the 

acceleration parameter 𝜂  and the maximum 

number of iterations 𝛽. 

Output The estimated directions {�̂�}. 

Procedure 1. Calculate �̃�𝜴
−1, and initialize 𝑾1 = 𝐼 and 𝑙 = 1. 

2. Repeat: 

− Solve Problem 20 and get 𝑻(�̂�). 

− Calculate SVD of 𝑻(�̂�) and estimate 𝐾. 

− Get {�̂�} by applying Root-MUSIC(𝑻(�̂�), 𝐾). 

− Set 𝑝 =
𝑝

𝜂
 to accelerate the convergence, and 

𝑙 = 𝑙 + 1. 

− Update the weighting matrix 𝑾𝑙+1. 

3. Until 
‖�̂�𝑙−�̂�𝑙−1‖

𝐹

‖�̂�𝑙−1‖
𝐹

≤ 10−4 or 𝑙 = 𝛽.  

 

5.3 Convergence analysis 

 

Problem 20 consists of convex trace terms and weighted 

nuclear norm (WNN) term. In general, the WNN minimization 

problem is not convex, hence it is difficult to analyze the 

convergence of the proposed method. However, we observe 

that {𝜎𝑘}1
𝑁𝑀 are positive monotonically shrinking, so the non-

descending order of the weights will be preserved during the 

reweighting process. According to Gu et al. [37], it was proved 

that WNN converges weakly to the solution if the weights are 

non-descendingly ordered through a weighted soft-

thresholding operator. Thus, we can conclude that our methods 

converge weakly to the optimizer. 

 

5.4 Computational issues 

 

The underlying computational cost of DRAM involves two 

major sections, the first one is associated with the reweighted 

iterative process for 𝑻(�̂�) computation, and the other is the 

cost of {�̂�} estimation. In order to make the next discussion 

more relevant, we set 𝐼 = 𝑀 + 𝑁 − 1  and 𝐽 = 𝑀𝑁 . 

Regarding the iterative part, DRAM requires computing �̃�𝜴

1

2  

and �̃�𝜴
−1  for once. This, involves 𝑂(𝐼2𝐿 + 𝐼3)  and 𝑂(𝐼3) 

floating point operations per second (flops), respectively. Then, 

in each iteration, DRAM needs computing 𝑾ℎ
𝑙  at a cost of 

𝑂(𝐼3 + 𝐼𝐽2 + 𝐼2𝐽)  flops. Solving the SDP is performed by 

using, for example, the interior-point SDPT3 solver [38], 

which in turn needs 𝑂(𝑛1
2𝑛2

2.5) flops, where 𝑛1 and 𝑛2 denote 

the variables size and the dimension of the PSD matrices, 

respectively. In Problem 20, 𝑛1 is on the order of (𝐽 + 𝐼2 +
𝐿2) while 𝑛2 is of (𝐼 + 𝐽 + 𝐿). Then, the complexity of SDP 

will be 𝑂(𝐿6.5 + 𝐼2𝐿4.5 + 𝐽2𝐿2.5). Finally, applying the Root-

MUSIC method to estimate {�̂�} consumes up to 𝑂(𝐽3).  

 

 

6. NUMERICAL RESULTS 

 

In this section, we evaluate the performance of the DRAM 

method via numerical simulations and compare the 

performance with the state-of-the-art methods using CVX 

toolbox [39] in MATLAB v.14.an on a PC, with Windows 10 

system and a 2 GHz CPU. In particular, we examine the impact 

of the suggested hybrid framework on the performance of DoA 

estimation in terms of resolution, and applicability in the cases 

of a limited number of snapshots, correlation of sources, and 

under heteroscedastic noise scenario. 

 

6.1 Simulation setup 

 

All the simulations are performed for uncorrelated signals 

of equal powers. The CPA array consists of 7-elements with 

𝑀 = 3 and 𝑁 = 5 with half-wavelength inter-element spacing. 

Assume, both signals and noise are i.i.d. Gaussian. The mean 

squared error (MSE) of the DoA estimation is figured as 
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1

𝑇𝐾
‖�̃� − �̂̃�𝐾‖

2

2

, where �̃�  is the set of true normalized 

directions, and �̂̃�𝐾  indicates the estimated ones. While, 𝑇 is 

the number of Monte Carlo experiments, and 𝐾 is the number 

of DoAs. 𝐾 is assumed unknown and detected by estimating 

the largest eigenvalues of 𝑻(�̂�) according to the appropriate 

threshold.  

As a noise metric, the worst noise power ratio (WNPR) as 

WNPR =
 𝜎 𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
 is used to quantify the fluctuation of the noise 

on the CPA array. In addition, the SNR is defined for 

Heteroscedastic noise and equal-power sources (𝑃1 = 𝑃2 =
⋯ = 𝑃𝐾 = 𝑃) as [40], 

 

SNR = 10 log10

𝑃

𝑀 + 𝑁 − 1
∑ 𝜎𝛺𝑖

−1

𝑀+𝑁−1

𝑖=1

 (21) 

 

where, {𝜎Ω𝑖
}𝑖=1

𝑀+𝑁−1  are spatially uncorrelated. Recall, the 

minimum distance between any two sources ∆�̃� is defined as: 

 

∆�̃� = 𝑚𝑖𝑛
�̃�𝑘,�̃�𝑙 �̃�𝑘≠�̃�𝑙

|�̃�𝑘 − �̃�𝑙| (22) 

 

For well initialization of DRAM, we analyze the success 

probability (SP) of DRAM in terms of 𝜉 ∈
{10−3, 10−2, 10−1, 1} , and the number of iterations that 

needed to converge. Initially, we set 𝑝 = 0.1 since 𝑾𝑙 yields 

to a sparser optimizer when 𝑝 ⟶ 0 according to [29]. As well, 

we assume 𝑝 is decreased in each iteration by a factor 𝜂, while 

the iteration process stops if the maximum number of 

iterations 𝛽(≤ 10) is achieved, or if the relative variation of �̂� 

at two successive iterations is less than  10−4. Besides, in the 

first iteration, a constant weighting matrix 𝑾𝟏 = 𝑰 is applied. 

Figure 1 presents the SP of DRAM for three different choices 

of 𝜂 ∈ {2,5,10}, considering �̃� = [0.1, 0.167] (i.e. ∆�̃� =
1

𝑁𝑀
), 

SNR = 0dB with 𝝈𝜴 = [1 4 7.3 10 8 6 5] (i.e. WNPR = 10) 

and 𝐿 = 15 snapshots. While, the regularization parameter is 

set as 𝛼 = 2 × 10−2√𝑁𝑀, which gives a good performance 

empirically. 

As shown in Figure 1, SP will be greater than 0.9 for (𝜉 =
1 ,𝛽 = 3) regardless of 𝜂. For the best estimation performance 

(SP=1), setting 𝜂 = 10  and 𝜉 = 1 will lead to the fastest 

convergence speed ( 𝛽 = 7 ) when compared to the other 

choices. 

 

 

 
Figure 1. Success probability with the number of iterations 𝛽 

and 𝜉 for: (a) 𝜂 = 2, (b) 𝜂 = 5, (c) 𝜂 = 10 

 

Accordingly, in the subsequent simulations, the results are 

evaluated after 100 Monte Carlo experiments, taking into 

account the following settings: 𝑝 = 0.1, 𝜉 = 1, 𝜂 = 10, and 

𝐿 = 15 snapshots, unless otherwise is mentioned. 

 

6.2 Comparisons with prior arts 

 

We examine and compare the DoA estimation performance 

of the DRAM with the high-resolution Root-MUSIC method, 

and to the two remarkable gridless methods, GLS [21] and 

Rwp-GLS [29], since they adopt the same CF criterion as that 

used in DRAM. Moreover, GLS has theoretically been shown 

to be equivalent to weighted ANM, thus we expect to have 

competitive performances in the presence of finite snapshots 

and correlated sources. In order to provide a benchmark for the 

evaluation, the stochastic Cramer-Rao lower bound (CRLB) 

for heteroscedastic noise [41] is incorporated. All over the 

following simulations, we set WNPR = 10 and 𝐿 = 15 unless 

otherwise is mentioned.  

We first test the performance of DRAM versus SNR for 

𝝈𝛀 = [1, 4, 7.3, 10, 8, 3.5, 6] . Consider three uncorrelated 

sources imping on CPA from �̃� =[0.1, 0.167, 0.3] with SNR 

ranging from -10 dB to 20 dB. The results are shown in Figure 

2. Note that the first two DoAs are separated by only ∆�̃� =
1

𝑁𝑀
. 

As it is shown, DRAM has the lowest MSE among all methods, 

which indicates its superiority in separating spatially adjacent 

signals under violated separation conditions and 

heteroscedastic noise cases. 

 

 
 

Figure 2. MSEs of Root-MUSIC, Rwp-GLS, GLS, DRAM, 

and CRLB with respect to SNR 

 

 
 

Figure 3. CPU times comparisons of Root-MUSIC, Rwp-

GLS, GLS and DRAM with respect to SNR. 

 

(SP = 1, 𝜉 = 1, 𝛽 = 10) (SP = 1, 𝜉 = 1, 𝛽 = 9) (SP = 1, 𝜉 = 1, 𝛽 = 7) 
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Figure 3 demonstrates the CPU times of the experiments 

related to Figure 2. DRAM is the most time-consuming due to 

the SVD decomposition in each iteration. This drawback is 

balanced by the estimation accuracy. Particularly, the 

computational complexity increases slightly till SNR = 10 dB, 

because of the 𝝈𝜴  estimation, and when SNR > 10  dB, 

DRAM converges more rapidly, leading to a decrease in the 

number of iterations and the time usage.  

We then evaluate the MSE with respect to 15 ≤ 𝐿 ≤ 50. 

The simulation is carried out assuming �̃� =[0.1, 0.167, 0.3], 
SNR = 10 dB and 𝝈𝜴 = [8, 9, 2, 5, 7, 4, 10] . The results are 

shown in Figure 4. It can be concluded that DRAM performs 

the best throughout the examined range, and that only a few 

snapshots are required to resolve the sources with ∆�̃� =
1

𝑁𝑀
 

precision. While Root-MUSIC has the highest snapshot 

threshold. 
 

 
 

Figure 4. MSEs of Root-MUSIC, Rwp-GLS, GLS, DRAM, 

and CRLB with respect to the number of snapshots 

 

 
 

Figure 5. MSEs of Root-MUSIC, Rwp-GLS, GLS and 

DRAM with respect to the sources separations 

 

To evaluate the performance of DRAM in terms of 

resolution, we test its ability in resolving closely spaced 

directions. Consider two signals impinge onto the CPA from 

�̃� = [0.1, 0.1 + ∆�̃�] with ∆�̃� ∈ [
0.1

𝑁𝑀
 

1

𝑁𝑀
], this corresponds to 

only 0.382° to 3.8° difference in angle. Our simulation results 

are presented in Figure 5 for SNR = 10 dB and 𝝈𝜴 =
[8, 9, 2, 5, 7, 4, 10] . The results indicate the superiority of 

DRAM over other methods in isolating spatially adjacent 

signals  as close as 
0.1

𝑁𝑀
 and thus exhibit super-resolution 

capability in DoA estimation.  

In addition, to verify the robustness of the DRAM under 

heteroscedastic noise, the MSEs versus the WNPR are tested 

in Figure 6, in which WNPR ranges from 20 to 200, where 

SNR ∈ {0, 10, 20} dB and �̃� = [0.1, 0.3]. It can be seen that 

for SNR = 0 dB, the MSEs of both GLS and Rwp-GLS get 

larger than CRLB. In contrast to the MSEs of DRAM which 

coincides with CRLB for all values of SNR  over the 

considered range of WNPR. This illustrates again the 

robustness of DRAM against the heteroscedastic noise. 
 

 
 

Figure 6. MSEs of Rwp-GLS, GLS, DRAM and CRLB with 

respect to WNPR 

 

In the following, we provide an example to verify the ability 

of DRAM in resolving DoAs of correlated sources. Figure 7 

shows the MSEs versus the correlation factor 𝜌 , when 

SNR=10dB, 𝝈𝛀 = [8, 9, 2, 5, 7, 4, 10] and �̃� =[0.1,0.167]. As 

shown, when the correlation factor increases DRAM shows 

immunity to the integrated correlations among sources and 

gains the best results.  

 

 
 

Figure 7. MSEs of Root-MUSIC, Rwp-GLS, GLS and 

DRAM with respect to correlation factor 

 

 

7. CONCLUSION  

 

The problem of sparse gridless DoA estimation from 

compressive corrupted measurements was addressed in this 

paper. We present a hybrid optimization framework based on 

introducing CF criterion and nonconvex relaxation into the 

ANM approach. Then, an iterative reweighted minimization 

method is developed. 

The effectiveness of the proposed method is verified 

through numerical simulations. The results have demonstrated 

the superiority of DRAM in isolating spatially adjacent 

signals  as close as ∆𝜃 =
0.1

𝑁𝑀
. As well, the results have shown 

that DRAM has the lowest snapshot threshold, and the best 
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immunity against sources correlation and noise fluctuation 

among the compared methods. In the future, we may try more 

computationally efficient combining approach for noisy 

gridless DoA. 
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