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ABSTRACT. Since times immemorial it is known that the application of a material classified as 

lubricant to two relatively moving surfaces causes motion. The real mechanism of lubrication 

was explained by Reynolds of the role of lubricants is to support the load between two moving 

curved surfaces and thus minimizing wear and energy losses reducing friction between them. 

Thus the proper knowledge and understanding of the process of lubrication becomes a prime 

necessity to improve standard of design and efficiency of the mechanical system. A study of 

the behavior of any lubricated system can be best made by developing a mathematical model 

based on the above factors which depends upon a given a physical situation. The bearing 

characteristics such as load, flow flux, friction force etc. depends upon the pressure generated 

in the film and the lubrication process. An attempt has been made to obtain the governing 

equation for pressure in the lubricant film that are surveyed and summarized in this paper. 

RÉSUMÉ. Depuis des temps immémoriaux, il est connu que l'application d'un matériau classé 

comme lubrifiant sur deux surfaces relativement mobiles provoque un mouvement.Le 

mécanisme réel de lubrification a été expliqué par Reynolds que le rôle de lubrifiants est de 

supporter la charge entre deux surfaces courbes en mouvement, minimisant ainsi l'usure et 

les pertes d'énergie, réduisant ainsi les frictions entre elles.Ainsi, la connaissance et la 

compréhension appropriées du processus de lubrification deviennent une nécessité 

primordiale pour améliorer les normes de conception et l'efficacité du système 

mécanique.Une étude du comportement de tout système lubrifié peut être mieux réalisée en 

développant un modèle mathématique basé sur les facteurs ci-dessus, qui dépend d'une 

situation physique donnée. Les caractéristiques des roulements, telles que la charge, le flux, 

la force de friction, etc., dépendent de la pression générée dans le film et du processus de 

lubrification.Une tentative a été faite pour obtenir l'équation régissant la pression dans le 

film de lubrifiant qui sont enquêtés et résumées dans le présent document. 
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1. Introduction 

Most of the lubricated systems may be regarded as combination of moving 

surfaces (plane/ curved loaded/ unloaded) with a thin film of foreign material known 

as lubricant between them. The presence of such a thin film is known to promote 

motion by helping to support load as well as minimizing friction. The characteristics 

of lubricant like pressure in the film, flow rate of lubricant, frictional force at the 

surface etc., and this system depend upon the behaviour of the surfaces, lubricant 

and film boundary conditions etc. 

In the case of hydrodynamic lubrication, the equation governing the fluid 

pressure in a bearing system can be gained by coupling the equation of motion and 

the equation of continuity. This equation was first originated by Reynolds by 

considering the following assumptions. 

The radius of curvature of the bearing surface is large in comparison with the 

film thickness. 

-The lubricant is an incompressible Newtonian fluid. 

-The viscosity of the lubricant is constant. 

-Inertia and body force terms are small in comparison to the various pressure 

terms. 

-Due to smallness of the fluid film thickness, the viscosity gradients across the 

film are large in comparison with the velocity gradients along the film. 

-There is no slip at the fluid and solid interface. 

Since early years, various attempts have been made to generalize the Reynolds 

equation applicable to the bearing system functioning under unusual conditions such 

as high temperatures, high pressures etc. (Reynolds, 1886; Fogg, 1946; Spikes and 

Cameron, 1974; Tipei, 1982; Ruggiero et al., 2011). The first attempt in this direction 

was made by Fogg (1946) who proposed thermal-wedge concept in the lubricant 

film. Cope (1949) relaxed the assumption made by Reynolds (1886) to extend the 

theory for density and variable viscosity along the fluid. But the variations of the 

fluid pressure and fluid properties across the fluid film remained neglected. In 

Wannier (1950) showed that the basic Reynolds equation could be obtained from the 

momentum equations by considering the variations of fluid pressure across the film. 

Considering the temperature and viscosity variations along as well as across the film, 

several other workers namely Cameron (1974), Cameron and wood, Hunter and 

Zienkiewicz (1960) also carried out studies. In early years, Dowson (1962) made a 

unified approach to study the generalized Reynolds equation by taking into 

consideration the variation of fluid characteristics across as well as along the film of 

lubricant.  

A different method to study the effect of viscosity variation has also been 

proposed by Tipei (1982), Das et al. (2005). In this approach, we assumed a relation 

between film thickness and viscosity for convergent. 



Viscosity variation and thermal effects in squeeze films     59 

 

1.1. Effects of additives in lubrication 

A great number of investigations have been carried out in the recent times by 

tribologists to increase the efficiency of base lubricants. Addition of certain 

compounds to the lubricant is one such attempt. The observation that adding small 

amounts of long-chain polymer solutions to Newtonian fluids produces the most 

effective lubricant due to the flow properties of the lubricants goes a long way in 

developing suitable lubricant. 

The role of the additives is to minimize the sensitivity of the lubricant, to change 

the shear rate in particular, to improve the characteristics of the base oil and act as 

rust inhibitors (amine phosphate), corrosion inhibitors (sulphurised olefins), fire 

resistors (halogenated hydrocarbons), detergents (calcium / barium sulphonates). It 

is appropriate to point out at this stage that the nature and concentration of additives 

in the base oil, the resultant lubricants may change its Newtonian character under 

motion. For example: if the additive is in the form of particles of low concentration, 

the resulting fluid may be characterized by a micro polar fluid. On the other hand if 

the additive is in the form of long chain polymeric solution at high concentration the 

resultant fluid may behave as a non-Newtonian fluid. 

It may be pointed out here that addition of additives of long chain molecules to 

the base lubricant produces a tendency in the former to cling themselves to the 

surface of the bearing in thin films. More pronounced effects are noticed when the 

surface is of porous nature. The particles attached to the surface interact with the 

base fluid and form a extreme viscous layer close to the surface. Thus the viscosity 

of the film is increased. 

1.2. Effect of viscosity variation 

Generally, majority of the lubricated systems can be envisaged as consisting of 

two sliding surfaces with a thin film of foreign material called lubricant between 

them. The lubricant film helps to support load besides reducing friction to a 

minimum. The lubrication characteristics of the bearing system like frictional force 

at the surface, lubricant flow rate, pressure in the film etc. depend on the 

characteristics  of surface, characteristics of lubricant, boundary conditions etc. 

The governing mathematical model of the lubricant film pressure in a bearing 

can be derived by coupling the momentum equation and continuity equation. The 

equation was first published by Reynolds in 1886 in his classical paper by 

considering the usual lubrication assumptions for an incompressible lubricant and is 

known after him like Reynolds equation. This equation does not consider the 

viscosity variation, slip at the surface, thermal compressibility etc. Cope modified 

the Reynolds equation by taking into consideration of the changes in density and 

viscosity along the film. Recently, the performance of viscosity variation across as 

well as along the hydrodynamically lubricated film was studied by Mohite et al. 

(2005), Hu et al. (2009) by assuming a connection between film thickness and the 

viscosity for the convergent films. It was pointed out that the co-efficient of friction 
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is reduced significantly when the viscosity of the lubricant varies across the 

thickness of the film. 

1.3. Thermal effects 

Currently, thermal effects are more significant towards limit design and bearing 

operating characteristics be accurately predicted due to high dependence of lubricant 

viscosity on field temperature in the lubricant. The temperature field in the lubricant 

is the consequence of hydrodynamic lubrication process which consists essentially 

of two surfaces due to relative motion shearing fine layer of film of viscous fluid. 

With the exception of bearings running at low speeds, the heat balance (Reddy et al., 

2010) is an important part of the analysis of bearing operating with fluid film. The 

operating temperature of the bearing is also of interest because the strength of the 

bearing material is a function of temperature. 

In order to account for thermal effects, the classical isothermal theory of 

hydrodynamic lubrication has to be extended. Energy balance equation is required 

and has to be solved simultaneously along with the conservation equations of mass 

and momentum. Coupling of these governing equations makes the solution very 

complicated and further simplification (approximation) may be necessary. 

Another approach for the consideration of thermal effects in lubrication has also 

been reported. Viscosity-temperature relation has been replaced by viscosity film 

thickness relation on the assumption that the highest temperature occurs in the zone 

where the film thickness is least. This approach does not incorporate energy 

equation at all, so the complexity of the problem made by energy equation is 

overcome. But on the other hand, the temperature field in the lubricant is not fully 

known. It seems therefore that this way of approach has been used sparingly. 

A good number of papers touched upon the effects of temperature on 

hydrodynamic bearing performance and requirements. Tipei and Nica obtained the 

three dimensional temperature variation of journal bearing oil film. Separate 

relationship was established for both the convergent and divergent regions of the 

bearing taking into account viscosity variations and side leakage. The theory was 

well matched with experimental data.  Naduvinamani (2016) studied the thermal 

effects by obtaining solutions to Micropolar fluid squeeze film lubrication of finite 

porous bearing. Lu et al. (2006) considered the effect of inertia in magneto-

hydrodynamic annular squeeze films of rigid cylindrical rollers by a Newtonian 

incompressible fluid theoretically and experimentally.  

Lin et al., (2013) studied squeeze film behavior between a sphere and a flat plate 

thermal EHD problem for some fluid to compare the predicted tractions with those 

obtained experimentally. Manivasakan and Sumathi (2011) presented a numerical 

solution to theoretical investigation of couple stress in circular geometry. Pressure 

and temperature distributions and film shape for fully flooded conjunctions were 

obtained for a paraffinic lubricant and various dimensionless speed parameters while 

the dimensionless load and material parameters were held constant. Gordon et al. 

(2005) analyzed the archeological and thermal effects in lubricated elliptical 
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Hertzian constants with collinear speeds. Stress, temperature and shear strain rate 

distributions along and across the film were calculated for non-Newtonian vicso-

elastoplastic fluid including lubricant convection and conduction effects. Further 

they calculated traction force in CFD analysis contact using rotating machinery fluid 

model and Roelands relationship for estimating lubricant viscosity. There are several 

other notable papers on thermal effects in lubrication for different geometries and it 

is difficult to refer to all of them. 

1.4. Squeeze film lubrication 

In phenomenon, in which two lubricated surfaces approach each other with 

normal velocity, in the film of interposing lubricant within the two surfaces acting as 

a cushion and preventing the surfaces from making instantaneous contact is known 

as squeeze film lubrication. The fluid characteristics, design of surface and the load 

applied govern the time required for squeezing out the lubricant. 

In general the connection between approach rate and load bearing capacity of the 

two lubricated surfaces is studied in most squeeze film analysis. The squeeze films 

that are relevant in engineering applications such as internal combustion engines 

have initiated several workers to focus their attention on this subject Tichy (1995) 

studied influences of fluid inertia and visco elasticity on the one-dimensional 

squeeze film bearings. The role of squeeze films between complaint surfaces in long 

squeeze film bearings was studied by Blech (1983). Squeeze film problem in 

elastohydrodynamic lubrication was studied by Sanswade and musafumi, 

Tsukejshara. Ruggiero developed a mathematical model for human ankle joint in 

influence of consistency variation of squeeze-film lubrication (Ruggiero et al., 2011). 

Keeping the above mentioned considerations in view, an attempt has been made 

through this dissertation to analyze the effects viscosity variations and velocity-slip 

in squeeze film and spherical bearing systems. The work carried out is presented in 

summery hereunder. 

1.5. Novelty of the manuscript 

Manuscript shows the influence of variation in viscosity and effect of thermal in 

squeeze films. This manuscript will be very helpful in many engineering application 

like gears, machine tools, disk clutches, aircraft engines, dampers and human joints. 

2. Generalized reynolds equation for layer medium 

The equation governing fluid pressure in a bearing system can be derived by 

coupling the momentum equation and the continuity equation and was first 

originated by Reynolds. He ignored slip at the surface, inertia, roughness, viscosity 

variation, thermal compressibility for the derivation of equation.  

But in deriving this equation viscosity variation, slip at the surface, roughness, 
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inertia, thermal compressibility was ignored. Attempts to revise the equation were 

made by several authors. Cope modified the Reynold’s equation by considering 

viscosity variation and density variation along the fluid film. The variation of 

viscosity across the film thickness was studied by Zienkieicz and Cameron who 

stressed that the temperature gradient and viscosity variation were also important. A 

unified approach was made by Dowson to generalize the Reynolds equation by 

assuming the changes in properties of fluid and together with thickness of lubricant 

film and ignoring the slip influences at the bearing surfaces.By assuming both 

energy and Reynolds equations, further studies, in lubricated systems involving the 

influence of viscosity variation. Additives are added to improve the characteristics 

of lubricant. It is experimentally proved by Rao and Prasad (2003) that additives 

form a high viscous layer close to the surface because of their affinity to solid 

surface. This aspect can be studied theoretically by dividing the lubricant zone in to 

layered medium, one at the middle and other at the periphery. Keeping this in view, 

we derive the following the generalized Reynolds equation. 

2.1. Fundamental equation 

Assuming the streamline flow of a fluid within the two surfaces as shown the 

Figure 1, Assuming the changes in properties of fluid and together with thickness of 

film, the momentum and energy equations of continuity for a Newtonian fluid can 

be as follows:  

2 2

3 3
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Figure 1. Streamline flow of a fluid within two surfaces 
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( ) ( ) ( ) 0u v w
dt x y z


  

   
+ + + =
  

                           (2) 

Based on the general consideration of theory of lubrication the above equation (4) 

may be simplified as: 

p u

x z z


   
=     

 and 
p v

y z z


   
=     

                          (3) 

where P=P(x, y) denotes the pressure in film and ‘η’   is the viscosity. 

The boundary conditions can be expressed as follows: 

u=u1, v=v1 at z=H1 

u=u2, v=v2 at z=H2 

Integrating the above equation with the boundary conditions, the following 

expressions for the velocities of fluid film are achieved. 

( )

1 1

2 1 1
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z z
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1
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0

z z

H z H

p
v v f

zdz p dzy
v v

y f 
=

 
− −    
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                   (5) 

where 
2 2

1 1

1 1

0 1,

H H

H H

dz zdz
f f

 
= =  . 

Integrating the equation of continuity (2) by taking limits from H1 to H2, we get  

( )
 

2 2 2

2

1

1 1 1

( )
0

H H H
H

H

H H H

xp v
dz dz dz w

t x y

 


 
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Applying the usual integral formula, 
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We have the equation, 
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The integrals of ρv and ρu can be evaluated by integrating by parts which gives 

the following equation. 
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In the above equation, adding the expressions of v, u for their derivatives, we 

have 
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From the above equation, deduction of general form of Reynolds equation which 

is obtained by Dowson with the consideration of H1=0 and H2=h. The various forms 

of equation of fluid film lubrication derived by Reynolds, Cope and Zienkewicz can 

also be deduced from the generalized equation. 

2.1.2. Various special cases 

case-1 

In this case we consider ρ as a constant. Then all the G–functions vanish and 

generalized equation simplifies to the following form: 
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Case-2 

The viscosity of the lubricant may changes throughout the film and can be differ 

from close to the bearing surfaces owing to reaction of surfactants and additives. 

Consider the logical cases in which the lubricant viscosity close to the bearing 

surface may be differ from that of the central region, we get: 
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The generalized equation becomes, 
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1
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H
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x
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
, vs the resultant velocity towards the film. 

Case-3 

u1=U and v2=u2=v1=0. 

The generalized equation reduces to, 

2

1

3

2 2

0

[ ]
H

H

fp p
f f U w

x x y y x f
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                (14) 
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Case-4 

Let 
1 2 3;   = =  & H1=0, H2=a and h1=h3=H/2  h2=h. 

Then we obtain Reynolds equation in one  - dimensional for two layer lubricant is, 

( )1 2
p

f U h a V
x x x

   
+ + = 

   
                              (16) 

3 3
2

1

1 1 2
( )

3 2 4 12

a a h
f h a

  
= + + +                              (17) 

3. Effects of viscosity variation in squeeze films 

The equation, governing the fluid pressure produced in lubricant film can be 

derived by paring the momentum and continuity equations was first derived by 

Reynolds and is called as Reynolds equation. But in deriving this equation, the 

thermal and compressibility effects as well as viscosity variation in the film are 

ignored, in practice; there will be viscosity variation in the pressure and the presence 

of additives etc. A considerable amount of work is done using this aspect of 

viscosity variation by different workers. 

In the previous section, we derived the Reynolds equation for two layered 

lubricant and various special cases have been obtained. Now in this chapter we 

apply the Reynolds equation for squeeze film bearings to study the viscosity 

variation across the film and the various characteristics of bearings. 

3.1. Parallel plates 

In this section, we consider the flow of lubricant between two parallel plates of 

length 2d, approaching each other normally with velocity V as given in the Figure 2. 

The plates are separated by a film thickness 2h. The viscosity varies across the film. 

Taking this into account, we divide the lubricant zone into layer medium. The 

Reynolds equation for such a flow is given by equation (16) for one dimensional 

equation by taking U=0, we get 
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Figure 2. Squeeze film between parallel plates 

Now taking η=kμ and μ=m1(h/h1)q and then integrating with respect to x, since 

pressure attains its maximum at x = 0, we have 
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                                      (21) 

where ( ) ( ) 
3

11 1 1 1 af
k h

= − − − − , Integrating equation (21) using condition p=0 

at x=d, denoting pressure p with pk,q is 

3

2 21 1

, 3
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p d x

hh f

−
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The load capacity wk,q per unit width is given by  

, ,

0

2 ( )

d

k q k qw p x dx=                                           (23) 

Integrating equation (23) with equation (22), we get 
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where 

3

, 1

3

12

k qw h
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mVd
=  

The squeezing time tk,q from initial film thickness 2h1 to a subsequent film 

thickness 2h2, say, is obtained by putting v h t= −   in equation (24) and 

integrating, we have 
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Integrating the above equation and denoting time t by tk,q 

1

2

3

1

, 3

1 ,

2
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Let H=h/h1, then dH=dh/h1 and h=Hh1 

From equation (26) by taking 
2 2 1h h h=  

2
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Simplifying the above equation becomes 
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12
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3.1.1. Parallel circular plates 

We consider squeezing between two circular parallel plates each of radius R 

separated by a film thickness 2h as in Figure 3. With normal velocity v 

symmetrically, plates approach each others. The Reynolds equation for the flow of 

power law lubricant in the radial direction r can be obtained as  

3

1

1

1 1 1

3

q q p
h fh r v

r r m r

−
   − 

=  
    

                                     (28) 
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Figure 3. Squeeze film between parallel circular plates 

Where f is defined in equation (20). Now using the boundary conditions 

0
p

r


=


at r=0 &- p=0 at r=R                                      (29) 

We can obtain an expression for pressure by integrating twice equation (28). 

Denoting it by pk,q, we have 
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The load capacity wk,q is given by 

,
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Which on using, equation (30) yields 
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The time of squeezing tk,q, to reduce the initial film thickness 2h1 to a subsequent 

film thickness 2h2 is given by 

1

2

4

1

, 3

, 1

3

8 ( )

h

k q q q

k q h

m R dh
t

w h f h
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4. Results 

In order to highlight the effects of various physical parameters on the load 

capacity w, the numerical computations are performed and numerical results for the 
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load capacity are evaluated with the help of graphical illustration from figures 4 to 

11. It is observed that due to increase in thermal parameter q, load capacity and 

response time t decrease. Figure 4 demonstrates that load capacity gradually 

decreases with increase in film thickness. This happened because of the compliant 

surface becomes more elastic due to increase in film thickness. Figure 5 illustrates 

that due to enhancement in consistency ratio k, load capacity also increases. It is 

noticed from Figure 6 that load capacity decreases due to increase in peripheral layer 

thickness a when (k<1). Figure 7 illustrates that load capacity is getting enhanced 

due to enhancement in peripheral layer thickness when (k>1). It is obvious from 

figures 8 and 9 that response time t is inverse proportional to oil film thickness. 

Figure 10 and 11 illustrate that due to increase in peripheral layer thickness, there is 

decrement in response time when k<1 and opposite behaviour of response time when 

k>1. 

5. Conclusion 

In this manuscript a general form of Reynolds equation is studied and applied to 

observe the effects of thermal factors at viscous layer near the peripheral in squeeze 

film between parallel plates and parallel circular plates. It is observed that the 

presence of viscous layer near the peripheral is increased the load capacity and time 

of squeezing, but due to thermal factor load capacity and squeezing time decreases. 
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Figure 4. Variation of load ratio with changes of thermal factor for various oil film 

thickness 
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Figure 5. Variation of load ratio with increases of thermal factor for various 

consistency ratio 
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Figure 6. Variation of load ratio with increases of thermal factor for various 

peripheral layer thickness 
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Figure7. Variation of load ratio with increases of thermal factor h=0.1 and k=2.5 
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Figure 8.Variation of response time ratio with increases of thermal factor for a 0.05 

and k=0.1 
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Figure 9. Variation of response time ratio with increases of thermal factor h=0.05 

and k=0.05 
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Figure 10. Variation of response time ratio with increases of thermal factor h=0.04 

and k=0.5 
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Figure 11. Variation of response time ratio with increases of thermal factor h=0.04 

and k=1.5 
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