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ABSTRACT. The paper describes a strategy for the mechanical, current and DC bus voltage 
sensor Fault Detection and Diagnosis (FDD) of a Permanent Magnet Synchronous Machine 
(PMSM) drive. The method is based on three observers. The Extended Kalman Filter (EKF) is 
designed to estimate the position in case of mechanical sensor fault. A Model Reference 
Adaptive System (MRAS) estimates the phase currents using the actual position and speed 
and a nonlinear observer computes the DC link voltage from the phase currents and the duty 
cycles. The computation and sort of the residuals (difference between measured and estimated 
values) allows the fault isolation. The method is evaluated on a test bench with mechanical, 
phase current and DC voltage sensor faults. The experimental results show the effectiveness 
and the capability of fault detection and diagnosis of the proposed strategy. 

RÉSUMÉ. Ce travail présente une méthodologie de détection et de diagnostic de défauts de 
capteur mécanique, de capteur de courant de phase ou de capteur du bus de tension continue 
pour un actionneur électrique à machine synchrone à aimants permanents. Elle s’appuie sur 
trois observateurs : un filtre de Kalman étendu pour l’estimation de la position du rotor, un 
modèle de référence adaptatif pour estimer les courants de phase et un observateur non 
linéaire pour estimer la tension du bus continu. La comparaison des estimations avec les 
valeurs mesurées permet de générer des résidus dont l’analyse permet le diagnostic et la 
localisation du défaut. La méthodologie est évaluée en insérant des défauts dans les valeurs 
mesurées sur un banc expérimental équipé d’une machine synchrone à aimants permanents 
de 15kW piloté par un système dSpace. Les résultats obtenus montrent l’efficacité de 
l’approche aussi bien sur la rapidité de la détection que la robustesse du diagnostic. 
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1. Introduction  

During the last decade, fault tolerant control has become an increasingly 
interesting topic in numerous industry domains (Benbouzid et al., 2007). This is due 
to the increasing need of system availability, which target to keep under control the 
maximum of system operation hazards. Consequently, strategies are defined from 
the early preliminary design steps, so as to facilitate fault detection, fault isolation 
and control reconfiguration. In the automotive environment, electrical drives are 
more and more present and fulfill more and more functionalities. To make them 
available, both hardware design and control strategies should be considered. In fact, 
several recent works (Bennett et al., 2011; Gaeta et al., 2012) deal with robust and 
fault tolerant control of electrical drives. They are aimed at proposing new control 
strategies that ensure the continuity of operation despite the occurrence of faults.   

A method widely used for Fault Detection and Isolation in AC drives is the 
observer-based method (Chen et al., 1999; Campos-Delgado et al., 2008). For 
position/speed sensor diagnosis, different methods have been successfully applied 
(Diao et al., 2013a; Wallmark et al., 2007; Green et al., 2003). A complete Fault 
detection and fault-tolerant control of interior permanent-magnet motor drive system 
is presented in (Jeong et al., 2005; Foo et al., 2013; Najafabadi et al., 2011) where a 
power equation is used to diagnose a DC Link voltage fault. However, this method 
could not be applicable in particular conditions such as steady state. In this paper, a 
new DC voltage observer is designed using phase currents and inverter control 
signal. For the phase currents, (Nuno et al., 2014) proposes a simple detection 
approach based only on the currents measurements, however only open-loop control 
system is considered. Also, perform efficient sensor fault detection in harsh transient 
phase (speed or torque) is still a facing challenge.  

Hereafter, the main components of a sensor-fault tolerant control strategy are 
detailed. It is applied to an electrical drive, composed of an inverter and a Permanent 
Magnet Synchronous Machine (PMSM). The drive could be used in transportation 
applications such as for example the electrical powertrain or the air conditioning 
(AC) of electric or hybrid electric vehicle (EV or HEV).  

In the paper, position/speed sensor, the phase currents and the DC link voltage 
sensors are involved using three interconnected observers. In section II, after a brief 
recall on PMSM diagnosis needs, the cases of the position/speed sensor, currents 
sensors and the DC-link voltage sensor are respectively treated and illustrated with 
experimental results. Then, a conclusion gives the main advantages of this structure.  

2. Sensor fault diagnosis for PMSM 

As high reliability and robustness for various vehicle-operating conditions are 
prime considerations in EV or HEV propulsion, PMSM are becoming very 
attractive. Their operation is highly dependent on feedback sensors availability. 
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When a feedback signal is lost, a standard control fails or is significantly disturbed. 
In the same conditions, a Fault Tolerant Control (FTC) ensures continuous system 
operation even with diminished performances. A Fault Detection and Diagnosis 
(FDD) module detects the loss of the sensor and the FTC reconfigures the control to 
sustain the best control performances. 

 

 

Figure 1. Fault tolerant control structure in a PMSM drive 

With the aim of reaching the required level of availability in transportation 
applications, the drive is equipped with a DC voltage sensor, three current sensors 
(due to safety requirements in electric vehicle standards) and a position sensor. The 
speed is usually computed from the position. In order to enhance the reliability of 
the system regarding its sensors, hardware and software redundancy are usually 
adopted. Hardware redundancy adds complexity in the design and increases the 
system cost. Despite the computational over cost, software redundancy has become 
a promising alternative. This solution is much more attractive because of its 
flexibility and its capability of evolution. Thus, state, output or parameter estimation 
seems to be a suitable tool of the FDD. State estimation-based observers are suitable 
for fault detection since they cause a very short time delay in the real-time decision-
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making process (Isermann, 2011) and offer a quick detection of sensor failures: 
under measurement, over measurement, high saturation, low saturation and complete 
outage. For this purpose, the signals are estimated through three software sensors 
based on the theory of observers: an Extended Kalman Filter (EKF), a Model 
Reference Adaptive System (MRAS) and a nonlinear observer for the DC link 
voltage estimation. A voting algorithm is used to enable the fault detection and to 
make the selection decision between measured and estimated values.  

The objective is to have a system, which can adaptively reorganizes itself at 
sensor failure occurrence. The output of the faulty sensor is replaced by a signal 
derived from the control and the remaining sensors. The FTC structure in the PMSM 
drive already presented in (Diao et al., 2013b), is displayed in Figure 1. The 
reconfiguration (nested in the Current Control Loop) is based on voting algorithms. 
They are designed to select the most relevant or appropriate value, which must be 
used by the current control loop. 

2.1. Position sensor fault detection  

Thereafter, the diagnosis of position/speed sensor mentioned above is developed 
with theoretical details and experimental results. 

2.1.1. Position/speed observer synthesis 

In PMSM drives, a position sensor is used, and generally, the speed is computed 
afterward by numeric means. The salient PMSM is modeled in the standard (d,q) 
reference frame as follows: 
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Where ],,,[ qd iix  , ],[  vvu  ],[  iiy   

In these equations, vα, vβ, iα and iβ are respectively the voltages and currents in 
the (α,β) frame, id and iq are the currents in the synchronous rotating (d,q) frame. Ld 
and Lq are respectively the direct and quadrature stator inductances, Rs is the stator 
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winding resistance, and   is the flux produced by the magnets. ω is the angular 
velocity measured in electrical radians per second and θ is the electrical position. 
The objective is to provide an efficient back-up solution when the mechanical sensor 
fails.  

There are three ways to provide an estimate of the mechanical information 
(position/speed). The first one is knowledge-based (such as artificial intelligence, 
genetic algorithms, fuzzy logic, etc.) which requires data recorded on the process to 
train the networks or design the rules (Maiti et al., 2012; Orlowska-Kowalska et al., 
2010). The second one is the physical-model based approach that uses observers 
(Luenberger, Extended Kalman Filter, Sliding Mode Observer, Differential 
Algebraic, etc.) (Zaltni et al., 2010; Sarikhani et al., 2012; Diao et al., 2015c). These 
techniques are mostly efficient for high speeds and may require a high 
computational cost. They can also suffer from the modeling errors or assumptions 
assumed for designing the analytical model. The third way is to inject High 
Frequency Signal. This technique requires an additional supply and the electrical 
machine must exhibit some particular properties such as magnetic saliency. 
Moreover the tuning may be tricky because of the additional losses and the increase 
of torque ripples (Zhu et al., 2011; Bolognani et al., 2011; Medjmadj et al., 2015).  

Hereafter, we use a model-based approach and a stochastic observer namely the 
Extended Kalman Filter (EKF) (Akrad et al., 2011). This is a good compromise as 
the EKF has acceptable performances on the whole speed range. In fact at high 
speed an EMF-based observer would be more relevant but as its performances 
drastically reduce as the speed decreases it would have been mandatory to engage 
another at low speed another estimator. For sake of simplicity we have therefore 
decided to use a single estimator. 

Estimation of the speed and the position is done using the reference voltages and 
phase currents sensors, which are uncorrelated from the mechanical sensor. Notice 
the fact that using uncorrelated sources is a key point of fault detection and 
reconfiguration.  

For the digital implementation of an estimator, a discrete-time state-space model 
is required. Assume that the input vector u is nearly constant during a sampling 
period Ts, a first-order series expansion of the matrix exponential is used to 
discretize the model: 

 sd
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Ad is the evaluation matrix and Bd the control matrix. The application of the EKF to 
the synchronous machine model is described as follows with the prediction and 
correction steps. 

Prediction: 
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In (3) and (4), the covariance matrices Q and R characterize the noises that take 
into account the model approximations and the measurement errors. Without 
additional information, the noises are considered as uncorrelated, time independent 
and free-tuning parameters. Σ represents the variance matrix of the observation error 
and K is the observer gain matrix. The Kalman Filter-based estimator uses the 
equivalent two-phase currents measurements (iα, iβ) and the control voltages (vα, vβ) 
represented in the stationary reference frame to estimate the rotor position and 
speed, respectively ̂ and ̂ . The estimation is done in a way that minimizes the 
mean of the quadratic error Σ between the measured phase currents and the 
estimated ones by taking into account the measurement noise and modelling errors.  

2.1.2. Experimental Validation 

The PMSM which characteristics are given in the appendix is fed through a 
Voltage Source Inverter and the algorithms are run on dSpace 1103. The switching 
frequency of the inverter is 20 kHz.  

After numerous experimental trials, it was found that for mechanical position 
errors lower than +0.1 radian, the controllers were able to cope with the fault. 
Beyond this value undesirable effects arise and the fault detection becomes 
mandatory. Therefore this value will be used as a threshold to evaluate the EKF-



Observer-based sensor fault diagnosis      461 

based fault detection effectiveness. The results are displayed within a reduced time 
range so as to have a better view of the position tracking. 

 
a) Measured, estimated and estimation error position 

 

 
b) Position Sensor flag 

Figure 2. Position sensor fault detection with EKF 

Fault Occurrence
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At the fault occurrence (t = 0.53s), the estimation error (Figure 2a) varies 
significantly. The detection of the position sensor fault is then accomplished as 
indicated with the flag displayed in Figure 2b with a detection time duration ∆t = 
0.164 s. 

The setting of the threshold value, which impacts the fault detection 
performance, is guided by the observer accuracy. The speed estimation error (Figure 
3) is not really affected: only a peak of 2 rd/s (4% error) at the fault time appears 
before the error returns to its initial value.  

 

 

Figure 3. Measured and estimated speed, estimation error 

Roughly speaking, an adaptive threshold can be settled for different operating 
point by analyzing the estimation error. 

2.2. Current sensor fault diagnosis 

At the apparition of a current sensor fault, a variation of the concerned phase 
current is expected and the goal is to spot quickly this variation so as to ensure an 
efficient fault tolerant control (Lee et al., 2011; Rothenhagen et al., 2009). The 
severity of the distortion from normal waveform depends mainly on the type of 
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fault. Because the currents estimated by the EKF for the position/speed estimation 
tends to converge to the values given by the current sensors by design of the EKF, 
they can’t be used for current sensor fault diagnosis. So, current estimation must be 
completely uncorrelated from phase currents sensors.  

2.2.1. Current observer synthesis 

Considering the PMSM model, phase currents can be expressed as function of 
voltages, speed and position. Then, the residuals are obtained by making the 
difference between the estimated values and the measurements. Theoretically, the 
MRAS computes a desired state using two different models (i.e. reference and 
adjustable models). The reference model determines the desired states (phase 
currents) and the adjustable model generates the estimated values of the states. The 
PMSM model described in (1) with currents as states variables is now considered:  
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The control law by state feedback is: Kxu  where ],[ 21 kkK  is the state 
feedback gain. 

The system can now be written:  
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Stability analysis: 

For a nonlinear system, the existence of Lyapunov functions is a sufficient 
condition for asymptotic stability. A Lyapunov function V is a positive definite 
function and has a Lie-derivative V , which is negative definite.  

For the nonlinear PMSM system, a candidate for a Lyapunov function is:  
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K is chosen as follows: dLk 1 , qLk 2 . The electrical parameters Rs, Ld and 

Lq are positive. Regarding the sign of the speed, the existence of the Lyapunov 
function is studied: 

 

2
2

2
1 )(

1
)(

1
xLR

L
xLR

L
V qs

q
ds

d

   

- 0 : if sd RL  ,then 0V  else if 
d

s

L

R
  implies 

2
1

2
2 )(

1
)(

1
xLR

L
xLR

L ds
d

qs
q

     then 0V   

- 0 : In the same way as previously, we have also 0V  

- 0 : 0)(
1

)(
1 2

2
2

1  xR
L

xR
L

V s
q

s
d

  

So for every operating speed, V is always negative and the closed loop is then 
asymptotically stable. So, the currents in the natural frame (a,b,c) can be estimated 

by applying the Park transformation with the estimated currents ]ˆ,ˆ,ˆ[ cba iii . 

2.2.2. Experimental validation 

Tests are done with a load torque of 0.5 Nm that is 15% of the nominal torque. 
An offset of 0.5 A (20% of the peak to peak current value) is inserted during 
operation in the phase B current from t = 2.05s to t = 6s. Figure 4 displays the 
speeds (the actual one computed from the measured position and the estimated speed 
by the EKF) and the phase B current. We can notice that despite the current sensor 
fault, the estimation of the speed is not affected. 

In Figure 5, the three residuals ]ˆ,ˆ,ˆ[ ccbbaa iiiiii   are plotted. The absolute 

value of the threshold (chosen according to the estimation error) for each phase is set 
at 0.18A (dashed lines in Figure 5). The most important variation is observed in the 
second residual indicating that the fault affects Phase B sensor. The corresponding 
flags are plotted in Figure 6. 

The fault detection time duration is ∆t = 0.098s. For the reconfiguration when 
using only two sensors, a vector control can be used as reported in (Verma et al., 
2013) with a single sensor.  

The variations in the two remaining phases are due to the closed loop operation. 
From t = 7 to 8s, a speed transient is noticed and the phase current estimation is 
robust with respect to this variation. So the current observer is globally accurate 
during steady state and transients.  
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Figure 4. Mechanical speeds and Phase B current 

 

Figure 5. Current sensor fault Residuals 
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Figure 6. Current sensor flags 

DC voltage sensor fault diagnosis 

Actually, when the DC voltage sensor fails, the output of the Current Control 
Loop is modified and the PWM signal increases or decreases (positive offset/gain or 
negative offset/gain) to maintain the requested torque/speed. This leads to 
undesirable phase currents, which may affect the control performance or overheating 
the power converter or the machine windings. An observer can be a back-up solution 
when the DC voltage sensor fails to ensure the continuity of the operation with 
acceptable performance (Ohnishi et al., 2004; Nademi et al., 2011). One can also 
estimate the equivalent series resistance (ESR) of the DC-link electrolytic capacitor 
like in (Xing-Si et al., 2013) to monitor the capacitor voltage. Voltage sensorless 
control method has also been applied in (Yip et al., 2003) where a single current 
sensor is used to measure the inductor current and then give the inductor voltage. 
Then we are interested by the estimation of the DC-link voltage using the phase 
currents and the duty cycles. Firstly, the Kirchhoff law at the capacitor output is 
written. Then, using the voltage equation across the machine windings, a second-
order system is defined according to Figure 7.  
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 Under the assumption of the average model, the a-phase voltage can be written as:
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DCa Uv 1  where the αj are the three half bridge control signals and ij the phase 

currents.  

 

Figure 7. Inverter DC voltage bus layout 

The dynamic of the DC link voltage and the A phase current can be written in a 
state space model as follows with ea the phase electromotive force: 
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From this, the observer is synthesized: 
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Phase current estimation is used to correct the DC-link voltage estimation and 
compensate model uncertainties. The choice of M1 and M2 must be done according 
to the stability criterion. The tuning of M1 and M2 must be done according to the 
stability criterion. We first define the estimation errors: 
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21   . Then the dynamic of the estimation errors is given 

by: 

  

11
1

111
1

2

2
1

12122
1

11

)(

)(





M
C

M
C

L
M

L

R
M

LL

R

aa

s

aa

s








 (11) 



468     EJEE. Volume 17 – n° 5-6/2014 

 

Assuming the following Lyapunov function: 0)(
2

1 2
2

2
1  V ,  

2211   V   ))
11

(()( 1121
2
12 M

CL
M

L

R
V

aa

s      (12) 

Choosing )
11

(11 CL
M

a

 yields to 0)( 2
12  K

L

R
V

a

s  if 02 M . So 

0V  and the closed loop system is then asymptotically stable with 

0),
11

( 211  M
CL

M
a

 .  

 
Figure 8. DC Voltage estimation at 200V 

For the following experimental tests, we choose an experimental bench 
composed of a 3H bridge-level inverter connected to an AC grid with an electrical 
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machine of 15kW. The electrical machine is a non-salient PMSM with 4 poles pairs. 
The controller and the observer are sampled at 10kHz. Figure 8 shows the 
performances of the DC voltage tracking capabilities of the nonlinear observer with 
experimental tests. We notice a maximal estimation error of 1.5% for the observer.  

 

Figure 9. DC voltage estimation during a sensor fault 

The test is done for the same operating point with a DC voltage of 200V during a 
sensor fault in Figure 9. An abrupt offset of 20 V representing 10% of the real value 
is introduced at time t =2.83s. The estimation error increases significantly as noticed 
in the second plot of the Figure 9 and sensor fault detection can be enabled. In the 
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same time, the measured currents are showed in the third plot of Figure 9 and the 
effect of the sensor fault is a decrease in the phase current magnitude. 

The decrease in the currents magnitude is due to the fact that by over-measuring 
the DC voltage, the inverter requests less current than needed for the desired speed 
trajectory. Consequently, setting a threshold at 10 V which means that an error of 
5% on the nominal voltage is tolerated, a DC voltage sensor fault is detected in 
Figure 10 with a detection time duration ∆t = 0.058s.  

Then, as described in Figure 1, a complete sensor fault diagnosis structure is 
designed and validated for a PMSM drive. The inputs of this structure are the phase 
currents, the reference voltage and the PWM Control signals. 

The last step of the fault tolerant control is the reconfiguration of the strategy. In 
case of a mechanical sensor fault, the estimated values with the EKF are used to 
ensure continuity of the operation. For current sensor fault the principle of balanced 
machine is used and the faulted phase current sensor is isolated and the measured 
value is computed from the two other healthy phase current sensors. For a DC link 
voltage sensor fault, the nonlinear observer could take over.  

 
Figure 10. DC voltage sensor flag 

3. Conclusion 

This paper has described a sensor fault detection and diagnosis structure for a 
high-performance PMSM drive. The Fault Detection and Diagnosis is based on an 
Extended Kalman Filter (EKF), a Model Reference Adaptive System (MRAS), and 
a nonlinear observer. Thanks to the availability of analytical models, an observer-
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based approach allows estimating the position/speed, the currents and the DC 
voltage despite the faults that may occur.  

The structure allows selecting between the estimated values and the measured 
ones (position, speed, and phase currents) in case of sensor failure. The decision is 
made thanks to the computation of residuals. The main advantages are: 

– Discrimination of a mechanical sensor fault from a phase current sensor fault 
thanks to the use of uncorrelated sources, 

– Accurate current sensor fault detection and diagnosis with robustness to 
speed/torque variation. 

Finally, the fault detection and diagnosis structure has shown his effectiveness 
through experimental results in case of a sensor (position, current or DC voltage) 
failure. The next step will be the implementation of the fault tolerant controller for 
online reconfiguration. 

PMSM Parameters 

Symbol Definition Value 

Pn Nominal power 1.1 kW 

Nn Nominal speed 3400 rev/min 

Tn Load torque 3.2 Nm 

P Pole pairs 3 

In Nominal current 5.9 A 

Rs Stator resistance 1.65 Ω 

Ld d axis inductance 3.5 10-3 H 

Lq q axis inductance 4.5 10-3 H 

Ψm Magnetic flux 154 10-3 Wb 

f Viscous friction 509 10 -3 Nm/rad 

J Moment of inertia 6.4 10-3 kg/m² 

Bibliography  

Akrad A., Hilairet M., Diallo D. (2011). Design of a Fault-Tolerant Controller Based on 
Observers for a PMSM Drive. Industrial Electronics, IEEE Transactions on, vol. 58, n° 4, 
p. 1416-1427. 

Benbouzid M.E.H., Diallo D., Zeraoulia M. (2007). Advanced Fault-Tolerant Control of 
Induction-Motor Drives for EV/HEV Traction Applications: From Conventional to 
Modern and Intelligent Control Techniques. Vehicular Technology, IEEE Transactions 
on, vol. 56, n° 2, p. 519-528.  

Bennett J.W., Mecrow B.C., Atkinson D.J., Atkinson G.J. (2011). Safety-critical design of 
electromechanical actuation systems in commercial aircraft. Electric Power Applications, 
IET, vol. 5, n° 1, p. 37-47. 



472     EJEE. Volume 17 – n° 5-6/2014 

 

Bolognani S., Calligaro S., Petrella R., Tursini M. (2011). Sensorless Control of IPM Motors 
in the Low-Speed Range and at Standstill by HF Injection and DFT Processing. Industry 
Applications, IEEE Transactions on, vol.47, n° 1, p. 96-104. 

Campos-Delgado D. U., Espinoza-Trejo D. R., Palacios E. (2008). Fault-tolerant control in 
variable speed drives: a survey. Electric Power Applications, IET, vol. 2, n° 2, p. 121-134. 

Chen J., Patton R. (1999). Robust model-based fault diagnosis for dynamic systems. Kluwer 
Academic, Boston. 

Diao S., Diallo D., Makni Z., Marchand C., Bisson J.F. (2013a). A differential algebraic 
approach for position/speed estimation in PMSM. Electric Machines & Drives 
Conference (IEMDC), 2013 IEEE International, p. 1149-1154, 12-15 May, Chicago. 

Diao S., Diallo D, Makni Z., Bisson J.F., Marchand C. (2013b). Sensor fault diagnosis for 
improving the availability of electrical drives. Industrial Electronics Society, IECON 
2013, 39th Annual Conference of the IEEE, p. 3108-3113.   

Diao S., Diallo D., Makni Z., Marchand C., Bisson J.F. (2015). A Differential Algebraic 
Estimator for Sensorless Permanent Magnet Synchronous Machine Drive. IEEE 
Transactions on Energy Conversion, vol. 30, n° 1, p. 82-89. 

Foo G.H.B., Zhang X., Vilathgamuwa D.M. (2013). A Sensor Fault Detection and Isolation 
Method in Interior Permanent-Magnet Synchronous Motor Drives Based on an Extended 
Kalman Filter. IEEE Transactions on Industrial Electronics, vol. 60, n° 8, p. 3485-3495 

Gaeta A., Scelba G., Consoli A. (2012). Sensorless Vector Control of PM Synchronous 
Motors During Single-Phase Open-Circuit Faulted Conditions. IEEE Transactions 
on Industry Applications, vol. 48, n° 6, p. 1968-1979. 

Green S., Atkinson D.J., Jack A.G., Mecrow B.C., King A. (2003). Sensorless operation of a 
fault tolerant PM drive. Electric Power Applications, IEE Proceedings, vol. 150, n° 2, 
p. 117-125. 

Isermann R. (2011). Fault Diagnosis Applications: Model Based Condition Monitoring, 
Actuators, Drives, Machinery, Plants, Sensors, and Fault tolerant Systems. Springer, 1st 
Edition. 

Jeong Y., Sul S., Schulz S., Patel N. (2005). Fault detection and fault-tolerant control of 
interior permanent-magnet motor drive system for electric vehicle. IEEE Transactions on 
Industrial Applications, vol. 41, n° 1, p. 46-51. 

Lee B., Jeon N., Lee H. (2011). Current sensor fault detection and isolation of the driving 
motor for an in-wheel motor drive vehicle. International conference on Control, 
Automation and Systems (ICCAS), 26-29 Oct., p. 486-491. 

Maiti S., Verma V., Chakraborty C., Hori Y. (2012). An Adaptive Speed Sensorless Induction Motor 
Drive With Artificial Neural Network for Stability Enhancement. Industrial Informatics, 
IEEE Transactions on, vol.8, n° 4, p. 757-766. 

Medjmadj S., Diallo D., Mostefai M., Delpha C., Arias A. (2015). PMSM Drive Position 
Estimation: Contribution to the High Frequency Injection Voltage Selection. IEEE 
Transactions on Energy Conversion, vol. 30, n° 1, March, p. 349-358. 



Observer-based sensor fault diagnosis      473 

Nademi H., Das A., Norum L. (2011). Nonlinear observer-based capacitor voltage estimation 
for sliding mode current controller in NPC multilevel converters. PowerTech, IEEE 
Trondheim, p.1-7, 19-23 June. 

Najafabadi T., Salmasi F., Jabehdar-Maralani P. (2011). Detection and Isolation of Speed-, 
DC-Link Voltage and Current-Sensor Faults Based on an Adaptive Observer in Induction-
Motor Drives. IEEE Transactions on Industrial Electronics, vol. 58, n° 5. 

Nuno M. A. Freire, Estima J., Cardoso A. J. M. (2014). New Approach for Current Sensor 
Fault Diagnosis in PMSG Drives for Wind Energy Conversion Systems. IEEE 
Transactions on Industry Applications, p. 1206-1214. 

Ohnishi T., Hojo M. (2004). DC voltage sensorless single-phase PFC converter. IEEE 
Transactions on Power Electronics, p. 404-410. 

Orlowska-Kowalska T., Dybkowski M., Szabat K. (2010). Adaptive Sliding-Mode Neuro-
Fuzzy Control of the Two-Mass Induction Motor Drive Without Mechanical Sensors. 
Industrial Electronics, IEEE Transactions on, vol. 57, n° 2, p. 553-564. 

Rothenhagen K., F. Fuchs W. (2009). Current Sensor Fault Detection, Isolation, and 
Reconfiguration for Doubly Fed Induction Generators. Industrial Electronics, IEEE 
Transactions on, vol. 56, n° 10, p. 4239-4245. 

Sarikhani A., Mohammed O.A. (2012). Sensorless Control of PM Synchronous Machines by 
Physics-Based EMF Observer. Energy Conversion, IEEE Transactions on, vol. 27, n° 4, 
p. 1009-1017. 

Verma V., Chakraborty C., Maiti S., Hori Y. (2013). Speed Sensorless Vector Controlled 
Induction Motor Drive Using Single Current Sensor. Energy Conversion, IEEE 
Transactions on, vol. 28, n° 4, p. 938-950. 

Wallmark O., Harnefors L., Carlson O. (2007). Control Algorithms for a Fault-Tolerant 
PMSM Drive. Industrial Electronics, IEEE Transactions on, vol. 54, n° 4, p. 1973-1980. 

Xing-Si Pu, Nguyen T.H., Dong-Choon Lee, Kyo-Beum Lee, Jang-Mok Kim (2013). Fault 
Diagnosis of DC-Link Capacitors in Three-Phase AC/DC PWM Converters by Online 
Estimation of Equivalent Series Resistance. Industrial Electronics, IEEE Transactions on, 
vol. 60, n° 9, p. 4118-4127. 

Yip S.C., Qiu D.Y., Chung H.S.H., Hui S.Y.R. (2003). A Novel Voltage Sensorless Control 
Technique for a Bidirectional AC/DC converter. IEEE Transactions on Power 
Electronics, p. 1346-1355. 

Zaltni D., Ghanes M., Barbot J-P., Naceur A. (2010). Synchronous Motor Observability Study 
and an Improved Zero-speed Position Estimation Design. IEEE Conference on Decision 
and Control, Atlanta. 

Zhu Z.Q., Gong L.M. (2011). Investigation of Effectiveness of Sensorless Operation in 
Carrier-Signal-Injection-Based Sensorless-Control Methods. Industrial Electronics, IEEE 
Transactions on, vol. 58, n° 8, p. 3431-3439. 

Received: 8 March 2015 
Accepted: 1 September 2015 




