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Making geometry accessible for blind people, apart from the formal aspects, can pose 

some difficulties, especially in terms of accessibility to figures. To deal with this 

problem this article focuses on paper folding where both Euclidean and origami 

axiomatic systems are used simultaneously. In the first case, with a ruler and compass, 

we can solve quadratic problems in a plane. In addition, the axioms of origami allow 

us to address unanswered questions with classical geometry methods, which involve 

cubic equations, such as the trisection of an angle. An experiment with INJA (National 

Institute for Blind Youth, Paris) students and other blind people will take place so that 

we can see the possibilities offered by this method, which brings a ludic, but rigorous 

approach to these complex and frequently off-putting issues. We believe that this 

dynamic pedagogical approach can increase interest and motivation, encourage tactile 

stimulation and facilitate the development of specific structures of brain plasticity. 

The article is written in a linear way, accessible to blind people; figures are provided 

to facilitate understanding for "visually impaired" people, who are not used to 

following a geometric concept without pictures. Finally, it should be noted that the 

method is particularly suitable in an inclusive education context.  
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1. INTRODUCTION

The creation of figures by folding paper (objects, animals, 

plants...) is a fairly widespread art with a very ancient origin, 

probably since the origin of paper in China in the second 

century [1, 2]. Two ancient traditions seem to be well 

established, with fairly specific bases, the Japanese «Origami» 

and the Spanish Papiroflexia [3], but it has spread widely and 

has become quite universal. In France it is widely represented 

by the MFPP (Mouvement Français des Plieurs de Papier) [4]. 

Pedagogical experiments using folding techniques have 

been offered for some time, in teaching environments for blind 

students as a tool for intellectual and playful development [5], 

taken up in France by M. Lucas in 2005 as part of the Blindmi 

project [6]. 

More recently, R.J. Lang’s and T. Gotani’s mathematical 

and more rigorous approaches have brought a formalism so 

that the development of a “geometry” of folding has emerged 

[7, 8], hence the title of “GeOrigaMetry”; while an interesting 

pedagogical focus [9, 10] has also emerged. These 

developments support the proposal presented in this article. 

2. A REMINDER OF THE AXIOMATIC SYSTEM

Classical geometry is based on a well-known axiomatic 

system that allows a coherent development of science. By 

accepting and relying on these assumptions, it is possible to 

demonstrate theorems and build an exact science. We are used 

to accessing it from figures that facilitate the understanding of 

the corresponding elements, but graphic support is not strictly 

necessary. 

In classical geometry these are the principles of the 

Euclidean axiomatic system [11]. The concepts of dot, line, 

plane, angle, polygon, congruence, etc. are considered as 

known. The five basic assumptions are recalled below: 

Axiom 1 (AE1): A straight line can be drawn from a point 

to any other point. 

Axiom 2 (AE2): A finite straight line can be extended 

indefinitely. 

Axiom 3 (AE3): A circle can be drawn, given a center and 

a radius.  

Axiom 4 (AE4): All right angles are congruent. (All right 

angles are ninety degrees.) 

Axiom 5 (AE5): If a straight line intersects two other 

straight lines such that the sum of the interior angles on one 

side of the intersecting line is less than the sum of two right 

angles, then the lines meet on that side and not on the other 

side (or postulate of parallels, in the version of Proclus: "If a 

straight line intersects one of two parallel lines, it will intersect 

the other also."). 

In particular, the questioning of the latter postulate gave rise 

to non-Euclidean geometries, from the 19th century onwards. 

Since the end of the last century we have been witnessing a 

theoretical development of folding techniques with a 

mathematical approach. This work is quite diverse: geometric 

[12], algebraic [13], topological, space geometry [14, 15], etc. 

Here we will address the areas closest to geometry that we 

believe are the most innovative for the accessibility of blind 

people. 

Axioms of the origami of Huzita-Justin or Huzita-Hatori [7, 

16, 17] are recalled below: 

Axiom 1 (AO1): Given two distinct points p1 and p2, there 

is a unique fold that passes through both of them. 

Axiom 2 (AO2): Given two distinct points p1 and p2, there 

is a unique fold that places p1 onto p2. 

Axiom 3 (AO3): Given two lines l1 and l2, there is a fold 

that places l1 onto l2. (This fold is not necessarily unique, 

especially if the intersection of the two lines is on the paper. 

Indeed, two segments of the same line can define two different 
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folds (two bisectors).) 

Axiom 4 (AO4): Given a point p1 and a line l1, there is a 

unique fold perpendicular to l1 that passes through point p1. 

Axiom 5 (AO5): Given two points p1 and p2 and a line l1, 

there is a fold that places p1 onto l1 and passes through p2. 

Axiom 6 (AO6): Given two points p1 and p2 and two lines 

l1 and l2, there is a fold that places p1 onto l1 and p2 onto l2.  

There is a seventh axiom (AO7), stated by Jacques Justin in 

1989: “Given one-point p and two lines l1 and l2, there is a fold 

that places p onto l1 and is perpendicular to l2” [18]. 

It is possible to find a parallel between the first five axioms 

and the Euclidean axioms, or even construction facilities, for 

example (AO3) allows us to construct a bisector without 

having to access the top of an angle. But constructions derived 

from the axiom 6 (AO6) are not possible with a ruler and 

compass (except in particular cases). This assumption will 

allow us to solve third-degree equations, demonstrated by 

Justin [18] or solve problems like the sorting of an angle, as 

we will see later. 

 

 

3. SOME PRACTICAL APPROACHES FOR 

PEDAGOGICAL EXPERIMENTATION 

 

We discuss a few educational examples that will be put into 

practice during our experimentation. 

The text will be used to make the folding process accessible 

to blind people (images are presented to facilitate access to 

people who can see). 

We will always start from a square sheet on the unit side. 

We have four points; they are the four corners. 

They are called A, B, C, D, clockwise: 

Let's apply the first axiom (AO1): “Given two distinct 

points p1 and p2, there is a unique fold that passes through both 

of them”. 

Consider two opposite corners AC (or BD). The folds that 

pass through AC or BD respectively, correspond to the 

diagonals of the square. 

 

 
 

We can also apply (AO2): “Given two distinct points p1 and 

p2, there is a unique fold that places p1 onto p2”, bringing point 

B onto D (or A onto C respectively) and get the same result. 

It is also possible to apply (AO3): “Given two straight lines 

l1 and l2, there is a fold that places l1 onto l2”. By using two 

adjacent sides we can achieve the same result. 

 

 
 

With the intersection of these two diagonal folds, we get a 

new point p0 that corresponds to the center of the square. The 

size of the diagonals will be equal to square root of two (21/2). 

 

3.1 Demonstration of the sum of the angles of a triangle 

 

We now start from a triangular sheet whose peaks are ABC 

and the angles α, β and γ respectively. 

1. With axiom 4 (AO4): “Given a point p1 and a straight line 

l1, there is a unique fold perpendicular to l1 that passes through 

point p1”. We will make a fold corresponding to the height of 

the triangle that runs from the vertex A to the opposite side BC. 

For this, we make a fold that goes through A and makes the 

side BC coincide with itself. We get A' in the side BC. The 

triangles AA'C and AA'B are right-angled.  

 

 
 

2. With (AO2) we make the fold that brings A on A'. This 

fold defines M1, on the side AC, and M2 on the side AB. 

 

 
 

3. The CA'M1 and BA'M2 triangles are isosceles. The angles 

α, β and γ coincide in point A'; the sum of them is 180 degrees. 

Note that by folding the peaks of the two isosceles triangles, 

we obtain a rectangle whose area is the half of the original 

triangle; if we accept that the area of a rectangle is equal to the 

width multiplied by the length, then we can demonstrate that 

the area of a triangle (S) is half of the product of the base (B) 

by the corresponding height (H): 1/2S =1/2B x 1/2H; and S=1/2 

B x H. 

  

3.2 Construction of an equilateral triangle from a square 

(A, B, C, D): 

 

1. To obtain the mediator of the square (AO2 or AO3), 

make a fold that joins AD and BC and defines p1 (middle of 

the side AB) and p2 (middle of the side CD). 

2. Make a fold that passes through C and brings the corner 

B to the line p1, p2 (AO5). We obtain the point E in the p1p2 

segment. CE = BC 
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3. Make the fold that goes through D and brings A to the 

linep1, p2, it coincides naturally with point E and DE = AD. 

4. The triangle DCE is equilateral with both sides equal to 

the side of the square. The height of this triangle is (3/4)1/2 or 

3 1/2/2, (square root of 3 divided by two). 

Build the equilateral triangle inscribed in the square 

In the earlier problem, the fold that brings B to the point E 

intersects with AB at p3. 

The angle BC p3 is 15 degrees [(90-60) /2]. 

 

 
 

Let us make the fold to obtain the other mediator of the 

square and trace the symmetrical fold such that C passes 

through and bring us D in this new mediator. This fold cuts AD 

in p4. The angle p4Cp3 is 60 degrees; Cp4 = Cp3; and the 

triangle p4Cp3 is equilateral, inscribed in the square. This 

triangle is maximum. 

 

3.3 Haga's theorems 

 

Haga's theorems (2008) [19] are interesting from an 

algebraic, geometric and pedagogical point of view. 

1. Make a fold to obtain a mediator and the point M, at the 

center of the side AB (AO2 or AO3). 

 

 
 

2. Bring the corner C to Point M (AO2). With this fold, we 

get Q at the intersection with the side BC and R at the side AD. 

QC=QM. Moreover, the side DC side, after folding, crosses 

the AD side in point P. The corner D becomes D', after folding, 

and RD = RD’. 

3. Theorem: The right-angled triangles MBQ, APM and 

D'PR are Pythagorean (side ratio: 3, 4, 5).  

Demonstration: consider the side of the square. In the right-

angled triangle MBQ, MB=1/2; BQ=x; QM=1-x, then x2=(1-

x)2 - 1/4 and BQ=3/8; MB=4/8 and QM=5/8. In addition, the 

right-angled triangles MBQ, APM and D'PR are similar (equal 

angles by orthogonal sides) and therefore have the same ratios. 

Note that AP=2/3. 

4. The perimeters (Per) of these three triangles have the 

following relationship:  

Per(D'PR) +Per(BMQ)= Per(APM) (the sum of the 

perimeter of the two smaller triangles is equal to the perimeter 

of the larger one). 

5. Demonstration: The anterior theorem allows us to 

calculate the sides of the three triangles by proportionality. We 

get the values AP=2/3, PD=1/3 and: 

 

(3/24+4/24+5/24) + (3/8+4/8+5/8) = (3/6 +4/6+5/6) 

 

Note that this last property is also valid if the M point is not 

in the center of the AB side, but the demonstration is more 

complex. Note that the sum of the perimeters of the three 

triangles will always be equal to the perimeter of the square (if 

the square side is equal to the unit, the sum of the perimeters 

of the three triangles will always be equal to 4) and that the 

three triangles are always similar. One can also refer to 

“Affaire de logique” nr.1138 (in French) [20]. 

 

3.4 Trisection from an acute angle [21] 

 

This is one of the classic problems of ancient Greece (such 

as squaring the circle or duplicating the cube). After 

unnecessary attempts for more than two thousand years and 

millions of hours of struggle to find a solution to these 

problems, the theorem of Wantzel [22] demonstrated in 1837 

that this was impossible (except in special cases) with a ruler 

and compass. 

Axiom 6 (AO6): “Given two points p1 and p2 and two 

straight lines l1 and l2, there is a fold that places p1 onto l1 and 

p2 onto l2” brings building elements that do not exist in 

Euclidean geometry and solves some problems whose non-

feasibility criteria is demonstrated by Wanzel. Here we discuss 

the classic case of dividing an angle. 

This construction for sharp angles is due to Abe [23]. A 

folding solution for obtuse angles was also proposed by 

Jacques Justin in 1984 [24]. 

As in previous cases, we will begin from a square sheet 

(ABCD). The process is as follows: 

1. Let's make any fold that goes through D and the straight 

line on the top of the square (AB). This fold, with the CD side, 

defines the angle α, that we want to divide into three equal 

parts. This fold cuts AB at the point E. 
 

 
 

2. Let us make a fold parallel to CD (preferably at or above 

the mediator to facilitate folding). We get the point F in the 

side AD and the point G in the side BC. 

3. Let us bring the side CD to the line FG, (AO3), the fold 

thus obtained gives us H on AD and I on BC. By construction 

we have FH=HD=GI=IC. 

4. By applying (AO6) we bring the vertex D on the HI line 

to get the D' and the F-point on the line DE to get the point F'. 

The line F'D cuts the side AD at point J. The fold thus obtained 

(JL) is a bisector of the angle DJD'. This fold cuts HI at K and 

DC at L. The point H becomes H' on the line JD. 
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5. We fold now by DK and DD' (AO1). We divide the angle 

α into three parts F'DH', H'DD' and D'DC. Now we have to 

demonstrate that these angles are equal. 

 

 
 

6. Demonstration: The triangle DD'K is isosceles, by 

symmetry (DK = KD'). The angles KD'D and KDD' are equal 

(β). The angles KD'D and D'DC are equal (alternate-internal), 

so H'DD'=D'DC=(β). In addition, FH = HD = F'H' = H'D' 

and F'DD' is isosceles with height = DH', so F'DH'=H'DD' (β) 

Q.E.D. (It is also possible to use the parallelism of FF'║HH'║ 

DD' and the isosceles triangle KHH'). 

 

 

4. EXPERIMENTATION 

 

4.1 Type of paper 

 

A first experiment was carried out to find the most 

ergonomic type of paper for easy access to folding by blind 

people. We tested different grammages (60, 80, 100, 120, 160 

g/m2) but also the type of paper: “sandwich” (two tissue papers 

glued to a metallic paper), elephant, verged, double texture, etc. 

It seems that the most suitable, at least initially (without taking 

into account a possible adaptation by learning), is between 120 

and 160 g/m2, which allows a better access to the marking of 

the folds and their intersections, without limiting too much the 

ease of folding. However, this limits the number of folds and 

it is contradictory to the “theoretical” approach that considers 

a paper without thickness. The size of the paper is also a factor 

to be taken into account. In general, it will depend on the 

overlapping of the folds and the complexity of the folding to 

be developed. We used 9x9cm and 21x21cm squares. It is 

possible that, at least initially, in an educational context, pre-

marking the paper facilitates folding, especially if the folds are 

complex such as the trisection of the angle. 

 

4.2 Accessibility and acceptance by blind students 

 

(The planned protocol was interrupted by the closure of the 

INJA as a result of containment measures due to the Covid-19 

pandemic). 

The experiment involves some folding sessions with 

students (from the third to the senior year) and blind people to 

study the accessibility to the origami axioms and to each of the 

geometrical developments that appear in this document. To 

date, the constructions described show the following results: 

In general, the progress of the abovementioned 

constructions seems to be very well adapted. 

AO1, AO2, AO3 axioms do not pose any accessibility 

problem if they are sides or points defined on sides by an 

intersection with a crease. Neither are AO4 and AO5 if the 

lines involved are expressed as folds. 

In addition: 

The sum of the angles of a triangle; the construction of an 

equilateral triangle (in both versions) and Haga's theorem 

seem to be easily accessible. 

In the trisection of an angle: practical problems have arisen 

for the tactile highlighting of the points F', D' and K in order 

to facilitate folding at these points. It is a problem of detecting 

projection points on a surface. One possibility is to formalize 

the line projections with folds and detect the intersection 

points of these folds; another simple possibility would be to 

work on a soft surface (cork, silicone) that can be used to nail 

pins, or mark points with embossing, to allow the detection of 

projection points. But practice should permit the student to 

advance fairly quickly. 

 

 

5. CONCLUSION 

 

Paper folding, as well as the recent axiomatic system 

associated with it, seem to be a good approach to geometry for 

blind people. Touch-based manipulation of the paper folding 

procedures seems to be compatible with the disability 

considered. We found a small initial difficulty when applying 

it to axioms that involve intersections (projections) of points 

with straight lines (inside the paper) or straight lines on 

unfolded straight lines (AO5, AO6). But we noticed rapid 

progress with practice. 

Moreover, in a context of inclusive pedagogy, the method 

can be considered as a ludic incentive that stimulates 

communication between blind and non-blind students. 
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