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 In present study, solution of advection-dispersion equation is obtained to determine 

concentration distribution of solute introduced from a varying pulse type point source in 

one-dimensional heterogeneous semi-infinite porous medium. Heterogeneity of the 

medium gives rise to space dependent groundwater velocity, dispersion coefficient and 

retardation factor. Groundwater velocity is some exponent ξ to a linear function of 

space. The dispersion and retardation factor are also exponents of same linear function 

with exponents (ξ+1) and (ξ-1), respectively, where ξ takes the value 0 or 1. At one end 

of the domain, a time dependent varying nature source, which involves step-size 

increasing function of time, acts along the flow up to a certain time the n eliminated 

while concentration gradient is considered zero at the other end of the domain. Initially, 

medium is uniformly polluted. Firstly, the advection-dispersion equation is reduced into 

constant coefficients by using certain transformations and then Laplace Integral 

Transformation Technique is utilized to get the solution. The obtained result is 

illustrated with numerical examples to study the effect of various parameters. 
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1. INTRODUCTION 

 

The movement of solutes through porous formation has 

earned great importance in the application of soil physics, 

groundwater hydrology and many others. Nowadays, 

groundwater pollution has become major concern of scientist 

working in the area of hydrology, soil physics, environmental 

engineering and mathematics. Mathematical models are the 

very effective and reliable tools for predicting water quality 

and assessing the affected area. Hydraulic conductivity and 

porosity are the key features influencing the solute transport 

along groundwater flow. Temporal variation in hydraulic 

gradient causes the temporal variation in velocity. These 

parameters depend on the size i.e., the volume of the aquifer 

and are usually used to calculate average linear velocity. 

Over last few decades there have been several research 

articles (analytical and numerical both) developed for 

predicting the conservative solute transport in groundwater. 

Analytical solutions of one-dimensional solute transport 

problems in finite and semi-infinite domain subject to various 

initial and boundary conditions have been published in 

literature [1-5]. Serrano [6] studied the effect of recharge and 

physical hydrologic variables on the solute dispersion 

parameters in one-dimensional aquifers. The literature [7] 

derived analytical solution for one-dimensional solute 

transport with scale dependent exponentially increasing 

dispersion coefficient under time varying boundary condition. 

Dagan [8] analyzed the scale-dependent dispersion under 

variable decay and retardation factor. One-dimensional solute 

transport with linear asymptotic scale dependent dispersion 

discussed in the paper [9]. It’s observed that temporally 

dependent dispersity is an arbitrary function of time [10, 11]. 

Heterogeneity was considered as major feature of solute 

transport in aquifer [12-14]. The authors [15-17] obtained the 

analytical solution for advection dispersion equation with 

linear and quadratic spatial/temporal coefficients using LITT 

and GITT. Belyaev et al. [18] obtained analytical and 

numerical solutions with spatially dependent dispersion in 

heterogeneous aquifer. Analytical solution was derived for 

one-dimensional advection-dispersion equation with 

asymptotic dispersivity [19]. You and Zhan [20] evaluated 

analytical solution for one-dimensional solute transport with 

time-dependent sources and exponential spatial type 

dispersivity. Sanskrityayn et al. [21] established an analytical 

solution for one-dimensional advection-dispersion equation 

using Green function method for instantaneous and 

continuous point source along with mutually proportional 

dispersion and velocity in groundwater and river in system.  

The aim of this paper is to extend the study in the paper 

[22] by taking varying nature pulse type input by involving 

step-size time function. This aim is based upon the fact that 

solute introduction to water bodies which is profusely 

governed by varying nature input rather than uniform nature 

was due to presence of natural phenomena and manmade 

activities [23]. In this theoretical model, groundwater 

velocity, dispersion coefficient and retardation factor depend 

on some exponent of linear space function because of 

heterogeneity of the medium and concentration distribution is 

assumed to be uniform at beginning of study. The Laplace 

Integral Transform Technique (LITT) is applied to get the 

solution. Such solution may prove much effective in dealing 

a real life solute transport related problems. 
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2. MATHEMATICAL DESCRIPTION OF THE 

PROBLEM  
 

The solute movement through porous medium is the result 

of two phenomena advection and dispersion which is 

combined effect of mechanical mixing and molecular 

diffusion. The second order parabolic equation, which 

includes all these factors, is called advection-dispersion 

equation. This equation obtained by using Darcy’s law, the 

principle of mass conservation and Fick’s laws of diffusion is 

given as [24]: 
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where, c[ML-3] is the solute concentration of the pollutant 

transporting along the flow field through the medium at a 

position x[L] and time t[T]. D[L2T-1] and u[LT-1] are the 

longitudinal dispersion and groundwater velocity, 

respectively. R is retardation factor which is a dimensionless 

quantity. The term on the left hand side of the Eq. (1) 

accounts for change in concentration with time in liquid 

phase. The first and second terms on the right-hand side of 

the Eq. (1) represent the influence of the dispersion on the 

concentration distribution and change of concentration due to 

advective transport in longitudinal direction, respectively.  

In reality, velocity and dispersion coefficients in the 

aquifer are variable due to change in hydraulic gradient. 

Freeze and Cherry [25] asserted that coefficient of dispersion 

is proportional to some exponent of groundwater velocity and 

exponent may lie within the range [1, 2], i.e., 

21   anduD . 

The coefficient of dispersion is considered directly and 

squarely to proportional to groundwater velocity [26, 27]. 

According to the literature [28], dispersivity, which is ratio 

of dispersion and groundwater velocity may be linear, 

quadratic, exponential, and asymptotic. Chatterjee and Singh 

[29] proposed two-dimensional solution by stating that 

besides zero velocity along the depth dispersion may not 

vanish in same direction. 

In this article, let the groundwater velocity and Dispersion 

coefficient be some exponent of linear function of space as: 
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heterogeneity factor a is a non-zero real constant having 

dimension that is inverse of space variable and is accounting 

for the variations in velocity and dispersion due to 

heterogeneity and ξ, a dimensionless parameter, sets a 

respective spatial relation between dispersion, groundwater 

velocity. Yadav and Kumar [30] assumed retardation as 

exponentially decreasing function of space. In present study 

retardation factor is assumed as function of space 
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axRtxR . Let 0 <ax ≤ 1 to keep the value in 

order. Different values of a will represent different 

heterogeneity nature. Therefore, Eq. (1) may be re-written as: 

 

( ) ( ) ( ) 







+−




+




=




+

+−
caxu

x

c
axD

xt

c
axR


111 0

1

0

1

0
 (2) 

 

The Eq. (2) takes the advection-dispersion equation of the 

papers [31] and [14] for ξ=1 and ξ=-1, respectively. In 

present paper we have considered that ξ can take the values 

for ξ=0 and ξ=1. When ξ=0, the groundwater velocity is 

constant while dispersion is linear function of space and 

retardation factor is inversely proportional to linear function 

of space. For ξ=1, dispersion is squarely proportional to 

groundwater velocity which is linear function of space and 

retardation factor is reduced to a constant. Initially, 

concentration distribution is taken uniform throughout the 

domain and is represented by following condition Eq. (3). 

Input source of varying nature is defined mathematically by 

following Eqns. (4a, b) or (5a, b). The Eq. (6) refers that 

concentration gradient is equal to zero at other end of the 

domain. Mathematically, initial and boundary conditions for 

proposed problem may be written as: 
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where,    represents least integer function. a[ML-3] is a 

parameter which regulates the step-size increment in input 

concentration or extra flow in per n years over the previous n 

year’s slot within the time less than or equal to t0. In present 

study, n is taken a positive integer.   

 

 

3. ANALYTICAL SOLUTION 
 

Now introducing a new space variable, X with the 

transformation as:  
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It is obvious that X=0 at x=0 and X>0 when x>0. 

Using transformation in Eq. (7), Eqns. (2)-(6) may be 

written as: 
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where, aDuw 000 −=  and au  01 =  

 

( )=tXc , ic ; 0=t , 0X  (9) 
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In order to remove convective term from Eq. (8), we apply 

following transformation: 
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where, k(X, t) is a new dependent variable depending on 

space and time. 

Using transformation in Eq. (12), the Eqns. (8)-(11) may 

be written as: 
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where,  
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Applying Laplace Transformation to Eqns. (13)-(16), the 

boundary value problem reduced into an ordinary differential 

equation of second order, which includes following three 

equations. 

 

( ) Xc
D

R
k

D

pR

dX

kd
i −−=− exp

0

0

0

0

2

2

 (18) 

 

( )  
( )

( )
( )

( )
( ) ( )

( ) 
( )

( )  0;1exp
1exp

1exp
exp

1

exp1

2

0

2

2

1

0

0

2

2

1

0

0

2

0

2

00
0

00

=++
−

+−

+−
−

−
+

+
−

−−−
=








−+−


−

=

−

=

XIurn
p

rpn

runr
p

pnr
ru

p

tp
cuk

w
u

dX

kd
D

T

r

T

r













 
(19) 

 

where,  
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And ]/[ 0 ntT = . If t0 is an integer that is divided by n then 

I=0. 
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where, ( ) ( ) dtetXKpXK pt−


= 0
,,  and p is the Laplace 

Transformation parameter.  

Solution of Eqns. (18)-(20) may be written as: 
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Applying inverse Laplace Transform to Eq. (21) and using 

the transformation in Eq. (14), the desired solution may be 

presented in following two cases: 

 

3.1 Case 1: when ξ=1 

 

We have aDuw 000 −= , au01 =  and, 

1

0

00

0

0

22
 =

−
==

D

aDu

D

w (say), 

8



 

00

00
1

0

2

0

0 2

)(

4

1

DR

aDu

D

w

R

+
=














+=   

 

1

00

002

0

0

2

)(
 =

−
==

DR

aDu

R

D (say), and 

 

1

00

000
0

00 2

)(

2

1
 ==

+
=








−=

DR

aDuw
u

RD
(say) 

(22) 

 

In presence of source: t≤t0. 
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where, ( ) ( ) ( )nTnTtXFTJ
2

1exp,1
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  −+=  and ]/[ ntT = . If 

( )0tt   is divided by n then it is obvious J=0. Also j=1 when 

t is not divided by n and j=0 for t is divided by n. Here    

denotes greatest integer function. 

 

In absence of source: t>t0. 
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and ]/[ 0 ntT = . It is obvious J1=0 when, t0 is divided by n.  

 

3.2 Case 2: when ξ=0 
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In presence of source: t≤t0. 
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In absence of source: t>t0. 
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And ]/[ 0 ntT = . It is obvious J3=0 when, t0 is divided by 

n. Also, 
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4. RESULTS AND DISCUSSION 

 

The features of obtained solution Eqns. (23a), (23b), (25a), 

and (25b) are described and demonstrated with help of graph 

for both the stages of inputs i.e., in presence and absence of 

input. In order to plot the graphs most of the numerical 

values for parameters or constants are taken from published 

literature [14]. Figures 1-3 and Figures 4-6 representing 

concentration in presence and absence of source, respectively 

are drawn for following common parameters: 0.10 =c ;

01.0=ic ; ( ) 60.01

0 =−yearkmu ; ( ) 71.01

0 =−yearkmD ;

45.10 =R ; ( )11.0 −= kma . The groundwater velocity is taken 

within the range 2m/day to 2m/year which is in agreement of 

the results by Todd [32] depending upon geometrical 

conditions of porous medium. 

All the figures represent the possible behaviour of varying 

nature input and point of input which is assumed to be at one 

end of the domain is considered as origin for plotting the 

graph. It is assumed that source acts up to time t0(year)=8.5 

and then eliminated. In order to plot graph the study domain 

is considered of length 4(km) i.e., ( ) 40  kmx .  

 

4.1 Case 1when time t  is less than or equal to t0 (i.e., 0<t≤ 

t0) 

 

Figure 1 is drawn for demonstrating the dimensionless 

concentration profiles at various times t(year)=2, 3.5, 5 for 

both values of ξ keeping parameters fixed at a=0.1 and 

n=1.Dimensionless inlet boundary concentrations c/c0 i.e., 

concentration at x(km)=0 is recorded nearly 0.77, 1.1. 1.18, 

for ξ=0 and o.73, 0.95, 1.10 for ξ=1 at times t(year)=2, 3.5, 

and 5, respectively. At particular position and for fixed value 

of ξ the concentration level is higher for higher time and 

lower for lower. For a fixed time, concentration level remains 

higher throughout the domain for ξ=0 in comparison to same 

for the ξ=1. This difference can be assessed as combined 

effect of space dependency of the coefficients for both values 

of ξ. The level of concentration attenuates up to end of the 

study domain for all the values of time. 

 

 
 

Figure 1. Solute concentration profile obtained from 

Eqns.(23a) and (25a) for different times in time domain 0≥t≤ 

t0 

 

In Figure 2, the effect of the parameter on concentration 

profiles is illustrated at time t(year)=5 and n=1 by keeping 

other parameters fixed. Concentration value is recorded 

higher for higher value of parameter a and lower for lower 

throughout the domain for both the value of ξ. It is noticed 

that the pattern remains same for different values of the 

concerned parameter. The inlet boundary concentrations c/c0 

for ξ=0 are nearly 1.18 and 1.88 for a=0.1 and a=0.3, 

respectively, while same for ξ=1 are 1.10 and 1.77. The 

concentration profiles in the figure is in good agreement with 

the fact that concentration should increase with increment in 

parameter a for both the value of ξ. The concentration 

patterns are nearly same for both a at fixed ξ. 

 

 
 

Figure 2. Solute concentration profile obtained from 

Eqns.(23a) and (25a) for different values of parameter a in 

time domain 0<t≤ t0 

 

Figure 3 elaborates the variations in concentration 

distribution with parameter n at time t(year)=5. Parameter 

determines the time period of increment in input i.e., after n 

years an increment of a=0.1 will on the right hand of the 

input equation in presence of source. The inlet boundary 

concentration c/c0 decreases as the parameter n increases. 

The solute concentration reduces to same level at the far end 
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of the study domain for all the three values of integer n. The 

concentration level throughout the study domain for ξ=0 is 

recorded higher in comparison to same for ξ=1 for every 

value of n. 

 

 
 

Figure 3. Solute concentration profile obtained from 

Eqns.(23a) and (25a) for different values of parameter n in 

time domain 0<t≤ t0 

 

4.2 Case 2 when time t is greater than t0 (i.e., t>t0) 

 

Figure 4 demonstrates the concentration distribution with 

in the study domain computed with parameters a=0.1 and 

n=0.1. Source acts up to time t(year)=8.5 and then eliminated. 

Dimensionless inlet boundary concentrations c/c0 are nearly 

1.07, 0.57 and 0.35 at times t(year)=9, 10.5, and 12, 

respectively, for ξ=0 and same is recorded nearly 0.94, 0.46 

and 0.25 for ξ=1. This decreasing pattern of concentration is 

due to no concentration introduced after the time t0=8.5. It 

may be noticed that rehabilitation of concentration in the 

semi–infinite domain is due to dispersion and advection 

phenomena. Unlike the uniform input concentration level 

reduces gradually with time at inlet boundary.  

 

 
 

Figure 4. Solute concentration profile obtained from Eqns. 

(23b) and (25b) for different times in time domain t>t0 

 

Figure 5 depicts the effect of parameter a on concentration 

profiles at time t(year)=9 and for n=1 on the elimination of 

source. Dimensionless concentration c/c0 remains higher for 

higher value of a throughout the study domain for steady 

values of all other parameters. This is because concentration, 

introduced to domain in presence of source up to the time 5.8 , 

is higher for higher value of a. The concentration profile 

decreases with ξ but profile pattern is recorded nearly same 

for both ξ. It may be noticed that concentration profile is 

nearly parallel for fixed   and different ξ.  

Figure 6 depicts effect of parameter n  on concentration 

distribution after elimination of source at time t(year)=9 and 

for parameter a=0.1 in absence of source. As parameter n 

increases the concentration decreases at origin in presence of 

source keeping all other parameters steady, same pattern is 

recorded in absence of source i.e., at a particular time 

concentration at source end is higher for lower n. Since 

injected input decreases as the n increases in presence of 

source, the level of concentration decreases with increment n 

in absence source too for both ξ. For a specified time and 

parameter n the concentration pattern remains nearly parallel 

for both ξ and concentration level increases from ξ=1 to ξ=0 

for a fixed n. 

 

 
 

Figure 5. Solute concentration profile obtained from Eqns. 

(23b) and (25b) for different values of parameter a in time 

domain t>t0 

 

 
Figure 6. Solute concentration profile obtained from Eqns. 

(23b) and (25b) for different values of parameter n in time 

domain t>t0 

 

 

5. CONCLUSIONS 

 

Concentration distribution has been studied 

mathematically (analytical solution) and later brief graphical 

discussion of derived result has also been attempted here. 

Solution is obtained for first and third type time dependent 

inlet boundary conditions. The developed analytical solution 

for semi-infinite domain clarifies how parameters influence 

the transport in a porous media with Cartesian coordinate. 

The Laplace Integral Transform Technique is used to obtain 

the analytical solution. Boundary conditions were set as time-
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dependent at the inlet and zero gradients at the outlet end. In 

order to obtain, solution, new independent variables 

introduced through separate transformations at the different 

stages, the variable coefficients were transformed into 

constant coefficients. The step-size input of varying nature 

where injected source produces extra amount of contaminant 

after certain a duration. Actually, the present work extends 

the result of Yadav and Roy [22] by considering scale 

dependent of dispersion along with non-uniform groundwater 

velocity and retardation factor and, varying nature input 

which represents real world problem more emphatically.  
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NOMENCLATURE 

c concentration of solute [ML-3] 

ci resident concentration of solute [ML-3] 

c0 reference concentration of solute [ML-3] 

x distance from origin [L] 

X new space variable [L] 

t time variable [T] 

a heterogenirty parameter [L-1] 

R retardation factor at origin (dimensionless) 

D Dispersion [L2T-1] 

u groundwater velocity [LT-1]

R0 retardation factor at origin (dimensionless) 

D0 Dispersion at origin [L2T-1] 

u0 groundwater velocity at origin [LT-1] 

n time period regulating step-size of input [T] 

t0 time up to input source acts [T] 

a parameter to regulate input increment at every step-size 

[ML-3] 

ξ exponents (dimensionless) that determines the relation 

among dispersion, velocity & retardtion 
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