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SHAPE OPTIMIZATION THE EASY WAY: THE ‘METHOD OF 
TENSILE TRIANGLES’

C. MATTHECK, R. KAPPEL & A. SAUER
Forschungszentrum Karlsruhe GmbH, Institut für Materialforschung II, Karlsruhe, Germany.

ABSTRACT
A method based on the design rules of nature, which has been used previously for the reduction of notch 
stresses, is used here for the removal of underloaded parts in a mechanical component. A major advantage 
is that neither fi nite element analysis nor complex mathematics is necessary for this graphic method of shape 
optimization, which is demonstrated here using three examples.
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INTRODUCTION1 
Since the late 1980s, at the Forschungszentrum Karlsruhe GmbH (Research Center Karlsruhe), the 
computer simulation of load adaptive tree and bone growth has been used to shape-optimize mechanical 
components. Trees grow thicker tree rings at overloaded points to restore a disturbed uniform stress 
state. Bones also grow at overloaded points, but unlike trees underloaded parts of the structure are 
removed. These mechanisms have been modeled using fi nite element method (FEM)-based computer 
simulations called computer aided optimization (CAO) [1] and soft kill option (SKO) [2]. A summary 
of the conclusions drawn from the major mechanical design rules of nature, which we call ‘axiom of 
uniform stress’, has been given by Mattheck [3].

In 2003, a signifi cant simplifi cation of the CAO method was possible due to a new under-
standing of the nature of notch stresses, which are bending stresses [4, 5]. This process of notch 
shape optimization does not require the use of FEM and can be accomplished using a pocket 
calculator.

In late 2005, a pure graphic method, the ‘method of tensile triangles’, was derived by Mattheck. 
In a study of the shoulder fi llet under tensile loading (Fig. 1), potential slip planes and shear stresses 
due to an obvious longitudinal shear result in equivalent tensile stresses. This results in principle 
tensile stresses that are tilted by about 45° to the beam axis near the notch. When we look at the foot 
of a tree’s trunk (see Fig. 2), a 45° tension rope is found to extend along the upper side of the root. 
When applied to technical components, an existing notch is bridged by a tensile triangle, as shown 
in Fig. 2; one notch creates two less dangerous notches of larger angles. Under a uniaxial stress state, 
as in Fig. 3A, there is only one notch, which can also be bridged by a tensile triangle. The repetition 
of this procedure is the ‘method of tensile triangles’. In the last step, the segments have to be rounded 
to obtain an optimized notch shape. Figure 3B illustrates the method proposed by Mattheck and was 
verifi ed for a shoulder fi llet with the same radial space [6–8]. This FEM calculation and all the other 
calculations in this paper are all done using two-dimensional plane stress elements with the same 
mesh density. The display variable is the von Mises stress, which is the comparison stress used for 
dimensioning in industries.

In [6, 7] Mattheck provides more examples of bi-axial loading to reduce notch stresses using the 
‘method of tensile triangles’.

The goal of this paper is to demonstrate that the ‘method of tensile triangles’ can also be used to 
remove underloaded parts in a design proposal.
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Figure 1: The two plausible counteracting pairs of shear forces and the related principle tensile 
stresses show that a 45° angle is optimum for the lower end of the notch contour line. 
If the undisturbed notch end is parallel to the force fl ow, no notch stress will be caused. 
Therefore, the lowest kink will not be smoothed in case of uniaxial tension.

LOAD-CONTROLLED GROWTH AND SHRINKING BY USE OF THE GRAPHIC 2 
‘METHOD OF TENSILE TRIANGLES’

2.1 Shoulder fi llet

The shoulder fi llet in Fig. 3B, optimized by means of the ‘method of tensile triangles’, is characterized 
by a very homogeneous stress along the notch contour. Now, assuming that there is no locally high 
stress maximum, the stress along the whole shoulder is not homogeneous, because the fi llet corner 
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Figure 2: The buttress root bridging the kink at the base of a tree, like a rope.

is only subjected to low loads. So if there is no functional need for the corner, it can be removed to 
save weight. The transition point where growth switches to shrinking is, in engineering practice, 
given by functional boundary conditions. Figure 4 shows a drastic reduction in the notch stress peak 
as well as underloading in comparison with the non-optimized design. Thus, the ‘method of tensile 
triangles’ can be applied to minimize both local overloading and local underloading.

2.2 Bending bar of uniform stress

This example is known from many textbooks of mechanics [9]. Requiring a uniform distribution of 
bending stresses on the upper contour line, one obtains an analytical formula = ×h x k x l( ( ) / ). The 
height is a function of the bar length shown in Fig. 5B. Except the stress peaks due to clamping and 
single-point load, the stress plot is uniform along the surface of the ‘textbook’ shape. In Fig. 5C, 
the stress plot for a bar optimized by the ‘method of tensile triangles’ is shown. For the sake of 
comparison, we used a height to length ratio equivalent to three tensile triangles. The shape of the 
graphic solution is close to the square root shape. Good improvements are found for the mathematic 
and also for the graphic solution in comparison with the non-optimized bar in Fig. 5A. The diagram 
shows the stress over the shape contour. The stress is standardized to the theoretical bending stress 
(force × arm/cross section).

2.3 Related concave and convex shapes

In Fig. 6A, a fork is optimized and the concave shape is found to be optimum in a similar way as 
in Fig. 5C for the related convex shape. This explains that, for example, the tooth of a cave bear has 
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(A)

(B)

Figure 3: (A) Principle of the ‘method of tensile triangles’ for uniaxial tension. Finally, the remaining 
kinks are rounded by circles. (B) Stresses at the shoulder fi llet rounding with a circular 
notch (left) and ‘method of tensile triangles’ (right) with the same radial design space.

a good shape fi t in the surrounding bone, because its optimum convex shape is equal to the concave 
shape of the deepest part of the bony notch (Fig. 7). A portion more than the lower half of the bear’s 
tooth is fi xed in the jaw. The tooth is loaded in many directions, but the main direction is assumed as 
shown in Fig. 7.

CONCLUSIONS3 
The ‘method of tensile triangles’ is an extremely simple graphic method to reduce notch stresses and 
enlarge the lifetime based on fatigue behavior. On the other hand, this new graphic method can also 
shrink away underloaded parts of a structure and save weight. Both options tend to provide a stress 
state according to the ‘axiom of uniform stress’, which is one of the most important design rules of 
nature [3].

The optimum shape designed using the ‘method of tensile triangles’ can be scaled up and down 
for different dimensions and loadings. It might be a ‘universal’ notch shape design bordered by 
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Figure 4: A shoulder fi llet under tensile loading is optimized by use of the ‘method of tensile 
triangles’ in comparison with a classic circular engineering notch. (A) How to do it – the 
remaining kinks are smoothed by circles. (B) von Mises stress plot of non-optimized 
shape. (C) von Mises stress plot of smoothed optimized shape. (D) von Mises stress 
profi le along contour.
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Figure 5: FEM–von Mises stress plots of a non-optimized rectangular bending bar, a square root bar, 
and a ‘method of tensile triangles’ bar. (A) High underloaded spots in the rectangular bar. 
(B) The square root shaped bending bar according to mechanical textbooks. (C) Bending 
bar obtained by application of the ‘method of tensile triangles’. The remaining kinks are 
smoothed. (D) von Mises stress profi le along contour (stress peaks to the right are due to 
single load).
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Figure 6: If this kind of fork is optimized using the ‘method of tensile triangles’, the concave internal 
shape has nearly no notch stresses anymore compared with the non-optimized design. 
(A) How to do it – the remaining kinks are smoothed by circles. (B) von Mises stress plot 
of the non-optimized shape. (C) von Mises stress plot of the smoothed optimized shape. 
(D) von Mises stress profi le along contour.
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limitations that are not known yet. Variations of the ‘method of tensile triangles’ have also been 
tested. For example, the next triangle does not start in the middle of the previous triangle’s baseline 
but at its quarter point. However, the authors feel that the method presented here is well balanced in 
terms of simplicity of the procedure and the benefi ts to design. 
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